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REPORT ON K-THEORY FOR CONVENIENT ALGEBRAS II 

Andreas Cap1 

0. INTRODUCTION 

In [Ca] I gave an overview over the first steps of a generalization of K-theory for 
Banach algebras to a much more general class of algebras, the so called convenient 
algebras. In this paper I continue this overview with the discussion of the two funda­
mental long exact sequences in K-theory, the one induced by a smooth map and the 
one induced by a bounded algebra homomorphism. Throughout this paper we will 
use the notions, notations and results of [Ca]. 

This paper splits into two parts: In the first part we develop some basic homotopy 
theory for smooth spaces, in particular the theory of fibrations and cofibrations. The 
main result is that there are smooth versions of the Puppe sequences, long exact 
sequences of certain sets of smooth homotopy classes of smooth mappings. 

In the second part we discuss higher K-groups and relative K-groups and interpret 
these groups in terms of homotopy theory. Then we derive the fundamental long 
exact sequences from the Puppe sequences. 

1. SMOOTH FIBRATIONS AND COFIBRATIONS 

Simple examples show that the obvious analog of the classical definition of a cofi-
bration would not lead to a reasonable theory in the smooth category. (For example 
the inclusion of the point 0 into the unit interval I is not a cofibration in this sense.) 
Instead one is lead to the following weakening: 

1.1. Definition. (1): Let X and Y be smooth spaces. A smooth map i : Y —.• X is 
called a smooth cofibration iff it has the following homotopy extension property: If 
Z is an arbitrary smooth space and H :Y x I —* Z and / : X —•• Z are smooth maps 
such that / o i :== H|yX{o) then there is a smooth map H : X X / —> Z such that 
H o (i x Id) = H and H|xx{o} -s smoothly homotopic to / relative to Y, i.e. there is 
a smooth homotopy h : X x I -» Z such that h(x,0) = H(x,0), h(x, 1) = f(x) and 
h(i(y),t) = f(i(y)) for all x E X, y G Y and t <E I. 
(2): For a smooth cofibration i : Y —• X we define the cofiber of the cofibration to 
be the quotient space X/i(Y) with the final smooth structure with respect to the 
canonical projection X —> X/i(Y). 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
1 Supported by project P 7724 PHY of 'Fonds zur Forderung der wissenschaftlichen Forschung' 
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1.2. Now several basic results on smooth cofibrations can be proved: Smooth cofi-
brations are always initial morphisms and for HausdorfF spaces they are injective, 
compositions and push outs of smooth cofibrations are again smooth cofibrations and 
so on. To see thM there are nontrivial examples note that the inclusion of the smooth 
manifold Sn"1 into the closed unit ball En is a smooth cofibration. 

It is also interesting that similar as in topology, inclusion maps which are smooth 
cofibrations can be characterized by a property analogous to the notion of NDR-pairs 
(c.f. [Steenrod, 1967] or [Whitehead, 1978]). 

1.3. Mapping cylinders. Let X and Y be arbitrary smooth spaces, g : X —> Y a 
smooth map. We define the mapping cylinder Mg of g to be the push out: 

X x {0} —g—+ Y 

Xxl • Mg 

The inclusion of X x {1} into Xxl induces a smooth map i : X —,• Mg. 
As a special case we define the cone CX over X to be the mapping cylinder of the 

unique smooth map X —• pt, where pt denotes the smooth space consisting of a single 
point. 

1.4. PROPOSITION. Let Mg be the mapping cylinder of a smooth map g : X —• Y. 
Then we have: 
(1): The map i : X —• Mg is a smooth cofibration. 
(2): The natural map Y —• Mg is a smooth homotopy equivalence. 
(3): IfXandY are base spaces then Mg is a base space. 

1.5. Using this result one shows that as in topology any smooth map factors into a 
composition of a smooth homotopy equivalence and a smooth cofibration. 

Next for a smooth map g : X —• Y one defines the homotopy co£ber Cg of g to 
be the cofiber of the smooth cofibration i : X —* Mg. It turns out that this space 
coincides with the mapping cone, i.e. the space obtained by attaching the cone over 
X to Y along g. Using this one concludes that the natural map Y —» Cg is always a 
smooth cofibration. Moreover for a smooth cofibration the cofiber and the homotopy 
cofiber are smoothly homotopy equivalent and for a map between base spaces the 
homotopy cofiber is again a base space. 

Dual to smooth cofibrations we define smooth fibrations as follows: 

1.6. Definition. (1): Let X and Y be smooth spaces. A smooth map p : X —• Y is 
called a smooth fibration iff it satisfies the following homotopy lifting property: If Z 
is an arbitrary smooth space and H : Z x I —• Y and / : Z —• X are smooth maps 
such that p o / = H\zx{o)> then there is a smooth map H : Z x I —> X such that 
poH = H and such that H\zx{o) -s nomotopic to / via a fiber preserving homotopy, 
i.e. there is a smooth map h : Z x I —• X such that h\zx{o) — -£-1zx{o}> h\zx{i\ = / 
and po h = po f opr\. 
(2): If p : X —> Y is a smooth fibration and y G Y is a point then we define the fiber 
of p over y to be the set p~~1(y) with the initial smooth structure with respect to the 
inclusion into X. 
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1.7. Again several basic properties of smooth fibrations can be proved: If the target 
space is smoothly path connected then any smooth fibration is a surjective final mor-
phism, compositions and pullbacks of smooth fibrations are again smooth fibrations 
and so on. 

The analog of the construction of the mapping cylinder now looks as follows: 

1.8. Mapping cocylinders. Let X and Y be smooth spaces, g : X —• Y an 
arbitrary smooth map. We define the mapping cocylinder M9 of g to be the pullback: 

M9 • C°°(I,Y) 

1 I-" 
X ——• Y 

The composition of the evaluation at 1 and the canonical map M9 —> C°°(I,Y) 
defines a smooth map p : M9 —• Y. 

As a special case we define for a pointed smooth space (X, XQ) the path space PX 
over X to be the mapping cocylinder of the inclusion of xo into X. 

1.9. PROPOSITION. Let M9 be the mapping cocylinder of a smooth map g : X —>Y. 
Then we have: 
(1): The map p : M9 —• Y is a smooth fibration. 
(2): The natural map q : M9 —• X is a smooth homotopy equivalence. 

1.10. From this result one easily concludes that any smooth map factors into a 
composition of a smooth fibration and a smooth homotopy equivalence. 

The definition of the homotopy fiber is now a little more subtle than the one of 
the homotopy cofiber. It can be proved that for a smoothly path connected target 
space the fibers over any two points are smoothly homotopy equivalent. But using 
this result we would get a definition of the homotopy fiber which is only up to smooth 
homotopy equivalence. To avoid this we restrict to base point preserving smooth 
maps g : X —• Y, where (X,xo) and (Y, j/o) are pointed smooth spaces. For such 
a map we define the homotopy fiber C9 of g to be the fiber over yo of the smooth 
fibration p : M9 —• Y. It can be shown that C9 is naturally diffeomorphic to the 
pullback of the path fibration PY —> Y along g, which implies that the natural map 
C9 —• X is always a smooth fibration. Finally for a base point preserving smooth 
fibration between pointed smooth spaces the homotopy fiber is smoothly homotopy 
equivalent to the fiber over the base point. 

1.11. Now we start the discussion of long exact sequences of sets of homotopy classes. 
Let W be a smoothly path connected smooth space. Then for any smooth space X 
the set [X, W] of free smooth homotopy classes of smooth maps from X to W has a 
natural base point, namely the class represented by any map which maps the whole 
space X to a single point. 

It is a quite simple consequence of the homotopy extension property that for a 
smooth cofibration i : X —• Y with cofiber p : Y —• Y/i(X) and for any smoothly 

p* •'* 

path connected space W the sequence [Y/i(X), W] —• [Y, W] —• [X, W] is an exact 
sequence of pointed sets. 
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Using the construction of the mapping cylinder (c.f. 1.3) one easily shows that one 
gets a similar exact sequence for an arbitrary smooth map replacing the cofiber by 
the homotopy cofiber. Clearly this procedure can be iterated to produce a long exact 
sequence of pointed sets in which the spaces are iterated homotopy cofibers. The 
main step to get the Puppe sequences is to give a description of these spaces (and the 
connecting maps) up to homotopy equivalence. This is quite subtle but can be done 
similar as in topology: 

1.12. For a smooth space X the inclusion X —• CX into the cone is a smooth 
cofibration (c.f. 1.3 and 1.4) and we define the (unreduced) suspension SX of X to 
be the cofiber of this smooth cofibration. Inductively we define higher suspensions 
SnX. Clearly the suspensions have functorial properties, so a smooth map / : X —>Y 
induces smooth maps S n ( / ) : SnX —> SnY. 

Now for a smooth map / : X —> Y with homotopy cofiber Cf there is a natural 
smooth map q : Cf —> SX induced by contracting the image of Y in Cf to a single 
point. Then it turns out that the iterated homotopy cofibers in the long exact sequence 
constructed in 1.11 are homotopy equivalent to iterated suspensions and one gets: 

1.13. THEOREM. Let f : X —• Y be a smooth map between arbitrary smooth spaces 
with homotopy comber g :Y —> Cf, and let q : Cf —> SX be the map constructed in 
1.12. Then for any smoothly path connected smooth space W the sequence 

Sn(q)* Sn(g)* 
... -> [Sn+1X, W] • [SnCfy W] • 

sn(f)m 

— [SnY, W] • [SnX, W]-*... 

... - [SX,W] --C [Cf,W] -C [Y,W] - C [XyW] 

of pointed sets is exact. 

1.14. Dually to the considerations above we can construct similar sequences based on 
fibrations. First let p : X —• Y be a base point preserving smooth fibration between 
pointed smooth spaces and let i : F —• X be the inclusion of the fiber over the base 
point. Then from the homotopy lifting property one easily concludes that for any 

»• p* 

smooth space W the sequence [W,F] —• [JV,X] —> [JV,Y] is an exact sequence of 
pointed sets. (Clearly these sets have natural base points since all spaces on the right 
hand side are pointed.) 

Passing to arbitrary base point preserving maps and homotopy fibers and then 
iterating the procedure we get long exact sequences of pointed sets in which the 
spaces are iterated homotopy fibers. 
1.15. For any pointed smooth space (X,xo) we have the path fibration PX —> X 
(c.f. 1.8 and 1.9) and we define the loop space Q.X of X to be the fiber over xo 
of this smooth fibration. Inductively we define iterated loop spaces flnX. Clearly 
this construction is functorial, so a smooth map / : X —• Y induces smooth maps 
nn(f) : SlnX -> QnY. 

Next if / : X —• Y is a base point preserving smooth map with homotopy fiber 
g : C* —• X then the inclusion of the fiber over the base point of this smooth fibration 
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induces a smooth map k : QY —> Cf. Now it turns out that the iterated homotopy 
fibers in the long exact sequence constructed in 1.14 are smoothly homotopy equivalent 
to certain loop spaces and we get: 

1.16. THEOREM. Let f : X —• Y be a base point preserving smooth map between 
pointed smooth spaces with homotopy .fiber g : Cf —• X, and let k : £IY —> Cf be 
the smooth map constructed in 1.15. Then for any smooth space W the sequence 

ftn(*). . . , nn(s)* 
[w,un+1Y] '-* [w,nncf] -> 

[w,nnx] >[w,nnY] 

[W,ӣY] -Î-+ [W,Cf] - ^ [W,X] Д - [W,Y] 

is an exact sequence of pointed sets. 

2. T H E FUNDAMENTAL LONG EXACT SEQUENCES 

IN K-THEORY FOR CONVENIENT ALGEBRAS 

2.1. Definition. Let X be a base space, A a convenient algebra. Then the unique 
smooth map X —• pt from X to the single point smooth space induces a group 
homomorphism Ko(A) = K^(pt) —> KA(X), and we define the group KA(X) to be 
the cokernel of this homomorphism. If X is smoothly path connected then this group 
coincides with the group K'A(X) considered in [Ca]. 

Now in analogy with classical topological K-theory we define the higher K-groups 
KJn(X) of X for n > 0 as KA(Sn(X+)), where X+ denotes the disjoint union of 
X and a single point and Sn denotes the n-fold suspension (cf. 1.12). From the 
functorial properties of the groups KA(X) one immediately concludes that the higher 
K-groups are bifunctors, contravariant in X and covariant in A. 

For well pointed base spaces (X, xo), i.e. spaces for which the inclusion of the base 
point is a smooth cofibration, there is a nice interpretation of the group KA(X) 
in terms of homotopy theory. Let [K,K0(A) x BGL(n,A)]o be the set of smooth 
homotopy classes of base point preserving smooth maps from X to the product of the 
discrete space Ko(A) with the classifying space of the smooth group GL(n, A). Then 
these sets form an inductive system with respect to the same connecting maps as for 
the free homotopy classes (cf. [Ca]) and we denote by [K, K0(A) x BGL(A)]o the 
direct limit of this system. Then one proves that there is an isomorphism of bifunctors 
KA(X) S [X,K0(A) x BGL(A)]0. 

For any base space X the space K+ is well pointed and suspensions of well pointed 
spaces are well pointed. Moreover, since suspensions are always smoothly path con­
nected we can leave out the K0(A) and we get KA

n(X) = [ 5 n ( K + ) , BGL(A)]0 (where 
again this has to be understood as a direct limit). 

2.2. For the case of a smooth map there is a simple definition of the relative K-group 
using K-theory of the homotopy cofiber. But the situation is more complicated in 
the case of a bounded algebra homomorphism, where there is no obvious definition. 
Thus we take a more general approach. First observe the following facts: 
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(1): The categories V(A) of finitely generated projective right modules over a con­
venient algebra A and £A(X) of A-bundles over a base space X are convenient, i.e. 
every set of morphisms in any of these categories has a natural structure of a conve­
nient vector space. 
(2): The functors £A(/) induced by a smooth map / and V(<p) and £^(X) induced by 
a bounded algebra homomorphism <p are all convenient in the sense that they induce 
bounded linear maps on morphism sets. 
Now we can adapt the general definition of the K-group of a Banach functor due to 
Karoubi (c.f. [Ka, II.2.13]) to define the K-group of a convenient functor between 
convenient categories as follows: 

2.3. Definition. Let C and C be additive convenient categories, <p : C —• C a 
convenient additive functor. Let T(<p) denote the set of all triples (.E, F, a) where E 
and F are objects of C and a is an isomorphism between <p(E) and <p(F). Two triples 
(E, F, a) and (E', F', a') are called isomorphic iff there are isomorphisms / : E —> E' 
and g : F —> F' such that the following diagram commutes. 

Ч>(E) - V(F) 

н [v{g) 

*{") — - V(F') 

A triple (E,F,a) is called eiementary iff E = F and a is homotopic to id^-) as 
an automorphism of <p(E). (This makes sense since C(<p(E), <p(E)) is a convenient 
algebra and thus the automorphisms form a smooth group.) Finally we define the 
sum of two triples by 

(E, F, a) + (E\ F', a') := (E © E\ F © F', a © a'). 

Now we define the K-group K(<p) of the functor <p to be the quotient of T(<p) with 
respect to the equivalence relation defined by declaring two elements a and a' to be 
equivalent if and only if there are elementary triples r and r ' such that a + r and 
a' + T' are isomorphic. We write d(E,F,a) for the class of the triple in K(<p). 

Obviously the addition defined above factors to an addition on K(<p) which defines 
the structure of a commutative monoid on K(<p). Moreover one shows (c.f. [Ka, 
II.2.14]) that the elements d(E,F,a) and d(F,E,a_1) are inverse in K(<p) and thus 
K(<p) is an abelian group. 

2.4. Let us first consider the case of a smooth map. We want to give a homotopy 
interpretation of the group K(£A(J)) of the functor £A(/) - £A(Y) —> £A(X) induced 
by a smooth map / : X —•• Y. This interpretation follows the same lines as for 
absolute groups but is much more difficult to prove. First we associate to a triple 
(E, Fy a) G T(£A(/)) the locally constant function Y —• K0(A) given by assigning 
to any point y G Y the difference of the classes of the fibers of E and F over y. 
This construction defines a group homomorphism K(£A(/)) —• H°(Y, KQ(A)) and we 
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define K'(SA(f)) to be the kernel of this homomorphism. One shows that there is a 
splitting short exact sequence 

0 - K'(SA(f)) -> K(SA(f)) -> Ker(/*) -> 0, 

where /* : #° (y ,K 0 (A ) ) -* #° (K ,K 0 (A ) ) is the homomorphism induced by / . One 
immediately verifies that Ker(/*) = [C/,Ko(A)]o, where C/ is the homotopy cofiber 
of / and thus we have an isomorphism K(SA(f)) = K'(SA(f)) © [C/,K0(A)]o. 

2.5. Next consider the set of all pairs (E, a), where E is an A-bundle over Y with 
fiber An and a is an isomorphism between f*E and the trivial bundle X x An. Two 
such pairs (E, a) and (E',a') are said to be equivalent if and only if there is an 
isomorphism <p : E —> E' such that a' o f*ip is homotopic to a as an isomorphism 
from f*E to X X An. Let $n(SA(f)) be the set of all equivalence classes. 

Now (E,a) >-> (.E(B0i,a©id), where 0\ denotes the trivial 'line' bundle Y X A over 
y , defines a map $n(SA(f)) —> $n+\(SA(f)) and we define $(SA(f)) to be the direct 
limit of the so obtained inductive system. Next ((E, a), (F, /3)) »-> (E © F, a 0 /?) 
defines a map $n(£U(/)) x $m(£yi(/)) —• $n+m(SA(f)) and one shows that this 
induces the structure of a commutative monoid on $(SA(f)). 

We define a.map an : $n(SA(f)) -> K'(SA(f)) by crn(E,a) := d(E,Y x A n ,a) . 
This is easily seen to be well defined and clearly it induces a monoid homomorphism 
a : $(SA(f)) -> K'(SA(f)). Then one proves: 

2.6. PROPOSITION. The homomorphism cr defined above is bijective, so $(SA(f)) is 
an abelian group. 

2.7. When working in the topological category one could now easily relate such pairs 
(E, a) to bundles over the homotopy cofiber C/ via clutching constructions. This 
would be difficult in the smooth setting since we can perform clutching only over 
open subsets. Thus we pass to classifying maps as follows: Clearly we may restrict 
to pairs (E,a) G $n(SA(f)) in which E is the associated bundle to the pullback of 
the universal GL(n, A) bundle along some smooth map g : Y —> BGL(n, A). Then 
a is induced by a trivialization of the pullback along / of this principal bundle. 
Using the canonical section of the trivial GL(n, A) bundle and the inverse of this 
trivialization we get a smooth map s from X to the total space of the universal 
GL(n, A) bundle which projects to g o f. But this total space is contractible, so s 
must be null homotopic. The projection of such a null homotopy can be viewed as 
a smooth map # : CK —> #CL(n,A) , which together with g induces a base point 
preserving map C/ —> BGL(nyA), the homotopy class of which we assign to the pair 
(23,«). 

2.8. THEOREM. For any n > 0 the construction described above leads to a well 
defined map un : $n(SA(f)) —> [Cf,BGL(n,A)]0. Together these maps induce a 
group isomorphism u : $(SA(f)) —> [Cf,BGL(A)]0. 

2.9. Putting together this result with the isomorphisms from 2.4 and 2.1 we see 
that K(SA(f)) =* KA(Cf). Moreover let / + : K+ -> y + be the base point preserv­
ing smooth map induced by / . Then one proves that the homotopy cofiber C/+ is 
smoothly homotopy equivalent to C/, so we can use this space as well. 



182 ANDREAS CAP 

Next we define higher relative K-groups by K~n(£A(f)) := kA(Sn(Cf+)). Then 
there are obvious homomorphisms K^n_1(K) —• K~n(£A(f)) —• K^n(Y) induced 
by the natural smooth maps S(X+) —> Cf+ —* Y+ (c.f. 1.12) by passing to the n-fold 
suspension. Using the Puppe sequence 1.13 induced by / + one proves: 

2.10. THEOREM (THE LONG EXACT SEQUENCE OF A SMOOTH MAP). Let f :X -+Y 

be a smooth map between base spaces and let A be a convenient algebra. Then there 
is a long exact sequence of abelian groups and group homomorphisms 

...^K-A
n~\X)^K-n(SA(f))-* 

. ^Kll(X)^K(SA(f))^KA(Y)-^KA(X) 

which is natural in f and A. 

2.11. Using the homotopy interpretation of relative K-groups we can now give an­
other homotopy interpretation of higher K-groups: This is based on the fact that 
one can show that for a base space X the group KA(SX) is isomorphic to $(£A(I)), 
where i : X —• CX is the inclusion into the cone. 

For a pointed base space (K, xo) let [X, GL(n, A)]0 be the set of all pointed smooth 
homotopy classes of base point preserving smooth maps from X to the smooth group 
GL(n, A), where we take the identity as the base point of GL(n, A) . The natural 
smooth homomorphisms GL(n,A) —• GL(n + 1,A) induce maps [X,GL(n,A)]0 —• 
[X, GL(n + l,A)]o and we denote by [X, GL(A)]0 the direct limit of the so obtained 
inductive system. Clearly the pointwise multiplication of smooth maps induces a 
group structure on [X, GL(A)]0. Similarly for an arbitrary base space we define 
[X, GL(A)], which is also a group. Then one proves: 

THEOREM. For any pointed smooth space (X,x0) there is a natural isomorphism 
KA(SX) = [X, GL(A)]Q. In particular [X, GL(A)]0 is always an abelian group. 

An easy corollary of this result is that there is a natural isomorphism of bifunctors 
K~^X(X) = [K, GL(A)]. Moreover one can show that the iterated suspensions of the 
two point smooth space are smoothly homotopy equivalent to the spheres and thus 
we get: Kn(A) := K^n(pt) 2 [Sn~\GL(A)]0. 

2.12. So let us now turn to the case of a bounded algebra homomorphism <p : A —• D 
between convenient algebras. For a fixed base space X we consider the functor (p+ = 
£<p(X) : £A(X) —• £D(X) induced by (p. We want to give a homotopy interpretation of 
the K-group of this functor. The first part of this is parallel to the case of a smooth 
map so we only give a short outline: First we decompose the group into a direct 
sum as K(EV(X)) 3 K'(£^(X)) 0 Ker(K0(y>)*), where K0(<p). : H°(X,K0(A)) -> 
H°(X,KQ(D)) is the group homomorphism induced by <p. Next for any n > 0 we 
consider the set ^ ( ^ ( K ) ) of equivalence classes of pairs (E, a), where E is an A-
bundle over X with fiber An and a : <p+(E) —• X x Dn is an isomorphism. Then 
one constructs connecting maps ^ ( ^ ( K ) ) —> $n+i(£^(X)) and the structure of 
a commutative monoid on the direct limit $(£,p(X)). Finally one shows that this 
monoid is isomorphic to K'(£^(X)). 
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2.13. To relate $(S,p(X)) to homotopy theory we proceed as follows: For any n > 0 
the algebra homomorphism ip induces a smooth homomorphism (pn : GL(n,A) —> 
GL(n,D) which in turn induces a smooth map B((pn) : BGL(n,A) —> BGL(n,D). 
Let Pn(<p) be the homotopy fiber of this smooth map. Recall from 1.10 that Fn(<p) 
is defined by the pullback 

TJfp) * P(BGL(n,D)) 

I 1 . 
BGL(n,A) > BGL(n,D) 

where P denotes the path fibration. Note that the connecting maps BGL(n, A) —> 
BGL(n + 1,A) and BGL(n,D) -» BGL(n + 1,D) induce smooth maps Fn(tp) -> 
Fn+\(ip). For a base space X we denote by [X,P(ip)] the direct limit of the inductive 
system of sets [X,^^)]. 

As before we restrict to pairs (E,a) 6 $n(Stp(X)) in which E is the associated 
bundle to the pullback of the universal GL(n,A) bundle along some smooth map 
g : X —> BGL(n, A), and a comes from a trivialization of the corresponding GL(n, D) 
bundle. Similar as in 2.7 we construct from this data a smooth map from X to the 
total space of the universal GL(n, D) bundle which projects to B(<pn) o g. Again this 
map is null homotopic and we consider the map X —> C°°(I,BGL(n,D)) associated 
via cartesian closedness to the projection of a null homotopy. Then this map has values 
in the path space and thus together with g it induces a smooth map X —> fnfa), the 
homotopy class of which we assign to the pair (E, a). Then one proves: 

2.14. THEOREM. For any n > 0 the construction of 2.13 gives a well defined bijective 
map un : $„(fv,(X)) —> [X,Fn(ip)]. Together these maps induce a bijection u : 

*(£r{X))^\x,r&)\. 
2.15. The natural maps Tn(<p) —* BGL(n,A) induce a map K(S(p(X)) —> KA(X). 
On the other hand identifying [S(X+),BGL(n,D)]0 with [X+,Q\(BGL(n,D))]0 = 
[X, £l(BGL(n, D))] we see that the inclusions of the loop spaces into the path spaces 
induce a map Kpl(X) —> K(S<p(X)). It turns out that on the level of bundles 
these maps can be described as follows: The first one is induced by sending a triple 
(E,F,a) to the difference of the classes of E and F in KA(X). On the other hand 
identifying K^(X) with [X, GL(D)] and viewing a smooth map / : X —> GL(n,D) 
as an automorphism a / of the trivial bundle X X Dn, the second map is induced by 
sending / to the triple (X x An,X x An,af). From this description it is obvious that 
the two maps are in fact group homomorphisms. 

2.16. The relative K-group has obvious functorial properties. In particular for any n 
the unique smooth map 5 n ( K + ) —> pt induces a group homomorphism K(S(p(pt)) —> 
K(S(p(S

n(X+))) and we define K~n(S(p(X)) to be the cokernel of this homomor­
phism. From this definition one immediately concludes that for any n we get a group 
homomorphism K~n(S,p(X)) —> K^n(X). On the other hand we get-a group homo­
morphism K~n~1(X) —> K~n(S,p(X)) using the following result: 
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LEMMA. Let X be a base space, D a convenient algebra. Then there is an exact 
sequence of abelian groups and group homomorphisms 

KX(D) = K^(pt) -> KD(S{X+)) -» KD(S(X)) -> 0 

which is natural in X. 

2.17. Next, using the Puppe sequence 1.16 for the map B((pn), one shows that for any 
base space X one gets an exact sequence of abelian groups and group homomorphisms 

KA(S(X+)) -> KD(S(X+)) -> K(£V(X)) - KA(X) -> i."D(X) 

which is natural in X. This is already the first part of the long exact sequence 
associated to the algebra homomorphism ip. Putting together this sequence with the 
one from 2.16 and the exact sequences defining the higher absolute and relative K-
groups in a diagram one shows by a diagram chase that for any n > 0 there is an 
exact sequence of abelian groups and group homomorphisms 

K2n~\X) -> KD
n~\X) -> K~n(Sv(X)) -> K2n(X) - K?(X). 

Thus we get: 

2.18. THEOREM (THE LONG EXACT SEQUENCE OF A BOUNDED ALGEBRA HOMO­

MORPHISM). Let <p : A —:• D be a bounded homomorphism between convenient alge­
bras. Then for any base space X there is a long exact sequence of abelian groups and 
group homomorphisms 

...^KBn-\X)^K~n(£^(X))^ 

K - - (X) 

- j r r w >jt-s"w-»-
-> K„\X) - K(€V(X)) - J $ ( * ) • iY2,(X) 

which is natural in X. 
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