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0. Introduction.

In this paper we collect properties of product preserving functors. A product
preserving functor is a covariant functor F from the category of manifolds into the
category of fibered manifolds such that F(M; x M>) is equivalent to F(M; ) x F(Ma).
The tangent bundle, the tangent bundle of p"-velocities are well-known examples of
product preserving functors. The most important and general examples of product
preserving functors are so-called Weil functors.

Let R[p] = R[[X3,..., X}]] be the algebra of all formal powei' series of p indeter-
minates Xj,...,X, and let a be an ideal of R[p] such that dimR[p]/a < co. The
algebra A = R[p]/a defines a product preserving functor T4 called Weil functor. If
M is a manifold, then TAM is the set of equivalence classes of smooth mappings
R? — M, where ¢, ¢! : R? = M are equivalent if and only if for every smooth func-
tion f : M — R the formal Taylor series at 0 of f o and f o ¢’ are equal modulo
a. )

G. Kainz, P. Michor [6], O. O. Luciano [11] and D. J. Eck [2] have given char-
acterization of product preserving functors (see also [9]). Namely, they have proved

9) This paper is in final form and no versionof it will be submitted for publication elsewhere.
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that any product preserving functor F is equivalent to T4 with some algebra A. It
is an answer for the Morimoto’s conjecture [13].

Usually properties of product preserving functors are proved as follows: firstly
they are proved for Weil functors of type T4 and next they are extended to an arbi-
trary product preserving functor using the classification theorem of Kainz, Michor,
Luciano and Eck. In this paper we will prove all presented properties of product
preserving functor F directly from the functoriality of F.

'We suppose always that all manifolds, mappings, vector ficlds and so on are of

class C®,

1. Weil algebra associated with a product preserving functor.

First we recall the definition.

A product preserving functor is a covariant functor F from the category of all
manifolds and all smooth mappings into the category of fibered manifolds satisfying
the following conditions:

(1) For every manifold M, the space F(M) is a fibered manifold over M with
a projection * = wy : FM — M. For a point £ € M we denote by
Fo(M) = 73/ (z) the fibre over z. .

(2) The naturality condition. For every mapping ¢ : M — N of two mani-
folds M, N, for the induced mapping F(p) : F(M) — F(N) the following

diagram
F(e)
F(M) —— F(N)
,r,,l l""
M 2. N
commutes.

(3) f ¢ : M — N is an embedding, where dim M = dim N, then for every r €
M the restriction F(p)|7,(m) : Fe(M) = Fy(z)(N) is a diffeomorphism.
(.

(4) The regularity condition. If p: : M — N is a differentiable family of map-
pings, then F(y¢) : F(M) — F(N) is a differentiable family of mappings.

(5) For two manifolds M;,M,, if ; : M; x M; — M; denotes the standard

1) This condition is equivalent to so-called the locality condition saying: if 1,2 : M — N are
two smooth mappings such that ¢;|U = ¢3|U for an open subset U C M, then T(qpl)l'n';,l o) =

F(ea)lmpg (U).
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projection on the i-th factor, where ¢ = 1,2, then the mapping
(f(ﬂ’]),f(ﬂ'z)) : .F(Ml X Mz) 4 .F(Ml) X f(Mz)

is a diffeomorphism.

I. Kolaf and J. Slovék have proved that the regularity condition is a consequence
of conditions (1) and (2) of the definition (see [10]). Let us observe that for every
fixed natural number n the restriction of a product preserving functor to the category
of n-dimensional manifolds and their embeddings is a natural bundle (see [16]).

The definition immediately implies:

(1) if U C M is an open subset then we can identify F(U) with F(M)jy by
F(i) : F(U) = F(M)y, where i : U — M is the inclusion;

(2) F(R") is isomorphic with the trivial bundle R® x F, where F' = F3(R").
The isomorphism ¥ : R® x F — F(R™) is given by ¥(z,y) = F(7:)(y),
where 7, : R® — R" is the translation.

(3) every product preserving functor transforms immersions, submersions and
embeddings into immersions, submersions and embeddings respectively (see
[10)).

To see (3) we observe that f : M — N is a submersion (respectively an immersion)
if and only if for any point £ € N (respectively z € M) there exists J : N - M
(respectively J : M — N) such that f o J = id (respectively J o f = id) on
some neighborhood U of z. By the functoriality of F we obtain F(f) o F(J )
(respectively F(J) o F(f) = id) over U.

For a product preserving functor F we will always identify F(M; x M;) with
F(M,) x F(Mz) by the diffeomorphism from the definition. After this identification

we have

(1.1) ]"(fl Xf2)=.r(f1) X}-(fz)
(1.2) . F(f,9) = (F(f), F(9))

for all mappings fi : My =+ Ny, f2: My - Na, f: M-— Nyandg: M — Np.

From the definition we obtain that a prbduct preserving functor F has the point-
property, i.e. F(point) = point. This implies that for a constant mapping ¢ : M —
N the induced mapping F(y) is also constant.

The tangent bundle TM and the tangent bundle of p"-velocities Ty M = Jg(R?, M)
(see [13], [14]) are important examples of product preserving functors. The most ge-
neral examples of product preserving functors are so-called Weil functors (see [15]).
We give some remarks on these functors on the end of the section. At first we prove:
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PROPOSITION 1.1. If F is a product preserving functor then A = F(R) is a real,
associative, commutative and finite dimensional algebra.

If +,- : R? — R are the addition and the multiplication on R and m, : R — R is
the multiplication by a € R, then F(+), (), F(ma) are the operations in A, F(0)
and F(1) are the zero and the unity in A (2).

The set N = Fy(R) is the ideal of nilpotent elements of A. We have A=R-1®N.

PRrOOF: A = F(R) is an algebra by the functoriality of F. For instance, to show
the associativity of F(+) we apply F to the formula + o (+ X id) = + o (id x +).

To prove the properties of N we observe that the restriction of F to the category
of 1-dimensional manifolds is a natural bundle, and by [17] it is of finite order A. Let
q(t) =t 4 th+!, Since jlq = jlid, thus for a € N we have

a+af*! = Fy(g)(a) = a.

It implies a?*! = 0. g

The algebra A = F(R) constructed in Proposition 1.1 is called Weil algebra of a
product preserving functor F.

Let us observe that natural transformations of product preserving functors are
determined by their values on their Weil algebras. We recall that for two product
preserving functors F,G a natural transformation of F into G is a family of smooth
mappings ¥y : F(M) — G(M) such that the following diagram

F(M) —2% (M)

A e
tdpg

M — M

commutes and for each smooth mapping f : M — N the diagram

For) 22 7o)

(1'3) Wul lWN
gy =2 g

also commutes. We can prove the following proposition:

2) We aliways identify constant mappings with their values.
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PROPOSITION 1.2. Let F,G be two product preserving functors and let A = F(R)
and B = G(R) be their Weil algebras.

If ¥ = {¥y} is a natural transformation of F into G, then ¥g : A - B is a
homomorphism of algebras.

¥ = {¥uy} and ¥' = {¥),} are two natural transformations of F into G such
that Ug = WY, then ¥ = ¥,

If¢ : A - B is a homomorphism of algebras, then there is one and only one
natural transformation ¥ = {¥p} of F into G such that Ug = 1.

K VU = {¥y} is a natural transformation of F into G such that ¥g : A — B
is an isomorphism (respectively a monomorphism, an epimorphism), then for each
manifold M the mapping Uy is a diffeomorphism (respectively an embedding, a
surjective submersion).

PROOF: Let ¥ = {¥p/} be a natural transformation.

At first we observe that from (1.3) applying to the natural projections m; : My X
M; — M; and 72 : My X My — M, we obtain

(F(m),F(x2))
.F(Ml X Mz) —_— F(M]) X .F(Mz)

¥,y xu,l l‘l’u, b3 JT
(6(m1),6(x2))
- G(My x M) ———— G(My) x G(M3)

It means that after the identification F(M; x M;) with F(M;) x F(M;) we have

(1.4) . ‘I’Ml XM; = ‘I’Ml. X ‘I’Mz .

Now from (1.4) and (1.3) applyingto + : RxR - Rand - : RxR —» R we
obtain the commutative diagrams :

F+ o F(
caxa 224 axa 4
\I’QXWRl an ‘I’nx‘l’al l‘l’k
i g(+) ()
BxB —— B BxB —— B

which means that ¥y is a homomorphism of algebras.

¥ ={¥y}and ¥ = {¥},} are two natural transformation of F into G such
that ¥y = ¥}, then by (1.4) we have ¥gn = P},. Using an atlas on M we deduce
that ¥y = ¥, for each manifold M, '
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Let 4 : A — B be a homomorphism of algebras. According to the previous part
it is sufficient to show the existence of a natural transformation ¥ = {¥} such
that ¥p = #.

We set Ugs = %) X -+- X ) (n times). Next we verify that the diagram (1.3)
commutes for every mapping f : R® — R™. To see this without loss of generality
we suppose m = 1. Since F is locally of a finite order (see [12]) we can assume that
f is a polynomial f(z) = )" aaz?, z € R". Then according to the definitions of the
operations in A an B we deduce that F(f) : A® — A is given by F(f)(z) = 3 aaz®
and G(f) : B® — B by G(f)(z) = 3_ aaz®. Since ¥ is an algebra homomorphism,
then ¥ 0 F(f) = G(f) o (# X -+ X ).

Now using an atlas we define ¥ps for every manifold M such that the diagram
(1.3) commutes.

If § = Py is an isomorphism, then this construction implies that ¥z is a diffeo-
morphism for each M. 0

Now we consider an algebra A = R-1@ N, where N is an ideal of nilpotent
elements. We can construct a product preserving functor such that its Weil algebra
is isomorphic to A. In order of this we use a result of Weil [19] which says that for
some natural number p, the algebra A is isomorphic with an algebra constructed as
follows.

Let R[p] = R[[Xj, ..., X}]] be the algebra of all formal power series of p indetermi-
nates X, ..., X, and let m, be the maximal ideal of R[p] containing all formal power
series without constant terms. Let a be an ideal of R[p] such that dimR[p]/a < oco.
The algebra A = R[p]/a has the unique maximal ideal m =m,/a.

We construct a product preserving functor T4,

Let £4 : R[p] — A be the natural projection. We denote by 7 : C*(R?) — R[p]
the formal Taylor expansion at the origin ¢ = 0, i.e. for f € C*°(R?) we have

1.0

T(f) = zv: ﬁ[(a)"f]moxy .
Now we define an equivalence relation in the set C®(R?, M) of smooth mappings
R? — M (similar to the relation of jets) as follows: 7,4’ : RP — M are A-equivalent
if

€a(r(f o)) =&a(r(f o))
for every f € C°(M). We denote by j4v the equivalence class of v : R? — M, by
TAM the set of all equivalence classes and by 74 : TAM — M the natural projection
Ta(347) =(0).
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For a smooth mapping ¢ : M — N we define T4y : TAM — TAN by

T4p(j47) = j4(p o).

If (U, ) is a chart on M, then (TAU, T4yp) is a chart on TAM. It is easy to observe
that T4 is a product preserving functor.

In 1986 Eck [2], Kainz, Michor [6] and Luciano [11] have proved independently
that any product preserving functor is in fact equivalent to some Weil functor.

THEOREM 1.3. If F is a product preserving functor, then there is an algebra A =
R[p]/a such that F(M) = T4(M) for every manifold M.

In the paper we do not use the above theorem.

2. Product preserving functors and algebraic structures.

Product preserving functors have many interesting properties. In this section we
transform manifolds with some algebraic structures as groups, vector spaces, algebras
and so on by a product preserving functor.

We start from vector spaces. We have

PROPOSITION 2.1. Let F be a product preserving functor and let A = F(R) be its
Weil algebra.

KV is a finite dimensional vector space, then F(V) is a finite dimensional vector
space. If + : V XV — V is the sum mapping in V and dy : V — V is the
multiplication by a scalar a € R, then F(+) : F(V) x F(V) = F(V) is the sum
mapping in F(V) and F(dq) : F(V) — F(V) is the multiplication by a in F(V).
The zero of F(V') is F(0), where 0: V — V is the constant zero mapping.

KV is a finite dimensional vector space, then F(V) is an A-module. If m : R x
V — V is the multiplication, then the induced mappmg F(m): Ax F(V)— F(V)
defines the action of A on F(V).

Ifvy,...,vn is a basis of a vector space V, then F(vy),... yF(vn) is a basis of-the
A-module F(V). Furthermore, if a;,...,ak is a basis of A over R, then all products
a,F(v;), wherei =1,...,n andv = 1,..., K, form a basis of F(V) over R.

PROOF: Exactly as in the proof of Proposition 1.1 we verify that F(V) is a vector
space and an A-module.
To show the last part of our proposition we apply F to the linear isomorphism

f:R"B(tl,...,t,.)——bzn:t.'v.' ev.

i=1
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We obtain a diffeomorphism F(f) : A® — F(V). According to the definition of
A-module structure on F(V) it is given by

n
F(f)@15e00r2n) = 3 ziF(v;).
=1
Hence F(v1),...,F(vn) is a bas-is of A-module F(V). Since the multiplication by
scalars on F(V') is the restriction of the action of A on F(V), where R is contained
.in A via the inclusion R3¢ —¢-1 € A=R-1+ N, thus a, F(v;), wherei =1,...,n
and v = 1,..., K, form a basis of F(V) over R. 0

If V is a vector space then F(V) is always considered as a vector space or as
A-module with the structures defined in Proposition 2.1. For induced mappings by
linear mappings we have

PROPOSITION 2.2. Let F be a product preserving functor and let A = F(R) be its
Weil algebra.

K f:V — W is a linear mapping of two finite dimensional vector spaces, then
F(f) : F(V) — F(W) is also linear over A and over R.

Kf:Vix---xVi — W is a k-linear mapping, then F(f) : F(V1)x--- X F(Vi) —
F(W) is also k-linear over A and over R.

PROOF: Let m : R x V — V be the multiplication by scalars and let +: V x V be
the sum in V. The linearity of f means that we have f om = m o (idg x f) and
fo+=+4o0(f x f). This implies that

F(f) 0 F(m) = F(m) o (ida x F(f))
F(f) o F(+) = F(+) o (F(f) X F(£)),

i.e. F(f) is linear over A and in consequence, linear over R.
Analogously we verify the second part of the proposition. O

Next we prove properties of direct sums as well as kernels and images of induced
mappings. Namely, we have

PROPOSITION 2.3. Let F be a product preserving functor.

IfV = U, @ U; is a direct sum of subspaces Uy,U,, then we have F(V) =
F(Ur) ® F(Ua).

If f: V — W is linear, then we have

’1) ker F(f) = F(ker f), imF(f) = F(im f)
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PROOF: V is a direct sum of U; and Uz means that the mapping @ : Uy xU; = V
given by ®(uj,uz) = u; + u2 is an isomorphism. According to Proposition 2.2
F(®) : F(U1) x F(Uz) = F(V) is an isomorphism. By the definition of sum in
F(V) we obtain that F(®) is given by F(®)(z1,22) = 1 + z2. It means that
F(V) = F(Uy) ® F(Uz).

To show (2.1) we consider a subspace U such that V' = ker f ® U and we denote
by i:kerf - V and j : U — V the inclusions. If we apply F to the equality
foi =0 and to the isomorphism f o j : U — im f we obtain F(f)|r(xer sy = 0 and
the isomorphism F(f)rv) : F(U) — F(im f). This implies immediately (2.1). o

Now we formulate properties of prolongations of Lie groups and their actions on
manifolds by a product preserving functor. Analogously we can prove:

PROPOSITION 2.4. Let F be a product preserving functor.

If G is a Lie group, then F(G) is also a Lie group. Em : G x G — G is the
product in G and 1 is the unit of G, then F(m) is the product in F(G) and F(1) is
the unit of F(G).

If f : G —» @ is a Lie group homomorphism, then F(f) : F(G) — F(G') is a Lie
group homomorphism. Particularly, if H C G is a Lie subgroup, then F(H) is a Lie
subgroup of F(G).

PROPOSITION 2.5. Let F be a product preserving functor.

If a Lie group G acts on a manifold M and A : G x M — M is the action, then
F(G) acts on F(M) and F(A) : F(G) x F(M) — F(M) is the action.

In particular, if ad : G x G — G is the adjoint action of G on G, then F(ad) :
F(G) x F(G) — F(G) is the adjoint action of F(G) on F(G).

K p: GL(R™) x R® — R" is the standard action, then F(p) gives an action of
A-linear transformations on F(R") and we have a Lie group monomorphism

I: F(GL(R™)) ——— GLA(F(R™) c GL(FR"™) .
given by I(X)(y) = F(p)(X,y) for X € F(GL(R™)) and y € F(R™).
ProoF: The uniqﬁe nonsta.n.da.td pa.rt. of the proof is the injectivity of I. Applying
F to
R™ xR" > GL(R") x R* —~ R"
we obtain that the induced mapping '

(

A" x A" = F(R™) x F(R") > F(GL(R™) x F(R") — 2, F(R™)

is given by F(p)([z}], (z*)) = (E;;lz; z7). It implies the injectivity of I. g
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We finish this section by remarks on Lie algebras. Using the standard methods
we obtain :

PROPOSITION 2.6. Let F be a product preserving functor.

If g is a Lie algebra, then F(g).is also a Lie algebra with the Lie bracket F([ , ]),
where [, | : g X g — ¢ is the Lie bracket in g.

If f: 9 — ¢ is a Lie algebra homomorphism, then F(f) : F(g) — F(g') is also a
Lie algebra homomorphism.

In Section 4 we will verify

PROPOSITION 2.7. Let F be a product presérving functor. If G is a Lie group
and L(G) is its Lie algebra, then there exists a canonical Lie algebra isomorphism

nG : F(L(G)) — L(F(G))-

3. Product preserving functors and fibered manifolds.

Let F be a product preserving functor. If 7 : ¥ — X is a fibered manifold, i.e.
« is a surjective submersion, then F(7) is also a surjective submersion. Therefore,
F(m) : F(Y) - F(X) is a fibered manifold. In particular cases of vector bundles
and principal fibre bundles we can show very interesting properties. We start with
vector bundles. We have

PROPOSITION 3.1. Let F be a product preserving functor.

Kx:E — M is a vector bundle, then F(x) : F(E) — F(M) is a vector bundle
too. If V is the standard fibre of E. and ¢ : Ey - UxVisa trivialization
over an open subset U C M, then F(V) is the standard fibre of F(E) and F(¢) :
F(E)7rw) = F(U) x F(V) is a trivialization over F(U) C F(M).

If%¥: E — E'is a vector bundle homomorphism, then F(¥) : F(E) — F(E') is
also a vector bundle homomorphism.

Let E;,..., Ex be vector bundles over the same base M and E be a vector bundle
over N. f¥ : Ey X+ Xp Ex — E is a k-linear mapping coveringy : M — N (3),
then F(¥) : F(E1) Xr(m) -+ XF(m) F(Ex) = F(E) is a k-linear mapping covering
F(¥) : F(M) = F(N).

PROOF: Let ¢; : Ejy, — U; x R* for i = 1,2 be two trivializations of E. Then
p10p7" : (U1NUz) xR* — (U1NUz) x R is given by (p1095)(2,v) = (2, L(z) v),

3) It means that for each point z € M ¥ transforms (E})z X -+ X (E)z into Ey(,) and ¥z =
‘I’l(Ex):X"'X(Ek)s : (El)‘ X oo X (EE)I' —_ Ew(,) is k-linear. : - .
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where L(z) is a matrix. It implies that
F(p1)o0 .7'-(902)_1 :(F(h) N F(UR)) x f(Rk) — (F(U1) N F(U2)) x f(Rk)

is given by (F(¢1) 0 F(p2)~1)(z,v) = (z,F(L)(z) v). Let us observe that by Propo-
sition 2.5 F(L)(z) € GL(F(R¥)).
Similarly we prove other parts. 0

Similarly as in Proposition 2.3 we deduce

PROPOSITION 3.2. Let F be a product preserving functor.

K E = E, ® E; is a direct sum of two vector bundles E; and E;, then F(E) =
F(E,) ® F(E3).

Iff: E — E'is a vector bundle homomorphism such that the function z —
dimker f, is constant on the base of E (*), then

ker F(f) = F(ker ),  imF(f) = F(im f).

In the case of principal fibre bundles we have:

PROPOSITION 3.3. Let F be a product preserving functor.

If P(M,G,x) is a principal fibre bundle with base M, structure group G and
projection «, then F(P)(F(M),F(G),F(r)) is a principal fibre bundle with base
F(M), structure group F(G) and projection F(x). K¢ : Py — U x G is a tri-
vialization over U, then F(y) : F(P)rw) — F(U) x F(G) is a trivialization over
F(U).

If f: P(M,G) - P'(M',G') is a homomorphism of principal fibre bundles co-
vering ¢ : M — M' with an induced Lie group homomorphism py : G — G,
then F(f) : F(P) — F(P') is a homomorphism of principal fibre bundles cove-
ring F(p) : F(M) — F(M') and-F(py) : F(G) = F(G') is the induced Lie group

homomorphism.

The proof is standard.
In section 4 we will prove:

PROPOSITION 3.4. Let F be a product preserving functor. There is a canonical

monomorphism Ip : F(LM) — L(FM) of principal fibre bundles, where LM
denotes the linear frame bundle.

4) This assumption gives a sufficient and necessary condition under which im f C E’ and ker f C E
are vector subbundles.
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4. The commutativity of product preserving functors.

In this section we prove a very interesting property saying that for two pro-
duct preserving functors Fj,F; there exists a natural diffeomorphim JF;(F2(M)) —
Fa(F1(M)). For particular functors 1 and F» we can show some supplementary
properties of this functor transformation.

We start our considerations from the following remarks:

Let F;,F2 be two product preserving functors and let A; = F;1(R), A2 = F3(R)
be their Weil algebras. We denote by 7}, : F1(M) — M and 7}, : F2(M) — M the
bundle projections for F; and F; respectively.

The projection 7} : A; — R is an algebra homomorphism and in consequence the
induced mapping

Fa(mz) : Fa(41) = Fo(F1(R)) — Az

is also an algebra homomorphism. Since the projection 7%, : F2(F1(R)) — 4, is an
algebra homomorphism, thus

(41) P77t = 34,,4, 0 (7%, Fa(m3)) : Fa(Fi(R)) — A1 ® 4,

is an algebra homomorphism, where s4,,4, : 41 X A2 = A; @ A2 is the canonical
bilinear mapping. We have the following proposition:

PROPOSITION 4.1. Let F; and F; be two product preserving functors. If A; =
F1(R) and Az = F»(R) are their Weil algebras, then the mapping p***1 defined by
(4.1) is an algebra isomorphism.

PROOF: Let ai,...,ak, be a basis of 4; and a},...,a%, be a basis of A;. Now
{a}®ad} : v=1,...,K1,p=1,...,K;3 } is a basis of A; ® A;. We can assume
that n3(a}) = 1 and 7§(a2) = 1.

Using the algebra monomorphism #; : R — A; given by i1(t) = ¢ - 1 we obtain
an inclusion F3(i1) : A2 — F2(F1(R)) and in consequence F,(i1)(aZ) belongs to
F2(F1(R)). On the other hand, identifying al with the constant mapping 4; — 4,
the induced constant mapping F,(al) is identified with an element of F2(F1(R)).

Now we can verify

P77 (Falal)Fa(i)(ad))
= sy, 3 (74, (F2(@})Fa(i)(02)), Fa(mh) (Fa(ad) Fa(in)(a2)) )
= 34:,42 (7.241 (.Fz(a},)),.rg(ﬂi)(fz(il )(ai)))

= 8A1,A2 (a}n GZ)

— 1 o 2
—a,,®an.
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because 7% (F(i1)(a2)) = 1 and Fp(n})(F2(a})) = 1 It implies that p7»71 is an
epimorphism. In consequence p*#”1 is an isomorphism because dim F2(F;(R)) =
dimA; ® A2. O

Propositions 4.1 and 1.2 imply

THEOREM 4.2. Let F; and F; be two product preserving functors. If A; = F1(R)
and A = F2(R) are their Weil algebras, then there is one and only one family
num : F2(F1(M)) = F1(F2(M)) of diffeomorphisms such that

(1) for every manifold M the following diagram

Fa(F(M)) — Fi(Fa(M))

F F F. F
(4.2) o “”:‘"’l l'M’ T3 (M)
idn

M M

commutes;

(2) for every smooth mapping ¢ : M — N the diagram

AEO) 229, rFm@m)

(4.3) vml lvuv

Fi(Fa(v))
Fi(F2(M)) — FA(F(N))

commutes.
(3) if pP>7%1 : Fo(Fi(R)) = A; ® Az and p”v%2 : Fi(F2(R)) — A2 ® A; are
the algebra isomorphisms defined by (4.1), then .

(4.4) m = (p7+72)7 o a0 p7>71 : Fy(FAi(R)) —» Fi(F(R)),

where a : A; @ A2 — A; ® A, is the algebra isomorphism verifying the
condition a(a; ® a;) = a; ® a;.

Furthermore, for two manifolds M, N we have npMxN = 1M X N.

PROOF: Let us observe that np is an algebra isomorphism. Now by Proposition 1.2
the proof is finished. O

In the case of the tangent bundle F;(M) = TM we have
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PROPOSITION 4.3. Let F be a product preserving functor. There exists one and

M

FTM) ™ T(FM)
Flom) \ . 7 PF(M)
F(M)

(where py : TM — M is the projection) such that the following conditions hold:
(1) for every smooth mapping ¢ : M — N the following diagram

F(dey)
F(TM) —— F(TN)

- [

dF(v)
TF(M) —— TF(N)

commutes; _
(2) if ¥g : TR — R x R and ¥ x(g) : TF(R) = F(R) x F(R) are the standard
trivializations, then

-1

F(¥Yr) wr(a)
m : F(TR) —— F(R x R) = F(R) x F(R) —— T(F(R)).

Furthermore, for two manifolds M, N we have npxN = M X 1N;

PROOF: It is sufficient to verify that in this case 7p = (p7"F)" 0 @ 0 p*T and it
is a vector bundle isomorphism covering the identity on F(R) and next we apply
Theorem 4.2. O

Let G be a Lie group. We denote by £(G) the Lie algebra of G. For a Lie
group homomorphism f : G — G' we denote by £L(f) : £L(G) — £(G') the induced
Lie algebra homomorphism. After identification £(G) with the tangent space T.G,
where e is the unit of G, the mapping £(f) is identified with the differential d, f :
T.G — T.G'. The functor £(G) is a product preserving functor from the category
of Lie groups and their homomorphism into the category of Lie algebras and their
homomorphisms. For this functor we have:

PROPOSITION 4.4. Let F be a product preserving functor. If G is a Lie group and
L(G) is its Lie algebra, then the restriction (16)|7(c(c)) : F(£(G)) — L(F(G)) is a
Lie algebra isomorphism, where g is from Proposition 4.3.

The restriction (76))7(c(q)) Will be denoted also by ng.
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Before the proof of this proposition we recall the definitions and properties of lifts
of vector fields to a product preserving functor F.

The standard example is so-called complete lift. f X : M — TM is a vector
field on M, then we define X€ = nps o F(X), where nu is the isomorphism from
Proposition 4.3. If ¢ is a local flow of X , then F(p;) is a local flow of X€. It
implies that the complete lift has the following properties

(4.5) (aX +BY)° =aX®+8Y°, [X,Y]°=[X°Y°]

for all vector fields X,Y on M and all reals a, 5.

In order to define other examples of lifts of vector fields to F we consider the
mapping ¥ : R x TM — TM given by ¥(¢,v) = tv. Using the natural isomorphism
nm : F(TM) — T(FM), the induced mapping F(¥) : A x F(TM) — F(TM)

determines
T =np o F(¥) o (ida x 13}) : A x T(FM) - T(FM).
For an element a € A and a vector ¥ € T(FM) we define
(4.6). a - v =Y(a,v)
Now for a vector field X on M and an element a € A we define
(4.7)  X@=g. XC = (e, XC).

X(9) is a vector field on F(M) called a-lift of X. This a-lift was introduced by Kola#
[8]. We have X¢ = X, where 1 is the unit of A. These a-lifts have the following
properties (see [5]): ' . '

(i) If X,Y are vector fields on M, a, are reals and a,b € A, then

(@X+8Y)® =aXx® 4 gy
X(aa+8b) _  x(a) + ﬂx(b)
(X, y®] = [x,v]D

(ii) If X is a left invariant vector field on a Lie group G and a € A, then X(®) is a
left invariant vector field on F(G).
PROOF OF PROPOSITION 4.4: Let E;,...,Ep be a basis of £(G) and a;,...,ax be
a basis of A = F(R). By Proposition 2.1 F(E;),...,F(EnN) is a basis of F(L(G))
over A. On the other hand by (ii) E.g"') belongs to L(F(G)) for j = 1,...,N and
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v =1,...,K. Of course, ng(aF(X)) = X for all a € A and X € £(G). By
Propositions 2.2 and 2.6
[a, F(E;), ap F(Ei)] = avau[F(E;), F(E;) = ava,F([Ej, Eil) -

Thus i
n6([av F(E;), au F(Ei)]) = ne(avauF([Ej, Ei]))

= [EJ'aEl'](a'a“)
= [E{*), E{*)]
= [na(ay F(Ej)), na(auF(Ei))] .
Since by Proposition 4.3 g is a linear isomorphism, thus the proof is finished. o
We finish this paper by the following proposition announced in Section 3.

PROPOSITION 4.5. Let F be a product preserving functor, A = F(R) be its Weil
algebra and let LM be the linear frame bundle over M.
For every manifold M there exists one and only one monomorphism

Ip : F(LM) — L(F(M))

of principal fibre bundles covering the identity on F(M) and with the inclusion
I: F(GL(R™)) — GL(F(R™)) given in Proposition 2.5 such that for each chart (U, ¢)
on M we have IyoF(0,) = 05(y), Wherea, : U — LM and o x(,) : F(U) — L(FM)
are local sections associated with ¢ and F(p) respectively.
The family {Ip} is natural, i.e. for every embedding ¢ : M — N of two n-
dimensional manifolds M, N the diagram
I
F(LM) —— L(F(M))
Fwon| |zon
I
F(LN) —— L(F(N))
commutes, where L(yp) : LM — LM is the induced mapping.
PROOF: We choose the canonical mapping Ky : LM xR™ — TM, Kp(l,v) = I(v).
Let us define Ips : F(LM) — L(FM) by
(4.8) In(1)(®) = (nm 0 F(Km))(1,9),
where ] € .T(LM), ¥ € A" and ny is defined in Proposition 4.3. Since Ky (I X,v) =
Kpm(l, X v) we obtain

F(Km)(1 X,7) = F(Km)(1, X7)
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for T € F(LM), X € F(GL(R")) C GL(F(R")) and # € A", where the inclusion I
is described in Proposition 2.5. Therefore

(Im(I X))(®) = (In(D)(X?) = (I (DX)(?),

i.e. Ip is a principal fibre bundle homomorphism. Since the corresponding Lie group
homomorphism is the inclusion I, Iy is a principal fibre bundle monomorphism.

If ¢ is a chart on M, then Kpy(o,(z),v) = dp~?(p(z),v) after the standard
identification TR™ with R™ x R". Using F and (4.8) we obtain

In(F(0,)(Z))(®) = (7m 0 F(Km))(F(0,)(), 7)
= (nm o F(dp™))(F(p)(2), )
= dF (¢ )(F(#)(2),9)
= 07 (4)(Z)(V)-

Thus Iy 0 F(op) =07(,). O
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