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NATURAL 2-FORMS ON THE TANGENT BUNDLE 

OF A RIEMANNIAN MANIFOLD 

JOSEF JANYSKA 

ABSTRACT . 1-order natural differential operators from metrics to 2-forms on the tangent bundle are 
classified. Some natural transformations from TT to T*T for Riemannian manifolds are described. 

Introduction 

It is very well known that on the cotangent bundle qM ' T*M —> M of a manifold M there 
is the canonical symplectic 2-form given by the exterior differential of the Liouville 1-form. 
Similar canonical construction on the tangent bundle PM ' TM —* M is not possible. But we 
can construct the canonical symplectic form on the tangent bundle of a Riemannian manifold. 
Namely, let (Myg) be a Riemannian manifold and let h(u) = ^g(u,u), u G TM , be the induced 
function on TM . The canonical symplectic 2-form on T M is given by 

£l(g) = ddvh, 

where dv denotes the vertical differential, [G]. 
From the point of view of natural geometry, [N], [KMS], [KJ], ft is a natural 1-oder differential 

operator, over the identity of T , from the natural bundle functor of Riemannian metrics to the 
natural bundle functor of exterior 2-forms on the tangent bundle. 2-forms on the tangent bundle 
of a Riemannian manifold which arise as the results of natural operators from metrics will be 
called natural 2-forms on TM . The aim of this paper is to give the full classification of natural 
2-forms of order 1 on TM . We deduce that the family of natural 2-forms on T M depends on 
some smooth functions of one variable. 

Kowalski and Sekizawa, [KS], gave the full classification of natural symmetric (0,2)-tensor 
fields of order 1 on T M which, together with our results, gives the complete classification of 
natural (0,2)-tensor fields on TM . 

This paper is in final form and no version of it will be submitted for publication elsewhere. 

Typeset by AMS-T$L 
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Kolaf and Radziszewski, [KR], classified all natural transformations TT*M —> T*TM. They 
pointed out that there is no natural equivalence TTM —> T*TM. It corresponds to the fact that 
there is no natural symplectic form on TM . But in the case of Riemannian manifolds metrics 
admit wide possibility to construct natural transformations of TTM to T*TM. In Section 3 we 
use the natural transformations by Kolaf and Radziszewski, [KR], and natural (0,2)-tensor fields 
on T M described in Section 2 to show some families of natural transformations TTM —> T*TM 
for Riemannian manifolds. 

All manifolds and mappings are assumed to be infinitely differentiable. 

1. The canonical example 

Let M be a manifold with a Riemannian metric g and (xl) be local coordinates on M. Then 

9x = gij(x)dx% 0 dx3, gij(x) = gji(x), det(gij(x)) ^ 0. 

We consider the induced function h on TM, h(u) = | | |w| |2 = | g x ( u , u ) , u G TXM. The vertical 
differential of h is a 1-form on T M with the coordinate extression 

<U(«) = -5-r«-*'' = gim{x)umdx\ 

where (xl,u%) are the induced fibred coordinates on TM. The canonical symplectic 2-form on 
T M is then defined by 

£lu(g) = ddvh(u) 

with coordinate expression 

Q>u(g) = ddvh(u) = digmj(x)umdxl A dx3 - gij(x)dxl A du3. 

In what follows we shall write gj*t/ instead of digjk(x). We shall also use the matrix notation 

(ì.i) n.tø) = 
(9mj,i - 9mi,j)um -gij 

9ij 0 

Now, we shall give another description of the canonical symplectic form, which will be more 
convenient for our purposes. Let T be the Levi-Civita connection on M, i.e. its Christoffel 
symbols are given by 

9im 

(I-2) r>* = -^-(9mj,k + 9mk,j ~ 9jk,m)-

Then for any u G TM the tangent space TUTM splits with respect to T into the horizontal and 
the vertical subspaces, i.e. 

TUTM = Hu 0 Vu. 

The connection T defines the isomorphism between the vector spaces TXM and Hu, pjif(u) = 
x. This isomorphism is called the horizontal lift and for £x G TXM the horizontal lift will be 
denoted £** G Hu. 
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The vertical lift of a vector £x G TXM is a vector (Jf G Vu such that £u(df) = fx/ for all 
/ G C°°M. Here d/ is considered as a function on TM , i.e. df(u) = uf. The vertical lift defines 
an isomorphism between TXM and Vu. Obviously, each vector £ £ TUTM can be written in the 
form Cu = (u + yu, where £,77 G T-.M are uniquely determined vectors. 

Now we can define a 2-form on T M as follows 

(1.3) a»(g)(tH,r,H) = o, n«(?)(íH,vv) = -i?-«, IJ), 
n-kOtt", O = Í . ( I . í). n.(i.)(í K, »?v) = 0. 

for all f, 7/ G TXM. The matrix expression of (1.3) is 

(1.4) ft«(ÿ) = 
(ffm,T2-</m.T£K -9ü 

9ü 0 

From (1.2) we can easily see that the matrix expressions (1.1) and (1.4) coincide and hence 
(1.3) defines the canonical symplectic form on TM. 

R e m a r k 1.1 . From (1.3) we see that the canonical symplectic form £l(g) is defined by the 
construction which is similar to the construction of the horizontal lift, [KS], of a metric to a 
symmetric (0,2)-tensor field on TM . It is why the construction (1.3) is called the horizontal lift 
of a metric to a 2-form on TM. 

2. Natural 2-forms on TM 

Let S+T* C T* ® T* be the natural bundle functor of Riemannian metrics. The canonical 
symplectic form described in Section 1 is a natural 1-order operator from S+T*(&T to A2T*(T) 
over the identity of T . We shall classify all such 1-order (with respect to metric) operators. It 
is very well known that such operators are in a bijective corespondence with Gn-equivariant 
mappings from the standard fibre of the bundle functor J1 (S+) 0 T to the standard fibre of 
A2T*(T). To determine these equivariant mappings we use the infinitesimal method, [KS], [KJ]. 

Let us denote Q - 0 2 R n * x (Q2Rn* ® Rn*) x R n the standard fibre of J1^) © T and 
(gij,gij,k,ul) the canonical coordinates on Q. The action of Gn on Q is given by 

9ij = a'fypq 

9ij,k = ap a)ar
kgMyr + (ap

ika) + a? a)k)gpq 

«' = a ' i Л 

where (aj,aj f c) are the canonical coordinates on Gn and tilde denotes the inverse element. 
The fundamental vector fields on Q relative to this action are 

(2.1) SW) = " 'żêг " -Í-P7ГГ- - (*!*>!.« + SІ9.,,c + 6Î9aЪ,r) 
д 

дur 'дg, дgab,^ 

(2.2) «™--**(.&'•.£.)• 
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Let us denote S = Rn x A2R2n* the standard fibre of A2T*(T) with the canonical coordinates 
/ y} u2 \ 

(u\ f _ t3
2 y )), uV = -u}„ u^ = - _ £ . The action of G2

n on S is given by 
\ uji Uij J 

u% = apu
p, 

uh = apaypq + («r«Jw - aWm)a?u'u2
pq + a ^ a j ^ ^ u ^ , 

^ = arajt.;f+5rmaj«r«r»;ff, 
_4 ~p~q 4 

The fundamental vector fields on S relative to this action are 

d 
(2.3) W = «é - 2"1,^- - -í-já- - «5, já- - 2< au, «'oui, "A.», «>a< "euî,* 

(2.4) 2£f(S) = Wu'uJ, + 6lu°u\p - S[u'u\, - 6lu'u\p)-^--

-(6Wupi + 6lu°uph)-£r. 

A.mapping F : Q —• 5 is G2-equivariant iff the corresponding fundamental vector fields are 
F-related. If F has the coordinate expression 

ux = u\ u°j = Fi-(gab,gabiC,ua)y a = 1,2,4, 

then F-j have to satisfy the following system of partial differential equations 

OF* dF* OF* 
(2.5) 29;Q£ + (*l9,*,c + ^ w + 6C9^P)Q^-C - v 9 - ^ = W + W > 

P<1 \d9aqtr dgar,q ) 

(2-7) ^ { ^ ^ ' ^ ^ ^ ^ 

( dF1 dF1 \ 
(28) 29pa [dZt+ ě^J = ̂ "^ + ***** "^"^"í*u,ť<r-



NATURAL 2-FORMS ON THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD 169 

Theorem 2.1. All Gn-equi variant mappings F :Q —> S are given by the formulas 

Ft) = ubucTr
biT'cjart + ubTr

bjpri ~ ubTr
biprj + 7,;, 

(2.9) p;2
i = u 6 r 6 > r i + A i , 

*1j = <*ih 

where Tx
ik are the formal Christoffel symbols and aijy/3ij,jij are functions on Q which are 

solutions of the following system of differential equations 

(2.10) ^ - = 0, 
U9pq,r 

(2.U) - * - ^ - , ^ = ^ + 0i-7. 

Moreover, a t J = -aji,Hj = - 7 ^ . 

Proof. We have to show that all solutions of (2.5) - (2.8) are of the form (2.9). We contract 
both sides of (2.6)-(2.8) by gvq and use the cyclic permutation of the indices p, q, r. We get 

dF± 
(2.12) * T ^ - = °> 

<>9pq,r 

dF2 

(2.13) 4-^-a- = Fmjg™u\6Z + 6>Jb
r + 6% - $£ - S>£ + *&r), 

dF1 

(2.14) 4 - - ^ - = Ffmg""u\SZ + C " - 6% - 6% - «&' ~ «T)+ 

+ F^gStfZ + S% + 6% - 6% - SI]! + S%)> 

which can be rewrite, by using (1.2), in the form 

dF2 dTm. 
U9pq,r U9pq,r 

dF1. dTm nrm 

Olf{\ *' — J?2 -• *3 T?2 „* si 

^Z'lt)) Wn ~ *imU ~Kn b)mU ^ * 
V9pq,r U9pq,r ^9pq,r 

Putting F*j = atj and substituting it into (2.15) we get after the integration 

(2.17) F ? = u T ; > r , + / ? . , , 

where $ Pi* = 0 and substituting (2.17) into (2.16) we get after the integration 

(2.18) 4 = u V r ; ; i > r . + Jriipri - JriPn + 7ii, 

where Q
 7 t ' = 0. It is easy to see that ay = —<*;i»7ij = — jjt- and atij,Pij and 7^ satisfy 

(2.11). n ' r 
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Remark 2.1. From (2.10) and (2.11) it follows that aij,/3ij,jij are the components of (0,2)-
tensor fields on M which are given as 0-order natural differential operators from S+ © T to 
®2T*. Such natural tensor fields are called natural F-metrics, [KS]. 

Now we can easily prove 

Theorem 2.2. All natural 2-forms Q,(g) of order 1 on TM are of the form 

( ' fl«G/)(fV, •»") = -/»-(•», 0, nu(9)(tV,r)V) = « , « , rt). 
where a, /S, 7 are natural F-metrics and moreover 7 and a are skew-symmetric. 

Proof. It is easy to see that the coordinate expression of (2.19) coincides with (2.9). D 

We recall here the classifying theorem for natural 1-order symmetric (0,2)-tensors on TM 
by Kowalski and Sekizawa, [KS], (see also [KMS]). 

Theorem 2.3. All natural 1-order symmetric (0j2)-tensor fields G(g) on TM are of the form 

(1<XH <?„(«,)(£«,,,") = 7 ^ , 7 ) , Gu(g)((»,riv) = 0xti,r,), 

where a, /?, 7 are natural F-metrics and moreover 7 and a are symmetric. D 

Hence the problem of classifying natural (0,2)-tensor fields of order 1 on TM is reduced to 
the problem of classifying natural F-metrics. This problem was completely solved by Kowalski 
and Sekizawa, [KS]. 

Theorem 2.4. Let (M,g) be an oriented Riemannian manifold of dimension n. Then all 
natural F-metrics on M derived from g are given as follows: 

i) For n = 1, ail natural F-metrics are of the form 

(2.21) C«(£,»?) = /<(N|2M£,'/), 
where fi is an arbitrary function of ||u||2 = g(u,u). 

ii) For n = 2, all symmetric natural F-metrics are of the form 

(2.22) c.(C,i>) = MII«||2M£,'z) + KII«ll2)0(£, «)*(*«)+ 
+ K(l|tt||2)[<7(f, «)</(»?, Ju) + jf(ij,«)«({-, Ju)], 

and all skew-symmetric natural F-metrics are of the form 

(2.23) Ut,r)) = K\M\2)[9(Z,«)9(ri,Ju)-9(ri,uW,Jv)}, 

where /1, v, /c, A are arbitrary functions of \\u\\2 and J is one of the two canonical almost complex 
structures on (M,g). 

Hi) For n = 3, ail symmetric natural F-metrics are of the form 

(2.24) C.«,'/) = /i(ll«l|2MC,'/) + <'(ll«ll2MC,«)</('7,tt), 

and all skew-symmetric natural F-metrics are of the form 

(2.25) C « ( ^ ) = A(| | t t | |2M£x,,,«), 

where fi, 1/, A are arbitrary functions of \\u\\2 and £ x 17 is the usual vector product of f and 17. 
iv) For n > 3, ail natural F-metrics are symmetric and are of the form (2.24). D 
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R e m a r k 2 .2 . M was supposed to be oriented in Theorem 2.4. In the case of non-oriented 
Riemannian manifold all natural F-metrics are of the form (2.21), for n = 1, and (2.24), for 
n > 2 . 

R e m a r k 2 .3 . If we combine Theorem 2.2 and Theorem 2.4 we get the following: If n = 1, the 
family of all natural 2-forms depends on one arbitrary function of one variable, for n = 2 it 
depends on six arbitrary functions of one variable, for n = 3 on five functions and for n > 3 on 
two arbitrary functions of one variable. 

R e m a r k 2 .4 . In the general case (for oriented Riemannian manifolds if n = 1 or n > 3, for 
non-oriented Riemannian manifolds in all dimensions) all natural 2-forms are horizontal lifts 
of a natural P-metric to a 2-form on TM. The canonical symplectic form is then given for 
< = -9-

R e m a r k 2 .5 . The restriction of order of our operators is necessary. If we consider higher order 
operations we get many further natural (0,2)-tensor fields on TM. For instance let (M, V) be 
a manifold with a linear connection V. Let R be the Ricci tensor of V. Then 

«.(»)«". •»") = 0, fl-dOtt".*") = *,«,•»), 
n.(*)«K, i") = -R.(ti, 0, n»(9)(tv, r)v) = o. 

is a 2-form on T M which is naturally induced from V and is of order 1 with respect to V. 
Hence, if M is a Riemannian manifold and V is the Levi-Civita connection, we get 2-order 
(with respect to a metric) natural 2-form on TM . 

3. Some natural transformations TT —> T*T 

Kolaf and Radziszewski, [KR], classified all natural transformations of the bundle functor 
TT* to T*T. They pointed out that there is no natural equivalence of TT to T*T. It is a 
consequence of different geometrical properties of these bundle functors and it corresponds to 
the fact that there is no canonical natural symplectic form on TM . In Section 1 we have 
constructed the canonical natural (with respect to a metric) symplectic form Q, on the tangent 
bundle of a Riemannian manifold, which gives a natural transformation SQ : TTM —> T*TM. 
This transformation is in fact a natural differential operator 

S : S\T* &TT-+ T*T 

of order 1 in metrics. In this section we shall give some natural transformations TT —> T*T for 
Riemannian manifolds, which are of order 1 with respect to metrics. 

First we recall the main result by Kolaf and Radziszewski, [KR]. We give two canonical 
natural transformations TT* -> T*T. The first is the transformation sM : TT*M -> T*TM by 
Modugno and Stefani, [MS], which can be described geometrically as follows. Every A € TT*M 
is a vector tangent to a curve j(t): R —• T*M at t = 0 . If B G TT9M (A)TM, then iB is tangent 
to the curve 6(t) : R —• TM over the curve qM(j(t)) on M. i : TTM —> TTM is the canonical 
involution. Hence we can evaluate (j(t),S(t)) for every t and the derivative -ji\o(j(t),S(t)) =: 
a(A,B) depends on A and B only. This determines a linear map TTqM(A)TM —• R, B •-• 
a(A,B), i.e. an element sM(A) € T*TM. 
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The second construction is the following. We have the injection KM : T*M —> T*TM given 
by the pullback with respect to the project ionp M : TM —• M. I.e. KM(A)(B) = (A,TpM(B)), 
A e T*M, B e TUTM. Then KM opT.M : TT*M -+ T*TM is a natural transformation 
TT*M -• T*TM such that the diagram 

TT*M 

T*M K м > T*TM q т м ) T M 

commutes. 

Finally we denote Y i—> ( k ) i Y and V i-» (k)2Y, k € R, the scalar multiplications in TT*M 
with respect to two vector bundle structures pT*M : TT*M -* T*M and TqM : TT*M -+ TM, 
respectively. In the notation X £ TT*M, p = pT*M(X) £ T*M, f = TqM(X) € T M we have, 
[KR], [KMS], 

T h e o r e m 3 . 1 . All natural transformations ofTT*M to T*TM are of the form 

(3.1) (F((p,0))i(G((p,0))2SM(X) + KM(H((P,0)P), 

where F(t), G(t), H(t) are three arbitrary smooth functions of one variable. • 

Let us express (3.1) in coordinates. If (xl) are local coordinates on M, then we have the 
induced fibred coordinates ( x \ u*) on TM, (x\ u", (,-, U{) on T*TM and (x\ p,-, f \ TT;) on TT*M . 
Then the coordinate expression of (3.1) is 

(3.2) 
^ = F(Pmr)v, 
6 = F(Pmr)G(PmC)*i +H(PmC)Pi, 

Ui = G(PmÍm)Pi. 

The canonical transformation sM is then given b y F = l , G = l , H = 0, i.e. 

" ' = f\ ft = ^«- Ui=pi 

and « M o pT*M is given by P = 1, G = 0, H = 1, i.e. 

«' = c\ e.=p«, tl. = o. 

Now we are in the position to describe some natural transformations of TTM to T*TM for 
a Riemannian manifolds by using Theorem 3 .L Let us suppose that we have a (0,2)-tensor field 
£ on M which defines the mapping S{ : TM —• T*M, over M, by 

(3.3) <-?c(«).í>«=C«(Є,«), Є,«€Г.Лf. 
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Then we can define two families of natural transformations (natural also with respect to C) of 
TTM to T*TM. The first family is given by the commutativity of the diagram 

TTM - ^ > TT*M 

ZM\. S^M 

TTM 

where Y,M are the natural transformations from Theorem 3.1. Transformations ZM - TTM —• 
T*TM are over the natural transformation of TM given by the scalar multiplication in TM 
such that the diagram 

ZM 

TTM • T*TM 

TPM\ \ITM 

F«hmtkum) 
TM > TM 

commutes, where F is the function from Theorem 3.1. The coordinate expression of the family 
ZM is 

"'" = F((km(kum)C, 

6 = F(Ckrn(kUm)G(Ckm(kUm)(CimikU
me + (imEm) + H(Ckmeum)CimUm, 

Ui = G(C*mf *Um)C.mlim, 

where (x*, u%, £ ' ,2 ' ) are the induced fibred coordinates on TTM. 
The second family of natural transformations of TTM to T*TM is given by the following 

commutative diagram 

TTM -^---> TT*M 

'*] 1 E * 
TTM —-^-> T*TM 

where ijvf is the canonical involution of TTM. The family of natural transformations ZM is 
over the scalar multiplication in TM via the commutative diagram 

ZM 

TTM • T*TM 

i PTM 

F((*mu*r) 
TM > TM 

The coordinate expression of the family ZM is 

«' = F(c*»u*r K, 
& = F(c*»«*r )c(c*»«*r xc.»,*«*r+us-*)+ff(c*m«*r x.»r, 
^ = G(Ch-t,*r )c.»r • 
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Now if £ is a natural P-metric from Theorem 2.4 we get two families of natural transforma

tions ot TTM to T*TM for Riemannian manifolds. These families depend on functions of one 

variable via the natural P-metric and via E M , where as arguments appear <7(u,u),g(£,£) and 

<K«,0-
The third possibility how to construct natural transformations of TTM to T*TM is to use a 

natural lift of a metric to (0,2)-tensor fields on TM. Namely, if £l(g) is a natural lift described 

in Theorem 2.2 or 2.3, then 

Sn ( , ) : TTM - T*TM 

defined by (3.3) is a natural transformation. All these transformations are over the identity of 

TM and some of them are contained in the family ZM • 
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