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THE DOUBLE COVERING OF THE QUANTUM GROUP SO,(3)t

Mathijs S. Dijkhuizen

A quantum analogue of the double covering of SO(3) by SU(2) is formulated and
proved. Here the quantum group SO,(3) is defined by means of the R-matrix given
by FRT for root systems of type B. An explicit basis for the deformed function
algebra of SO,(3) is constructed as well as an algorithm to reduce any expression in
the generators to a linear combination of basis elements.

1. The adjoint group of SU,(2)

We shall make use of both the language of Hopf algebras and that of quantum groups. We
view a Hopf algebra A = O(G) as the algebra of polynomial functions on an (algebraic)
quantum group G = Spec(A). Hopf »-algebras then correspond to real forms of quantum
groups. A morphism ¢: G — G’ of quantum groups resp. real quantum groups is by definition
a morphism ¢: A’ — A of Hopf algebras resp. Hopf *-algebras. In order to be able to
distinguish formally between these two kinds of morphisms, we shall usually write ¢* for the
Hopf algebra morphism dual to the quantum group morphism ¢.

We recall the definition of the quantum group SU,(2). Let ¢ € R, g # 0. The algebra
Ag = O(SU,(2)) is the complex unital associative algebra generated by a, (3, -, § subject to
the following relations:

af =qfa, ay=gqva, By=1B, P6=qbB, ~6=qbv, (1.1)
ba—q 'py=1, ab—gBy=1

By using the diamond lemma one can prove that a linear basis of A, is formed by the
elements a*@'y™ (k,l,m > 0) and §*8'y™ (k > 1, I,m > 0). See [B], [KI].

t This paper is in final form and no version of it will be submitted for publication elsewhere.
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The comultiplication A and counit € are defined by:

sG9-G (D GDGY o

this being shorthand notation for A(a) =a® a+ 8 ® 7 etc.
The antipode S and the Hopf algebra involution  are defined by

(@ 2)=(4 ) (= 7)o

Let us recall that a mapping * : A, — A, is called a Hopf algebra involution if (A4, *) is a
unital »-algebra such that A and € are *-homomorphisms.

We recall that a (matrix) corepresentation of A, is a matrix (t;;) with coefficients in A,
such that

A(t.',') = Ztik ® tkj, E(t.',') = 6;;. (1.4)
k

A corepresentation (t;;) is called unitary if tj; = S(t;;). Corepresentations of A, are also
called representations of the quantum group SU,(2). The finite-dimensional representation
theory of SU,(2) is known to be exactly analogous to the classical theory. With respect to
a suitable basis the corepresentation of A, corresponding to the adjoint representation of
SU(2) is given by (see [Ko]):

o’ (1+g7%)kap -p
Ad, = ((1 +a ke 1+(g+q7 )8y —(1+ q’)%ﬂ) . (1.5)
—p —(1+¢?)¥éy &

It is easily checked that the subalgebra B, of A, generated by the matrix coefficients
t;; of Ad, is spanned by all a*8'4™, §¥4'9™ such that k + I + m is even. B, is obviously
invariant under S and *. Moreover, A(B,) C B, ® B,, since B, is generated by the matrix
coefficients of a corepresentation. We conclude that B, is a Hopf *-subalgebra of A;. The
quantum group corresponding to B, is called the adjoint group of SU,(2) and denoted by
Ad(SUL(2)).

We define an algebra anti-automorphism o of A, and an algebra isomorphism 7: A, —
Ag-1 by putting

(D=5 (57 e

It is obvious that o leaves B, invariant and that 7 maps B, onto B,-1. On the generators
t;; the mappings o and 7 are given by

taz t32 ia1 taz t23 ti3
. O’(T) = |tz t22 to1 ], T(T) = |tz t22 t12 ), (1.7)
tizs tiz i ta1 ta1 tnn

T being shorthand notation for (£;;). Note that 02 = 72 =id and 7070 = id.
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Table 1
tutia = 82tatn 2.
taatss = s*tastsn
taty =8 iy
tastas = 8~ 2tg3tss
titis = s*tistn
taitss = s*tsstss
tastis = 8~ *t13ts3
taitny = s~4tis
taat1n = tratas + (872 — 8%)tsatsy 5.
tastas = taatas + (72 — %)tasts
tart1a = tiata1 7.
t3atas = tastaz
tastiy = 87211ty + (872 — 8%)tystn; 9.

tastz1 = 8 2tq1ta3 + (872 — 8%)tasts;
tagtyy = 8 31130 + 8_’(!_’ - l’)tutu
tastia = !_’tut;a + 8_’(8_’ - a’)tutaz

tat1s = s2tystn
taitas = 87tasts
taitia = 8" 3tyaty;
taatis = 8" 3t15t3;

tigtia = —82(s + 87 )t1atny
tatn = —s~2(s+ s~ )tnts
taatsg = —82(s + 871 )issts;
tastay = —8~3(s + 8~ )t13tss

tiatss = —stia + sttistay
ta1tss = —staa + sttasts
t11tsg = —sia + 82t1ats
tiatss = —stzs + 87t15tag

taitss = ts1 + 82tasts
tiatss = t13 + 8*t13t2s

tiatss = 8 — stza — 83 (8 + 87 )t1atny

tostyy = 871 — 87ty — 872 (8 + 87 )tyatsy

11.
12.
. ta1tas = 82igstar + 8(s72 — 8%)t1stn

16.

18.

20.
21.
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tiatis = s*t1stia
taitss = Stsats
tastis = 8™ 3t1atss
tsita = s 3t ts

tostia = tiatas + (872 — 83)t1staa
taatar = tartsa + (572 — 8%)taats

t2at13 = 1322
ta1taz = taals1

taatya = tiatas + 8(s? — 87 %)t15tn
taatag = tagtsg + 8(s? — 87 %)tssts;
tatag = tagtsy + 871 (872 — 8%)tyatn
taatss = tastas + 872 (572 — a¥)t1stns

tast1s = tiatas + (8 — 8~ )tastas + (8 — 87 )t1atan

ta113 = t13is1

taat1a = 8™ 2t1atss + 871 (82 — 8™ % )t1atsy

tasta =t33 — l-’(l + l_l)tutu
taata: = ta1 — 8~ 2(8 + s~V )t1ats;
tigtag = t1a — 8%(s + s~ )tystar
tagtsg =tz — 83(s + 8~ 1)tastar

tiitaa = tyg + s2t1atay
taatss = ta3 + 8tastsa

tutss=(1- 8’) + 823 + stt1ats
taatan = 2ta2 — 1+ (8 + 87 1)3t15ts
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Lemma 1.1 — The t;; € B, satisfy all the relations listed in Table 1 with s = q.

In order to minimize the amount of calculation we use the symmetry inherent in the relations
of Table 1. In fact, in a given cluster ¢, one can obtain all the relations by repeatedly applying
o and 7 to the first relation of that cluster (in some cases one has to work modulo linear
_ combinations of relations of clusters k < i). It suffices therefore to check only the first
" relation of each cluster. This is straightforward usinig (1.5) and (1.1).

Theorem 1.2 — Thet;; € B, satisfy no other relations than those listed in Table 1 (s = g).
A linear basis of the vector space B, is formed by the elements

t3taats; (m,n >0)
thtiaththith (m,jn>0,0<4,k<1) (1.8)

ththatlathath, (M, 5,n>0,0<i;k<1, i+j+k>0)

It is clear from (1.5) that the elements (1.8) span B,. Their linear independence immediately
follows from (1.5) and the fact that the elements a*G'y™ (k,l,m > 0) and 6*B'y™ (k >
0,!,m > 0) are linearly independent in A,. Let now D be the abstract algebra generated
by the t;; subject to the relations in Table 1. It follows from [1.1]t that there is a unique
algebra homomorphism ¢: D — B, sending t;; € D to t;; € B,. This homomorphism is
surjective, since the t;; generate B,. We prove that the elements (1.8) span D. To this end,
we introduce a total ordering on the generators by putting t13 < t12 < t11 < ta3 < t22 <
t21 < t3s < taz < ta;. We then order any two given monomials in the ¢;; by length and,
if they are of equal length, lexicographically with respect to the above ordering on the ¢;;.
Inspection of the relations in Table 1 shows that all of them express a monomial f in the ¢;;
as a linear combination of monomials strictly less than f. This implies that any monomial
in the ¢;; can be expressed as a linear combination of monomials ;, ¢;, .. .t;, such that for all
1< j < n—1 the monomial #;,t;,,, does not occur on the left-hand side of any equation in
Table 1. It can be easily read off from the relations in Table 1 that the monomials satisfying
this last condition are precisely the ones listed in-(1.8). This proves that the elements (1.8)
span D. So ¢ maps a family of vectors that span D to a linearly independent family of
vectors in By. This implies that ¢ is injective, which concludes the proof of the theorem.

The relations in Table 1 thus form a presentation of the algebra B,. One easily derives
from (1.5) and (1.3) that the involution * is given on the generators t;; by

ta3 gtz ¢’ta
T*=|qs t gtn |. (1.9)
a2t ¢ M2 ti

Remark 1.3 — We use the terminology of [B]. The semigroup ordering on the monomials
in the ¢;; defined in the proof of [1.2] clearly satisfies the descending chain condition and is
compatible with the reduction system specified by Table 1. It follows from [1.2] (without
actually resolving a single ambiguity!) that all the ambiguities are resolvable. Therefore,
the diamond lemma applies and we get an algorithm to reduce any monomial in the ¢;; to

t Numbers between square brackets i refer to lemmas, propositions, theorems etc.
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its (unique) expression in terms of the basis elements (1.8). This algorithm can be easily
implemented on a computer using a computer algebra package for symbolic manipulation.
We found that the package Reduce (version 3.4) was best suited to our purposes. In this
way, one can perform explicit computations in the algebra B, that would have been tiresome
to do by hand.

We shall now brieﬂy' deliberate upon notions such as quantum subgroup, kernel and
short exact sequence (cf. [PW]).

Let A be a Hopf algebra. A subspace a is called a two-sided coideal if A(a) C AQa+a®A.
A subspace a is called a Hopf ideal if a is a ideal and an S-invariant two-sided coideal. If a
is a Hopf ideal, then A/a naturally inherits a Hopf algebra structure from A. A quantum
group H is said to be a quantum subgroup of G if O(H) is the quotient of O(G) by a Hopf
ideal a, which is then called the defining ideal of H. So the quantum subgroups of a given
quantum group G are in 1-1 correspondence with the Hopf ideals in O(G).

Suppose ¢: G — G’ is a morphism of quantum groups and let ¢¥: O(G’) — O(G) be the
corresponding morphism of Hopf algebras. Define a to be the ideal in O(G) generated by
the image under ¢! of ker(e') C O(G'). It is trivial that a is a Hopf ideal. The quantum
subgroup of G corresponding to a is called the kernel of the morphism ¢ a.nd denoted ker(¢).
A sequence of morphisms of quantum groups

1—HSe5ae —1 (1.10)

is called exact if ¢! is injective and i! surjective, and if ker(i?) is the defining ideal of ker(¢).
We now apply the above terminology to the adjoint group of SU,(2). We have a mor-
phism ¢: SU,(2) — Ad(SU,(2)) such that ¢! is the canonical injection. '

Proposition 1.4 — The ideal in A, generated by ker(e|,) is equal to the ideal generated
byB,v,02-1,a-4.

Let us write a for the ideal genera.ted by B, 7, a® —1, a—6. It follows from (1.2) that ker(e)
is spanned by the elements o — 1, 6% — 1, a*g'4™, 6*8!y™ (k > 0, I+m > 0) and generated
as an ideal by 3, v, —1, § — 1. So ker(¢;, ) is generated as ideal in B, by a? -1, §2 -1, aﬂ,
a7, B, 68, 6v. This implies that a contains ker(e| B,)- On the other ha.nd multiplying a®—1
on the right by , we get a:(a8) — 6 = a(1+g¢fy) — 6 = a— 6+ qofy. Hence a—4 lies in the
ideal generated by ker(ep,). Multiplying a8 on the left by 8, we obtain a8 = B+ ¢~ 18%y.
This implies that 3 lies in the ldea.l generated by ker(e|g,). One reasons similarly for 7. The
assertion follows.

The quotient A/a is generated by a subject to the relation o = 1. This implies that it
is a two-dimensional Hopf *-algebra. In fact, A/a is the Hopf *-algebra of functions on the
finite group Z,. We now have proved: .

Theorem 1.5 — There is the following short exact sequence of quantum groups:
1 — Zy — SU,(2) -2+ Ad(SU,(2)) — 1.
This justifies our writing Ad(SU,(2)) = SU,(2)/{1,-1}.
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2. The quantum group SO,(3)

We adopt the definition of SO4(3) given in [FRT] with the one exception that we add a
determinant relation (see also [T2]). In fact, the quantum group defined in [FRT] is a
quantization of Oy(3) and not of SO,(3).

Let (t;;) (1 <14,j < 3) denote a family of formal indeterminates and let C(t;;) denote
the free associative unital complex algebra generated by the ¢;;. It will be convenient to
arrange the indeterminates ¢;; in matrix form T' = (t;;). We can then define 9 x 9 matrices
Ti resp. T, with coefficients in the algebra C(t;;) by putting T =T ® I resp. T, =IQ®T.
Here I denotes the 3 x 3 identity matrix.

Let e1,ez,e3 be the canonical basis of V = C3. Then V ® V has the basis ¢; ® e;
(1 <1,j £3). Let e;; denote the linear endomorphism of V sending e; to e; and e (k # j)
to 0. Let ¢ > 0, g # 1. We define a linear endomorphism R, of V ® V or, equivalently, a
9 x 9 matrix (R;;;) with complex coefficients by putting:

Ry=q) ei®ei+en®en+ Y ei®@eij+
i i3
+07' ) ew @eni+(a—-a71)) e ®ei—(g—a7) ) " Hew; @eije.
i > i>j

Here i’ = 4 — i and the sequence (p;) is defined as (p1,p2,p3) = (},0,—1). Note that the

matrix (R'."j,u) is symmetric and hence diagonalizable. Straightforward computation shows

that the eigenvalues of R, are g,—g~*,¢~2 and that a basis of eigenvectors for V@V is given
by:

Wq: e1®e;, e3Qe3
ge1®ex+ex®eyq, gez2 ez +e3 ez
ger1®e3— (¢t +a He®er+g'es®er

W_g-1: e1®e2—gea®e;, e2®e3—ge3 D ez (2.1)
e1®e3+ (q% —q‘i)ez Rez—e3®ey
Wy-a: q_ie1 ®e3t+ea®ez +q%e3®e1

We consider the two-sided ideal I, in C{t;;) generated by the relations (called commu-
tation relations) coming from the matrix equation

R,TyT; = TiTyR,. (2.2)

Equating the 9 x 9 coefficients on both sides yields the following explicit form for the defining
relations of I: ' '

Z R?j,mntMEtﬂl = Zt"mtj"Rgnn,kl for1< 1:,]., k,1<3.

m,n m,n
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Let V* denote the linear dual of V' with dual basis eé. We define a linear mapping
0:V*@V*®V ®V — C(t;;) by putting

O(e; ® e} @ ex ® 1) = tixt;i. (2.3)

Let R;:V*®V* — V* ® V* denote the transpose of R,. It is clear that it is diagonalizable

with the same eigenvalues as R;. Since the matrix (RY;,,) is symmetric, bases for the

eigenspaces Wy of R are obtained by replacing e; by e} in (2.1). We now have:

Proposition 2.1 — The ideal I, is generated by the subspace @,, (Wx ® W,,) of C(t;;).

Let us write § = 6 0 (id ® Ry — R; ® id). On the one hand, I, is generated by the image of
€ since {(ef ® ] ®ex @ €1) = 3, RY . uitimbin — Xgnn RYj mntmitar. On the other hand,
§(W®W,) = (b—A)0(W3 ®W,). We conclude that I, is generated by @, 0(W3 @ W,.),
since R; is diagonalizable.

The quotient algebra M, = C(t;;)/I, is called the algebra of polynomial functions on
the complex orthogonal quantum matrix space of rank 3. We indifferently write ¢;; for the
generators in C(t;;) or their canonical images in M,.

There are unique algebra homomorphisms A : M, — M, ® M, and ¢ : M; — C such
that

A(ti) =) ta @ty e(tiy) =65 (i,j=1,2,3).
k

With these mappings M, becomes a bialgebra.

We now define the quantized orthogonal exterior algebra A4V to be the tensor algebra
over V divided out by the ideal generated by the subspace W, = W, & We-aCVQRV. It
follows from (2.1) that a basis of W, is formed by

e1 ®e1, e3 ® ez, (q'1t —q'*)el Rez—ex®er (2.4)
ge1®@e2t+ex2®e1, ge2@®e3+e3 ez, 1 Qe3 +e3@e;.

So A,V is the algebra generated by ey, e, e3 subject to the relations
e} =0, e =0, eze; = —geses, e3ea = —geaes, eze; = —eres, e = (gf — g H)eses. (2.5)

An application of the diamond lemma shows that A,V is an 8-dimensional vector space with
basis e;, ...€;, (1 €41 < ... < i, < 3). It can be shown that there is a unique algebra
homomorphism 6: A,V — M, ® A,V such that -

b(e;) = Zt.-?- ®e; (i=1,2,3). (2.6)

The mapping 6 defines a left coaction of M, on A4V, i.e. it satisfies the properties:
(AQid)obé=(id®6)od, (c®id)ob=id. (2.7)
It follows from (2.6) and (2.5) that there is a ﬁnique element det, T € M, such that

6(e1ezes) = det, T ® eyeqes. - (2.8)
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The equalities (2.7) then imply that
A(det,T) = det, T @ det, T, e(det,T)=1.
An explicit expression for det, T is:

det, T = t11t22ta3—qtiata1tas — qi11teataz + qiigtaatar (2.9
N 1 -1
+ gtistartar — q*tiateatsr — q(g7 — g~ 3 )tiatastan.

We introduce a 3 x 3 matrix C given by

OOq'i
01 0 |.
¢t 0 o0

It satisfies C? = I. The so-called orthogonality relations are:
TC'TC = C*TCT = I. (2.10)

It can be proved that the two-sided ideal J; in M, generated by the relations det, T' = 1 and
(2.10) is a biideal. We can now define the algebra C, = O(SO,(3)) of polynomial functions
on the quantum group SO, (3) as the quotient of M, by the biideal J,. C, is a bialgebra by
definition. It becomes a Hopf *-algebra by putting

. tas g bto9 Q':tla
S(T) = C'TC = g3tz taa q %ty and T*= tS(T) (2.11)
gtan  gity tn

Theorem 2 2 — The algebra C, is generated by the t;; subject to the relations listed in
Table 1 with s = g¥.

The proof is completely elementary, although not entirely trivial, since one easily gets bogged
down in a quagmire of relations. For this reason, we shall carefully indicate the line of
reasoning to be followed, but not explicitly perform all the calculations. The proof consists
of two parts.

We first prove that the linear span Z, of the relations (2.2) in the free algebra C(t;;) is
equal to the linear span of the relations (1) till (14) in Table 1 plus some extra relations (see
below). To this end, we apply [2.1]. Let us identify V and V* via the bases (e;) and (e}).
Under this identification W) coincides with Wy. It now follows from [2.1] that

Zg=0(W,@W_g-1) ®O(W_g-1 @ W) ® (W, @ W,-2) ® O(W,-2 @ W).

The following remark may be of use. If w:C(t;;) — C(t;;) denotes the unique algebra
homomorphism such that w(t;;) = t;; then w o (W @ W,,) = (W, ® W»). We use the
bases of W, resp. Wy, W_g-1, W2 given in (2.4) resp. (2.1). Let us call the basis vectors
in (2.1) w; (1 < § £ 9) and those in (2.4) w; (1 < j < 6), in the order in which they are
introduced. Thus, w; = e; ®e;, w2 = e3®e3 etc. Straightforward calculation shows that the
tensor products (in either order) of w;, w2 and wg, wy (meaning w; @ wg, we ® W1, W1 @ wr,
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wr @ W1, Wa @ we etc.) yield precisely the relations (1) and (2) in Table 1. Similarly, from
the tensor products (in either order) of 14, %5 and we, wy one derives precisely the relations
(4), (5), (6) and (7). The relations coming from the tensor products (in either order) of ;,
Wz and wg together with the relations coming from the tensor products of w;, w2 and wg are
easily seen to be equivalent to relations (3) and (14). The tensor products 1 ® ws, we ® W3, -
wg ® W and w3 @ wy lead to the following four equations: -

gtirtas + q(q} — g F)tiatar — gtistar + taatss + (¢} — g~ H)taatso — tastnn =0

(a¥ — g~ ¥)tastas — g(g? — g H)tartss = tratas + gtastsn =0 (212)
tiates — gta1tys + tiater — glastn e

q¥tiitas + gtiatas + a¥tiatay +q Hintia + tagtiz + a¥tastyy = 0.

We can eliminate tp3t;; from the first and fourth equations of (2.12) by using the third
equation. From the resulting two equations one can eliminate t11t23 by using the second
equation of (2.12). One then obtains:

(a% + g~ ¥)tratar — (g} +a~)taatss — (q + g7 )t1star + (¢ + 1)tartss =0 (2.13)
(aF + g7 )tratsr — (aF + g~ H)tantsn + (@+a7")g = Dtrstar + (¢ —g—¢7* +Ltart13 =0,

from which one deduces (10.a). Resubstituting (10.a) in the first equation of (2 13) resp. the
third equation of (2.12) one obtains (9.a) resp. (8.a). Usmg (9.a) and (10.a) we can rewrite
the second equation of (2.12) as

tites = —q¥tiatas — gtiata, - . (2.14)

and (8.a), (9.a), (10.a) and (2.14) are in fact equivalent to (2.12). In an exactly analogous
way, one derives all the (other) relations of (8), (9) and (10) by using the tensor products
Wy @ wg, W5 @ ws, We ® W, We @ Wy, w3 @ Wy, Wy ® wy and thelr images under the flip
v ® w — w ® v. The analogues of (2.14) are:

ta1tas = -q}tzztaz — gtastar
_ — ~1 . .

tagtar = (¢¥ — =¥ — g H)t1atas — g~ Htasta (2.15)
— —_ -1

taatas = (q% -q L i)tlatsz — g~ 3tyata3.

Finally, the tensor broducts w3 ® ws, We ® ws, ws @ wy and their images under the flip give
rise to six equations which can be seen to be equivalent to the relations (11), (12), (13) plus
the following relations:
—_ 1 N _ . ‘ ’ !
tastar = q Mtiatsz + 47 (g — ¢ Mtista (2.16)
S -
tastas = tutss + (g% — 29~ H)tratss + ¢ taatar.

Summarizing, we have now proved that the relations (2.2) are equivalent to the relations (1)
till (14) plus the relations in (2.14), (2.15) and (2.16).

In the second part of the proof we shall make use of the temunology laid.down in [B].
As generators we take the ¢;;. We order the monomials in the ¢;; as in the proof of [1 2]. As
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reduction system we take the relations (1) till (14) plus the relations in (2.14), (2.15) and
(2.16). Note that this reduction system is compatible with the ordering of the monomials
in the t;;. Given any relation o in the t;; we can first reduce it to an irreducible expression
and then rewrite it in the form f = Y, ¢; f; where the f; are monomials strictly less than the
monomial f. If o is of degree at most two the result of these two operations on ¢ is uniquely
determined. We call it the reduced form of o. It clearly is compatible with the ordering of
the monomials in the ¢;;. If we apply this procedure to the orthogonality relations (2.10) we
end up with a single relation:

tiitss = 1— gtistar — ghtratas. (2.17)

We add (2.17) to our reduction system. Given any ambiguity, it either is resolvable or gives
rise to a new relation which can be written in reduced form and added to the reduction
system. Starting from the ambiguities tastasti1, taataztiz, tastait1a, taztaztii, taatzatin and
taatael1n we get:

t12tastas = t1slailsz

tiatastas = (¢ + 1)trataotas + a(a} + ¢ H)tiatastas

titaatss = 2¢%(q% + ¢~ H)tiatartar + a¥ (g} + 207 H)taatastss — g in (2.18)
tigtartas = q(at + g F)tratartsr + (¢ + Vtratastar

tiataatas = 2¢%(q% + ¢~ })tratastar +q¥ (g} + 207 H)t1stantsr — glitss

tutatss = (¢~ — g¥ — g )tratastes — gtratastss — 29(q — ¢~ )tastartaz + too.

We add these relations to our reduction system. The reduced form of the relation det,T' = 1
(see (2.9)) then becomes:

tigtaatss = ¥ — g¥tag + ¢ (a} + ¢~ H)tratastar — 29(a} + ¢~ H)tratartas. (2.19)

We add (2.19) to our reduction system too. We then get new ambiguities £12t12¢22t32 and
t12ta2tastss from which one derives (16.c) and (16.d). We add these last two equations to
our reduction system. (From now on, this will be done automatically every time we derive
a new relation in Table 1.) The new (inclusion) ambiguities £11t22t32 and ¢;2t22t33 then lead
to (15.c) and (15.d). Since (2.19) is not irreducible anymore, we should rewrite it as:

tigtartas = (q+ 1)1 — g7 (q¥ + ¢~ #) Mt1atas + gtistastss — (g + 1) M za. (2:20)

The ambiguities tagtaate; and t2;taatss lead to (17.3.) and then the ambiguity ¢13t21t32 leads
to (19.a). Using the new reduction rules (19.a), (16,c/d) and (15.c/d), one sees that the
relations (2.17), (2.14), (2.15) and (2.16) can be rewritten as (20), (15.a), (15.b), (16.b),
(16.3), (19b)a.nd (21) respectively. The a.mblgumes taatiata2, t11t12t32 and ti12t32taz now
lead to (17.b), (18.a) and (18.b) respectively. It is easy to see that the reduction rules (2.18)
and (2.20) can now be discarded. This concludes the proof of the theorem.

Corollary 2.3 — There is a unique algebra homomorphism x}: Cj2 — B, such that

o (1+g ks —p
xH(T) = ((1+q-=)%aq 1+(a+471)By _(1+qz)m) :
—7? —-(1+¢%)k6y 8 '



THE DOUBLE COVERING OF THE QUANTUM GROUP 50,(3) 57

The mapping x! is an isomorphism of Hopf *-algebras.

It follows from [2.2] and [1.2] that x? is well-defined and bijective. That x* is a Hopf algebra
morphism follows from the fact that Ad, (see (1.5)) is a corepresentation. Finally, x* respects
the *-operations because of (1.9) and (2.11).

We identify SO,2(3) and Ad(SU,(2)) via x. We then have a morphism ¢: SU,(2) —
S50,2(3) (see above [1.4]) and [1.5] can be restated as

Corollary 2.4 — There is the following exact sequence of quantum groups:
1 — Zy — SU,(2) 2+ S0,2(3) — 1.

During the winter school in Zdikov O. Ogievetsky pointed out to me that the quantum
analogue of the classical isomorphism A; ~ B; had already been proved in [JO] in a more
general context. In [T1] a result similar to [2.3] was announced, but to my knowledge a proof
of this claim has never been published.
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