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Abstract 

A new type of algebras that represent a generalization of both quantum groups 
and braided groups is defined. These algebras are given by a pair of solutions of the 
Yang-Baxter equation that satisfy some additional conditions. Several examples are 
presented. 

1 Introduction — quantum groups 
and braided groups 
Matrix groups like GL(n),SO(n) e.t.c. were generalized in two ways recently. Both 
are based on deformation of the algebra of functions on the groups generated by 
coordinate functions Tj that commute 

TfTl
k = Tl

kTf & r 1r 2 = r 2ri (i) 
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In the quantum groups [1, 2] these commutation relations are modified by a 
matrix R = {.Ry } SO that the functions do not commute but satisfy the relations 

R12T1T2 = T2T1R12 (2) 

In this relation the elements of matrix R are numbers but the matrix T = {T-} is 
formed by generally noncommuting elements of an algebra. 

Another type of deformation of the relations (1) represent the so called braided 
groups [3] defined by the relation 

TiZi2r2Zf2 = Z21 T2Z21T1 (3) 

where Z is again a matrix {Zjfl} with number elements. 
The quantum groups appeared to be hidden symmetries of many physical models. 

The relevance of the braided groups for the low-dimensional quantum field theory 
was explained in [4]. The relation (3) can be also interpreted as constant reflection 
equation [5] that was recently investigated in [6]. 

The goal of this paper is to define a concept that unifies both the quantum 
groups and braided groups. We call these more general objects quantum braided 
groups. Before doing that let us summarize the properties of quantum groups and 
braided groups. 

Both the algebras defined by (2) or (3) can be extended to bialgebras with matrix 
coproduct and counit 

A(Tf) := If ®Tl, €(?!):= 6*. (4) 

However, the tensor products of the algebras defined by the relations (2) differ from 
those defined by the relations (3). 

The multiplication in the tensor product A ® A of the algebras A defined by the 
relations (2) (corresponding to quantum groups) is 

m(A®A) : -4®-4®-4®A -*-A®_4 

m(AQA) -= (m ® m) o (id ® r23 ® id) (5) 

where m is the product in A and r23 is the transposition of the second and third 
factor in. A® A® A® A. It is then easy to prove that A is a bialgebra. 

On the other hand the multiplication in the tensor product B ® B of the algebras 
B defined by the relations (3) (corresponding to braided groups) is more complicated 
because instead of the simple transposition r a more general map il>:B®B-+B®B 
called braiding appears in the product [3]. 

m(£0fi) :B®B®B®B -» B ® B 

m(B®B) := (m ® m) o (id $ ^2 3 ® id) (6) 

where m is the product in B and 

^(2r®-T):=^S,n4i(-7®rt) (7) 
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where 

1tr&--= a&z-ifczstSf (8) 
andZ := ((Z*»)_1)<2. 

To prove that B is bialgebra namely that A and € are morphisms of the algebra 
B and B ® B is a bit more complicated than for the quantum groups but there are 
no principal problems. The identities 

Z^Zff = Zaftig = 8?S* (9) 

which follow immediately from the definition of Z, is used for that. If antipodes on 
the bialgebras are denned we get Hopf algebras. 

Finally let us remark that the relations (3) are invariant under the transformation 
T' = A"^TA where A\ are generators of the quantum group's denned by 

Z12A1A2 = A2A1Z12 (10) 

and A"1 = S(A), i.e. the matrix with entries S(A*) where S is the antipode. In 
other words, B is A(Z)-comodule algebra [7]. 

2 Quantum braided groups 
As mentioned in the beginning, our goal is to define an object that will unify the 
properties of both quantum and braided groups or more precisely, that will contain 
both of them as special cases. Prototypes for that are quantum supergroups. 

The supergroups are special cases of the braided groups where Z = rj := 
diag(+, +, . . . ,—,—,. . . ) and rp(x ® y) = (—)MMy ® z. The defining relations of 
a quantum supergroup can be written in a form that reminds (2) but the super-
commuting nature of its elements is expressed by inclusion of the matrix rf into the 
deftoing relation [8] 

^12--l»7l2--2»7l2 = »7l2--V7l2--lftl2 ( l l ) 

Comparing (2), (3) and- (11) leads us quite naturally to the investigation of 
algebras given by a pair of n2 x n2 matrices (7£, Z) that define relations 

II12T1Z12T1Z12 = Z21 T2Z21T1H12 (12) 

which include the cases of both quantum and braided groups. 
The experience with the quantum groups, braided groups, and quantum super

groups teaches us that the matrices JZ and Z cannot be arbitrary but will be restrict
ed by conditions of Yang-Baxter type. These conditions follow from two possible 
ways to transpose expressions containing triples of generators T/. In order that the 
relations (12) can be applied we shall consider triples of the form 

T1Z12T2Z12 Z2zZizTzZ^z Z22 • (13) 
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They can be transposed to expressions with the transposed order of .Ti, T2, T3 if 
matrices 72. and Z are invertible and satisfy 

Z12Z13Z23 = -̂ 23-̂ 13-̂ 12) . (14) 

^12-^23-^13 = -^23-^13^12- (15) 

Zi2ZizH2Z ZZ2 = 7^3 Zg~2 Z13Z12. (16) 

Under these conditions the expression (13) can be transposed by two ways and we 
require that the results be equal 

H12 Z21 H1Z ZZ1 H2Z ZZ2 TzZz2T2ZziZ2iT\R.2zZ2zR'izZiz'R'i2Zlz Z2Z = 

^23 Zz~2 ^iz Zzi ^M ^21 TzZz2T2ZziZ2iTiRi2Zi2'R>izZiz'R'2zZlz Z12 . (17) 

In order that the equation (17) does not impose additional relations for T we require 
that the matrix 72. satisfy the "braided Yang-Baxter equations" 

^12-^12^13-^13^23-^23 = ^23-^23^13-^13^12-^12 (18) 

n12 z21 nlz zzl n2Z zZ2 = n2Z zZ2 nlz zzl n12 z21 (19) 

Introducing R \— HZ we immediately see that (18) is the ordinary Yang-Baxter 
equation (YBE) for R 

R12R13R23 = -R23-R13-R12 (20) 

and the equations (15) and (16) can be rewritten to simpler forms 

R12Z13Z23 = Z2zZizRi2 (21) 

Z12Z13R23 = RizZizZi2 (22) 

The equation (19) is .then satisfied due to 
Lemma: If R and Z are solutions of the YBE that satisfy (21) and (22) then 
PZPRZ'1 and Z^RPZP, where P is the permutation matrix Pjf = <Jd*- are also 
solutions of the YBE. 

Proof can be done by direct check. Let us note that the condition PZPZ"1 = 1 
required in [9] is not necessary here. 

Conclusion then is that when we have a pair (R, Z) of solutions of the YBE that 
satisfy the relations (21), (22), we can define the algebra 

B(R,Z) :=C<T> >?J=1 IU&Z-J ^*Zglf - z£ ^TfZ^RtK^^i 
(23) 

that do not impose additional relations of cubic or higher degree. The compact form 
of the relations in (23) is 

Ri2Z12 T1Z12T2 = Z21 T2Z21T1R12 m (24) 

that is equivalent to (12). 
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One can show that matrix coproduct and counit (4) are morphisms of B(R, Z) 
into B(R, Z) 0 B(R, Z) where the product in B(R, Z) ® B(Ry Z) is defined by (6), 
(8). To do that one must prove that 

fti^AtTiJfoAtT,) = Z2-1
1A(T2)Z21A(T1).R12 (25) 

which is simple but tedious exercise with indices where the identity (9) is used. It 
means that the algebra (23) can be extended to the bialgebra with the coproduct (4). 
That enable us to define the dual algebra of functionals L± = {Lf J} on B(R, Z) by 

< Lf,T2T3...Tn >:= nf2nt3...7ltn (26) 

H12 := Z12R,21Z21 = Z12R21% H12 := Tl12 = Z12R12 (27) 
where 

and 
< aft, c >:=< a ® bt A(c) > . (28) 

The functionals then satisfy 

H21L\Z21L2Z21 = Z12 L2Z12L\7l21 (29) 

or equivalently 
R21Z21 L\Z21L2 = Z12 L2Z12L\R21 (30) 

where (e, a) = (+, +) , (+, - ) , ( - , - ) . 
The relations of the quantum braided group are invariant under the transfor

mation T1 = ATA where A\ and A\ are generators of the quantum group given 
by 

R12A1A2 = -42.Ai.ffi2 (31) 

and its twisted version 
R12A1A2 = A2A1R12 (32) 

where R = PZPRZ~l and beside that the generators must satisfy braiding relations 

A1Z12A2 = A2Z12Alt (33) • 

AXT2 = r2A l f AXT2 = T2AU (34) 

On the other hand we can construct quantum spaces invariant under action of 
the quantum braided group. They are defined as 

• V(B(R)) = C < *» >& /{*V - .,V5(£)ii}S.=1 (35) 

where B is a polynomial of R = Pii. These algebras are invariant under the action 
of the quantum braided group x * := x^Tx- if x and T satisfy the braiding relation 

Tis2 = x2Z12 TiZ12. (36) 
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The proof of the invariance of 

xxx2 = X!X2B(R)12 (37) 

is straightforward when the commutation relation 

[.R12,Z1"2
1r1Z12T2] = 0 (38) 

that follows from (24) is used. 
Similarly, if the antipode T"1 := S(T) exists, the covector quantum spaces 

V(F(&)) = C<Vi > i l x /{viVj - F(&)%vkvl}^=1 (39) 

where F is a polynomial of & = RP, are invariant uder the action v< := Tf1 JVj if 
v and T _ 1 satisfy 

n T f 1 = Z^T^ZnV!. (40) 

In general, the polynomials B, F can be arbitrary singular polynomials [10] but 
if we require moreover the invariance of the quantum spaces under the addition 
x" = x + &', v" = v + v', where x,x' and v,v' are two copies of generators that 
satisfy braiding relations [7] 

x[x2 = a,2*i-£i2, v[v2 = Ri2v2v[, (41) 

then the polynomials B, F must satisfy conditions 

(R+1)(B(R)-1) = 0, (42) 

(F(&)-1)(R + 1) = 0, (43) 

that can be solved by virtue of the minimal polynomial of the matrix R. Remarkable 
fact is that they are the same conditions as those that determine the quantum spaces 
where covariant differential calculi can be denned [11]. 

3 Examples 
The problem that we have to solve for determination of a quantum braided group is 
to find solutions of the system (14,20,21,22). 

There are several simple solutions of the system. One of them is Z = 1, R -
any solution of the YBE. This gives the algebras that correspond to the ordinary 
(unbraided) quantum groups [2]. Other solutions are Z = R or Z = PR~XP, R being 
any solution of the YBE. They correspond to the (unquantised) braided groups. 

To present some nontrivial examples we are going to solve the system (14,20,21,22) 
for n = 2 i.e. for matrices R and Z of the dimension 4 X 4. In this dimension we 
have at our disposal the complete list of the YBE solutions [12] so that in principle 
it is easy to check whether pairs of the solutions satisfy (21, 22), however there are 
two obstacles. First, the solutions of the YBE are rather too many. Even .if we 
restrict ourselves to the invertible ones that form eleven classes [13, 14] they give 
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121 pairs and it takes a lot of time to check them. Second and more important, even 
if we do that we can anyway miss some solutions. The reason is that the solutions 
of the YBE are given up to symmetries of the YBE but the cartesian product of 
the group of symmetries is not the group of symmetry of the system (14,20,21,22). 
Nevertheless, checking many solutions of the YBE we have been able to find several 
solutions of the system (14,20,21,22) that give nontrivial examples of the quantum 
braided groups in two dimensions. 

The first type of nontrivial examples is given by diagonal Z and six-or-less vertex 
solutions of the YBE like e.g. 

д s = 
(* 0 0 0 

0 1 0 0 
0 q -1 qt 0 

\o 0 0 Ч 

Дв = (44) 

(The numbering corresponds to that in classifications given in [13, 14].) 
The defining relations of the quantum braided group given by R = K5, Z = 

diag(x,u,v,y) are 

(45) 

тAB = BA, 

кCA = ACЛ 

кDB = ІBD, 

тCD = ІDC% 

tвc = ктCB, 

(AD -DA) = (к-т)CB, 

wheгe A,B,C,D are geneтatoтs of the algebтa 

"(í B»Y (46) 

and r, *,£ are parameters related to those in R and Z by r = tx/v, K = qx/v, t = 
xy/uv. This quantum braided group have a structure similar to the well known 
quantum group GLqt,(2) [16] which is obtained when y = uv/x. 

On the other hand, the quantum braided group given by Z = diag(xyu, v, y), R = 
Re, where q ^ —t reminds the quantum supergroup GLqit(l\l) [17]. The defining 
relations are 

B2 
= 0 = c2 

тAB = BAЛ 

кCA = AC, 

тDB = -ІÐD, 

кCD = -ІDC, 

tвc = ктCB, 

(AD -DA) = (к-т)CB, 

(47) 
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The braiding relations for the above given quantum braided groups are given by 
matrix Z = R8 = diag(x,u9u,y) and read 

V>(A®.X-) = .X-®A, 1>(X®A) = A®X\ .X"e{A,.0,C,.D}, 
Vi-?®-9) = f.B®.B, 
$(B®C) = r 1 ^ ® ^ , (48) 
V>(C®.B) = CXB%C% 

$(C®C) = iC®C, 
V>(.D®X) = .X®.D, 1>(X®D) = .D®X, X-G{A,.B,C,.D} 

where £ = xy/uv. Note that A, .D are always bosonic Only B and C can have 
anomalous statistics for this Z. 

Other examples are provided by the solutions of the system (14,20,21,22) where 

* - - $ . - 1 : ; : : i m 

and 

( 1 0 0 0 

I ; ; ; i « * = * . = ! ? j ; ; i , <«» 
/ *% 1 1 , 

The braiding ^ in these cases is 

V>(C®X) = X®C, ^(X'®C) = C®X'I .X"G{A,.0,C,.D}, 
^(A®A) = A^A + TC^C, 
V>(A®.0) = .0® A-r (A- .D)®C, 
V»(A®.D) = D®A-TC®C, 

V (̂.S®A) = A® .3-rC®(A- .D) , (51) 
t/>(B ® .9) = 5 ® B + T(A - D) ® (A - .D) + 2r2C ® C, 
V>(.B®.D) = D®B + TC®(A-D), 

^(.D®A) = A®D-TC®C, 

1>(D ® .9) = .B ® D + T(A -D)®C, 
$(D®D) = D®D + TC®C9 

where r = z — xy. Note that there are again two bosonic elements, namely C 
and A + D. For z = sy the braiding is bosonic even though Z / l . 

The quantum braided group given by Z = R'10, R = Ru is denned by the 
relations 

BA = AB + xB2, 
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DB = .B.D+7-92, 

CB = BC + iAB-xBD, (52) 

CA = AC + TAB + IA(A-D) + IBC + T(X-I)B2-IXBDI 

DC = CD-X{A-D)D + XBC-T(X-I)B2 + (T-X2)BD, 

DA = AD + IAB + XBD + (T + IX)B2, 

where T = z — scy, X — y — h, 7 = V~g- Note that for T = 0 we get the nonstandard 
unbraided deformation of GL(2) [18,19] even if Z ^ 1. 

When investigating the quantum braided group given by R = .Rio, Z = R'10 we 
can assume that the parameters of .Rio satisfy g+h^Qor f £ gh because otherwise 
we get a special case of the previous example. Under this assumption the defining 
relations read 

AB = BA = DB = BD = B2 = 0, 

AD = DA, BC = CB, A2 = D2, 

CA = AC + (y- h)A(A - D) + (y + g)BC (53) 

CD = DC + (y- h)D(A -D)-(y + g)BC 

If g + h ^ 0 then moreover 

BC = A(A-D), AC = CD. (54) 

4 Conclusions 
We have written down the defining relations of a new type of bialgebras that general
ize both the quantum groups and braided groups as well as the quantum supergroups. 
The relations of the algebras are determined by a pair of matrices (R, Z) that solve 
a system of Yang-Baxter-type equations. The matrix coproduct and counit are 
of standard matrix form, however, the multiplication in the tensor product of the 
algebras is defined by virtue of the braiding map given by the matrix Z. 

Besides simple solutions of the system of the Yang-Baxter-type equations that 
generate either quantum groups or braided groups, we have found several solutions 
that generate genuine quantum braided groups that by a choice' of parameters give 
quantum or braided groups as a special cases. 

This work was supported in part by the grant CSAV No. 11 086. 
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