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ON VASSILIEV'S KNOT INVARIANTS 

Klaus Mohnke 

Abstract 

The origin of this article is a lecture given by P.Cartier1 in Zdikov in February 
1993. It presents a construction of a probably 'complete' set of knot invariants based 
on ideas of Vassiliev, Sossinsky, Kontsevich, Bar-Nathan, and others. To have a 
convenient framework, we consider a vector space V for which the set of all knots is 
considered to be a basis. Then we construct a finite dimensional filtration in a more 
or less canonical way together with a natural basis which respects the filtration. 

1 Introduction 

For more then a century the phenomenon of knots in three dimensional topology has been 
inspiring mathematicians and physicists. One of the first to study knots was the physicist 
P.G.Tait who proved properties of these objects, gave first tables, and made a series of 
conjectures at the end of the 19th century. 

First of all, let us discuss what we (and mathematicians in general) will understand 
by the notion knot Naively, you would probably think of it as a string knotted in order to 
keep your shoes at your feet or to keep a parcel together. But there is a problem with this 
picture: sometimes you want to put your shoes off or you want the person who gets the 
parcel to look in it and see what presents you have sent — you are very lucky to unknot 
your knot In the case of the parcel a pair of scissors may help. So, in our case a knot will 
be a continuous embedding of the (oriented) circle S1 into the 3-sphere S 3 (usually, one 
adds the point at infinity to the Euclidean 3-space because one is just interested in isotopy 
classes of such embeddings). But still we are not satisfied with this notion, uncontrollable 
degeneracies may occur (think about Peano curves or infinitely iterated knots). So, in our 
context knots will be tame knots, i.e. embeddings which are isotopic to finite polygonal 
embeddings. Now take your string, knot it, and glue the ends of the string together (using 
glue rather than a knot!). Now you can deform your knot (e.g. you can 'tighten' it or 
'loosen' it) or you can move it in Euclidean space but you will still have the same knot 
(as even a non-mathematician would be convinced of). So, what we are actually looking 
at are equivalence classes of tame embeddings where the equivalence is given by isotopies. 
The resulting classes are nothing else as the path connected components of the space of 
tame embeddings with the obvious topology as a subset of the space of all polygons in 
Euclidean space. These classes of knots will simply be called knots throughout the lecture. 

The next question is how to visualize a knot. One possibility is to take the famous belt 
which basically plays the role of the string. This is, unfortunately, not very-convenient for 
books and articles and not for computations either. Just as bad is the representation via 
a polygon or a smooth embedding... So, we will use regular planar diagrams to represent 
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a knot as they were introduced by K.Reidemeister, i.e. special projections of the knot 
onto the Euclidean plane. Let us have a look at some examples: 

unknot trefoil figure eight knot 

We just require that the diagram is as tame as the knots we are considering, i.e. they 
are isotopic as immersions in the Euclidean plane to a polygonal immersion whose singu­
larities are at most double points. In addition to that, we mark the crossings depending 
on whether we have an over- or an under-crossing of the knot in three space. Again, as 
with the isotopy classes, there are multiple choices of diagrams for each equivalence class 
of knots, depending on the choice of the embedding of the given knot as well as the pro­
jection. Considering two regular planar diagrams as equivalent if they are isotopic within 
the space of regular planar diagrams it is clear that to each knot there exist arbitrarily 
many diagrams representing it - just look at the following picture showing small parts of 
a diagram: 

I 

D 
I í 

D 
typel type II type III 

But fortunately, this is all that can happen, according to the following 

Theorem 1.1 ( Reidemeister) Two diagrams correspond to the same knot iff there is 
a finite sequence of Reidemeister moves I-III as depicted above transferring one of the 
diagrams into the other. 

Remark 1.2 If we replace knots by ribbons which can be considered as knots together 
with an assigned 'twisting number', undergoing a Reidemeister move type I the ribbon 
gets a twist, i.e. a change of ±1 in the 'twisting number' as you easily convince yourself 
by experiment. 
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2 The Tautological Vector Space 

Now let us start with the basic construction used for defining Vassiliev's invariants. Con­
sider the Q-vector space V for which the set of all knots is a basis. Denote by V the vector 
space generated by all regular planar diagrams is a basis and by TZ the subspace of V 
which is generated by all differences [D] — [D1] where D and D? are diagrams transferable 
into each other via a sequence of Reidemeister moves. Denote for a moment by n the 
quotient V/71. Then Reidemeister's Theorem just states that 

n=*v. 

After all, this remark seems as tautological as the vector space itself but, nevertheless, 
it is rather important for our purposes: remember that we will do all computations on 
the level of diagrams. We immediately have (tautological) invariants: the elements of the 
dual vector space. This is basically the kind of invariant we are going to talk about in 
these lectures and is of course as useless as a tautology could be! 

Fortunately, there is much more structure hidden in this vector space V. Let us con­
sider not only ordinary knots but singular knots, i.e. immersions of S1 into the Euclidean 
three space for which the only singularities are double points. The corresponding regular 
planar diagrams of knots with p double points are just diagrams where p crossings have 
no assigned under- or over-crossing. 

Consider a singular knot with one double point. We can resolve the singularity in two 
ways -to the double point in the picture of a diagram of the singular knot we can assign 
the difference of the corresponding over- and under-crossing 

In the diagram this can be done in a canonical way as the picture above shows, and 
it is easy to see that this does not depend on the particular choice of the diagram. So, 
we have a well-defined difference AK = K+ — K- € V for a singular knot K with 
just one singularity. Having a singular knot with p double points we can generalize this 
construction either inductively or by defining 

APK= £ ±[possibility] € V, 
2'pos»ibilities 

where 'possibility' means to dissolve the p singularities in a certain way analogously to 
the example p = 1 and the sign of the summand depends on the number of the chosen 
under-crossings for dissolving the singularities. So, we can make the following 

Definition 2.1 We denote byVpCV the subspace generated by all possible APK. 
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One of the basic properties of V is the following 

Proposition 2.2 {VP}JL0 is a finite dimensional filtration of the vector space V, i.e. 
V0 = V, Vp+i C Vp and Ap = Vp/Vp+\ is finite dimensional. 

Proof. The inclusion is clear: an element of Vp+i is a difference of two elements of Vp. For 
the finite dimensionality observe that dim(Ao) = 1 is just the statement that each knots 
is equivalent to the unknot if you allow not only Reidemeister moves but also the change 
of an under- into an over-crossing and vice versa (see the picture below). 

|**v̂ ч>* 

The statement for general p is slightly more subtle. Define V to be the vector space 
freely generated by all singular knots with exactly p double points. As for regular knots 
resolve one double point of K € V*"1. Let Vf C V be the vector space generated 
by all such differences.. Applying the operation Ap on the remaining p double points 
we get the vector space Vp = Vp+\. On the other hand V/Vf is finite dimensional: 
The dimension is the number of different arrangements of pairs of points on a circle -
see the Feynman Diagrams below. This is just the statement that with the additional 
equivalence relation of interchanging over- and under-crossing there is no 'knotting' of 
singular knots. But now the operation Ap generates Vp and with the equality above we 
have dim(Vp/Vp+i) < diro(V7Vf) < co. D 

The finite dimensionality of these quotients makes it useful to restrict ourselves to 
elements of the dual V* of finite type: 

Definition 2.3 (Vassiliev-Invariants) We call an element </>€V* of finite type (or a 
Vassiliev-Invariantj iff there exists a p € N such that 0|v.H-i = 0-

Actually a lot of such finite type invariants are well-known to topologists already. Let 
us consider e.g. the HOMFLY-polynomial. Take the diagrams of three links L+, L_, and 
Lo which differ in one crossing as shown below. 

The polynomial is then characterized by the following relations: 

xPL+ (x, y, z) + yPL_ (x, y, z) + zPu (x, y, z) = 0, 

Ptmfcnot = 1 . 

Setting x = 0s y = — q~N and z = (—l)N(q — q~l) we obtain the luraev polynomials 
T(L, N)(q). Setting q = 1 + c\h + c2h

2 +... these polynomials translate into power series 
T(L,N)(h) in h. Denote by Ti(L,N) its coefficients. Then Joan Birman and Xiao-Son 
Lin proved in [BL] the following 
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Proposition 2.4 (Birman,Lin) TP(L, N) is a Vassiliev invariant of order at most p. 

Proof. Extend TP(L,N) linearily to the whole vector space V. This obviously defines 
an element in V*. Now we see from the first relation for the HOMFLY polynomial via 
comparison of coefficients that 

r p (L + ,N ) - r p ( i . ,N ) = 
$p(rp- i (^^) To(L.,lv),rp.1(Lo,-V),...r0(A,,iV)). 

$ p is a linear functional on R depending on p, N, c,-. $ 0 = 0 because T0(L, N) = 1 for 
all knots L, integers N, and power series q. By iterating this procedure we see that 

Tp(A | , + 1L,N)=0 

for all N, singular L with p double points and q as above. D 
Now we want to assign to each knot its image in V/Vp =* AQ 0 A\ © ... © Ap-i- This 

isomorphism is, unfortunately, not canonical. Kontsevich constructs in his approach a 
linear map 

V—*n4 p=*limV/V p = V. 

The basic ingredients are Feynman diagrams. Assign to each singular knot a Feynman 
diagram in the following way: 

l̂ -N/Ч-. 

Now the image under the mapping W —> Ap = Vp/Vp+i just depends on the Feynman 
diagram as stated in the proof of the theorem. 

From our construction follows that the Vassiliev invariant gives a 'complete' system 
of knot invariants if the following conjecture is true: 

oo 

nvp=o. 

3 Feynman Diagrams 

We consider the space I of smooth immersions x : S 1 —• R3. The set of singularities 
F C S 1 is supposed to be finite and to contain only transverse selfintersections. Then we 
can assign to x a Feynman diagram via the equivalence relation 0\ ~ 02 <-> x($i) = xfa) 
(see the example below). 
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ICs-^^-X***-

So, the set of Feynman diagrams with one closed Wilson line V defines a stratification 
of the topological space 

X= II ID, 
Dev 

where XD is the set of all immersions with the associated Feynman diagram D. Denote 
by 0 the diagram just consisting of a closed Wilson line. Then 2Q = 2b is just the set of 
knots (without considering the isotopy relation). This set is disconnected and we have 

VSHo(2i;Q), 

i.e. the path-connected components of 2b are the isotopy classes of knots.Denote by 
X\ the set of immersions with only double points, then 2b C Zi.We can assign Feynman 
diagrams not just to singular knots but to singular links, too. All other constructions are 
working as well: e.g. the class of a link in the corresponding Vo/Vi is determined by the 
number of its components. 

But recall, that we are actually interested in distinguishing components in 2b. In doing 
so we aim to count the minimal numbers of Ji-walls in order to move from one knot to 
the other. So, we should study the structure of X\ carefully. It turns out to be convenient 
to consider Feynman diagrams with dotted and solid lines and at most trivalent vertices 
vertices as in the example above. We grade such diagram by half the number of its 
vertices. Denote by JrVp the Q-vector space freely generated by all trivalent diagrams of 
degree p. 

Now consider a simple Lie algebra-g, a Casimir operator c.€ g ® g and its inverse 
c"1 G g* <8> g* for which the contraction of c ® c in the middle components via the 
natural pairing gives the identity endomorphism of g. Moreover, assume we have a finite 
dimensional representation R : g —• End(V). There is a a general principle to write 
down tensors and there contraction in several variables in a graphical way (see [PR]): 

To describe the scalar t^x^y}' we draw the following picture: 
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U 
i j í i "71'<П 

1 t 1 X ľ \ У \ 

.*' V 1" 4' 1 
In our case we have two different types of components for a tensor: 

For example we have defined already: 

I • • 
• i . i ^Г 

«/, mv g«§ 

The statement that c"1 is the inverse of c is just expressed by the picture: 

Г T 
I 

i 

] • ! 
_ _ j 

Now c and c"1 lower and raise indices, respectively. So we can drop the arrows for the 
dotted lines. In other words, given the ingredients of a Lie'algebra, a Casimir, and a finite 
dimensional representation we can assign to each Feynman diagram a number. From now 
on we will specify.the Casimir as c = trace. Given an orthornormal basis {e11} of g, we 
have a tensor 

fabe = Tr([ea

Je
b]ee). 

To a node where three dotted lines meet in our diagram we will assign the 'box' with 
the inscription '/', and to a node where a dotted line meets a Wilson line we assign the 
inscription tR\ Denoting the contraction operation according to our present rules we have 
some reductions: 

(i) from /•* = -/ f c o c we see the anti symmetry (AS): 

Ò 

(ii) from the Jacobi identity we conclude the IHX-relation: 
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Jv. 

. \ / 

~ \ - * - . 

7. ч 

(iii) and, moreover, from the assumption that R is a homomorphism of Lie algebras 
R : g —• End(V) we obtain the STU-relation: 

- л 
ү ' 

i 

\ / ' 
\ / 

_2L 
From this relation we easily deduce that all nodes with three dotted lines can be 

eliminated in a closed Feynman diagram of our type (i.e. each dotted line meets a Wilson 
line). 

Moreover, we have simple representations for Tryc, Tryc2, etc. 

Note the difference to Try(E cce6efle6)! 

What we obtain are linear functionals on TTP which obey the three relations (it 
actually turns out that STU determines AS and IHX). We denote by 7* the quotient of 
TV* after these relations. Our aim is to construct linear functionals on the space Vp. 
Consider the Q-vector space generated by all Feynman diagrams without triple points, 
with one Wilson line and p dotted lines. This space is isomorphic to our V/Vf. Remember 
that after choosing planar diagrams for each different singular knot we had a well-defined 
mapping onto Vp/Vp+i- Now introduce on this vector space the following equivalence 
relations: 

(i) the Yang-Baxter relation: 
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/\ 
/ \ 

t x \ 

^ > 

x£-sУ> 
\ 
\ 
\ 

»y"V» 
This is rather easy to explain. The first difference of diagrams in the above relation 

can be represented by a difference of singular knots which locally look like: 

The second difference gives a similar picture, just with another, point of the triangle 
being an overcrossing instead of an intersection. 

But now, resolving the different points in the two pictures above (possibly changing 
the overcrossings to undercrossings first, which is allowed because we are not interested in 
the particular character of nonsingular crossings in the diagram but only in the Feynman 
diagram itself) gives two differences of singular knots which are obviously the same. 
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/ ' / 
(ii) the neglection of separated diagrams: 

т 

I 

_L 
We can represent such a diagram by a singular knot which is trivially 'twisted': 

It is clear that this maps to zero under the above map. Denote by BP the quotient of 
V/Vf by relation (i) and by Ap the quotient of V/Vf by the two relations above. Bp and 
T* are isomorphic (see [BN]). It is clear from the remarks that there is a well-defined 
surjective map 

*n • i/\ f i/ip. 

Remark 3.1 We want to construct from these linear functional on the vector space of 
all. closed Feynman diagrams linear Junctionals on Ap. Jn order to get this, we will use 
the idea of Bar-Nathan's proof (see [BN]) that ip is in fact an isomorphism. It remains 
to make sure that our linear Junctionals on V/Vf obey the relations (i) and (ii). An 
easy computation shows that the classical functional coming from a finite-dimensional 
representation of a simple Lie algebra and the trace cannot give the desired invariants 
for knots. We have to renormalize them, i.e. to find a natural projection from the well 
defined functional on BP to functional on Ap (see [BN] for details). This is a well-
known phenomenon in Quantum Field Theory. It corresponds to removing the 'vacuum 
loop'. Given a simple Lie algebra g and a finite dimensional representation R we denote 
by </>g,R the renormalized linear functional corresponding to these data. This is a well-
defined functional on Ap. It is not known whether these junctionals generate all Vassiliev 
invariants or not. Computations up to degree 9 show coincidence. 

The rest of this lecture will be devoted to constructing a well-defined inverse of ip. This 
was basically done by Kontsevich. The aim is to define a collection of linear maps KP : 
V —>A P such that 
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CO Kp|VF+, = o» 
(ii) For «p : Vp/Vp+i =AP—> Ap 

we have: ipKp = Id. 

We will use representation of knots via braid group elements to define Kp. 

4 Braid Groups,Knots and the Knishnik- Zamolod-
chikov Connection 

Define 
* n = C n \U{ t i=* ; } 

and 

Xn = .Kn/Sn. 

Definition 4.1 The full and the pure braid group are defined to. be 

B n = 7Ti(Xn) 

and 
P„ = 7Ti(Kn) 

respectively. 

The representation of B„ can be given canonically without specifying a point: an element 
g € Bn is represented by a path starting and ending in Xn n Rn/Sn. This is possible be­
cause this real part is connected. The full braid group is generated by elements ai,..., <7n_i 
satisfying the following relations: 

OiGj = OjOi V | i - i | > r , 

0|tfi+i<7i = o'i+iO'i^i+i Vi < n — 2. 

We can form a link out of a braid in an obvious way : 

This operation is called the closure of a braid. There are two operations (the so called 
Markov's moves) on a braid b € Bn which do not change its closure: 

(i) conjugation with an arbitrary element g € Bn, 
(ii) stabilization of b into the larger braid group Bn+i via 6 •-> bG*1 
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Proposition 4.2 (Markov) The closures of two braids b and b' give the same links iff 
there is a finite sequence of Markov's moves or their inverses which change b into b\ 

Having a sequence of traces, i.e. maps {trn : B„ —• R} satisfying the relations 

*rn(6)=trn+1(6(7f), 
trn(bb')=trn(b'b). 

for 6,6' G B„, we know, after all, that we obtain a knot invariant assigning to each 
knot the value of the trace for a braid representative of this knot. Let e.g. R € End(V®2) 
be a solution of the Yang-Baxter equation. Then 

<?i *—* S|,(i+1)-Ri.(.-+1) 

defines a representation of Bn in V®n. With a little luck the first condition is satisfied, 
too, for the usual matrix trace and we get a knot invariant. So, it semms natural to 
look for such representations and their traces. In the following we summarize some basic 
steps in the definition of the Knishnik-Zamolodchikov connection and a construction of 
Drinfeld. Consider the central descending sequence of the pure braid group: 

Pn = P„Z>Pn3 . . . . 

Then each factor r£ = Pn /Pn can be identified with a cocompact subgroup of a simply 
connected real nilpotent Lie group T* C Gj. We have a sequence 

. G n < - G n < - . . . < - G „ ° , 

where 
Gn* = ]imGk

n1 

and, similarly, for the Lie algebras 

on on "" on i 

with a natural inclusion 
Pn^GS0 . 

The exponential map 
e-rpigS0—>G~ 

is a diffeomorphism. Thus, for each 6 € Pn there is a uniquely defined element In 6 € gJJ0. 
There is an analogous construction for Bn «-> drj0 and again In 6 € gJJ0 for 6 € B„. 

Let us describe the Lie algebra gjj° and the logarithm In 6 in greater detail. With 
g~(fc) = Ker(g%> —> g£) we have: 

gГэgГrøэgГíг)->...,• 

anđ we define 

t» = t n (l)фt,(2) .., 

t„(fc)=gľ(fc-l)/Eľ(fc)-
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These algebras have an explicit description. Its generators are well-defined elements 
{tij}i<i<j<n C Hi(Xn;R) satisfying the following relations: 

(1) Uj commutes with tu if i,j,k,l are pairwise distinct; 
(2) Uj commutes with Uk + tjy. 
So tn+i is a semi-direct product of tn with the Lie algebra freely generated by 

ti.n+i. — -*n,n+i- Now, the main problem is to find an explicit isomorphism 

«r-^fit.(*)-t.. 
fc=i 

This is basically done via Drinfeld's construction we are going to describe briefly. First 
recall the construction of the Knishnik-Zamolodchikov connection. Define the holomor-
phic closed 1-forms Ujk on Xn as 

dzi — dzk 
Ujk = • — l . 

J Zj - Zk 

These form a basis of H1 (Xn; R). According to Brieskorn and Arnold the only relation 

-*>ij AWj-fc+Wi* A W K + W K AWy = 0 . 

Having Tij € End(W) we define the connection on the trivial vector bundle with fibre 
W over Xn by the 1-form 

A = Y,TiWv 

If A is fiat, which is equivalent to A A A = 0, we call the connection Knishnik-Za-
mololdchikov connection. This is exactly the case if the T^ satisfy the same relation as 
the Uj do. So the T^ are actually given by a representation in W of the algebra tn. For 
that reason Manin calls tn the dual of Hl(Xn; C). We have the following example: For a 
given simple Lie algebra h with a Casimir c and a representation R: h —• End(V) take 
W = V0n and Tjk = c^R1 ® Rh acting on the jfth and fcth position. 

Choosing the Lie algebra and the representation properly we get the desired explicit 
isomorphism. Having a representation W of tn we integrate (or exponentiate) this to a 
representation of Pn in W, which is given in terms of power series in the T^. So, formally 
we get an isomorphism $n : Pn —> Utn, where Utn is the completion of the enveloping 
algebra, i.e. its elements are formal power series in tn. For this, one has to solve the 
differential equation 

d$ = A*. 

This has locally a solution if A is flat and integrating it globally we get a representation 
of the pure braid group from the monodromy of the solution. Drinfeld explicitly solved 
this equation and computed the monodromy. Finally, he extended it to an isomorphism 
$n : CBn '—i> CSn x Utn. Hereby we used the canonical action of Sn on the second 
factor in the half-direct product. 

Let us have a look at the simplest nontrivial case where n = 3. Then 

t3 = C « i 4 , B » , 



182 KLAUS MOHNKE 

and with 

we have to solve 

2 = 
Z1-Z2 
zi-z* 

î-&&» 
The Kummer transformation for hypergeometric functions gives explicit solutions: 

With GQ(Z) ~ exp(A.Alnz) around 0 and G\(z) ~ exp(ABln(l — z)) around 2 = 1 we 
have 

G\(z) = G0(z)*. 
Therefore the holonomy can be calculated explicitely. Introducing an additional element 
C we have 

C « A,B >>= C « A,B,C » /{A + B + C = 0}, 

with S3 acting in the obvious way. Then we can lift the monodromy $3 : 
P3 —y C « A,B,C» /{A + B + C = Q} to a homomorphism 

$ 3 :CB 3 —• C S n x C « A , £ , C » /{A + B + C = 0} 
given by 

<T\ »-» S12 ® exp(7rtA) 
02 *+ »23 ® • exp(27riB)^"1. 

5 The Construction of the Map KV 

The first construction was given by Kontsevich, writing down a complicated integral for­
mula and using the Knishnik-Zamalodchikov connection with values in Ap to show its 
independence of various choices to be made (see e.g. [BN]). For a more combinatorial 
definition the reader is referred to [BN, C] The lecturer developed an alternative construc­
tion using a representing braid b € Bn of the knot. We just present a vague sketch of the 
idea here. 

Given the extension of Drinfeld's trivialization of the Knishnik-Zamalodchikov con­
nection $n we get an element $„(6) € CSn x Utn. But this in turn determines again 
Feynman diagrams: 

The enveloping algebra is generated by the monomials in {Uj}ij-\. On the other hand 
each monomial in CSn x Ut^ gives a Feynman diagram with open Wilson lines: 

ŕ\ 

c, 

. _ У 

Cв ® *12*23ť13*24*14 
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So, the p-th homogenous part again defines an element in Ap via closing the 'open' 
diagram via the c, if c, € CSn (according to the fact that the image of $ is a formal 
power series with complex coefficients we only know that this element lives in the com-
plexification of Ap). 

f 2 3 * 

< > r\ 

\ U 3 * l 

c, = f J 3 4 J) i n t n e example above 

We have to check that this gives a well-defined linear functional as claimed, i.e. we 
have to check invariance under Markov's moves in the braid group. This is basically done 
using the equivalence relations among the Uj. 
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