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A high-order helicity invariant and the Rokhlin
Theorem*

Peter M. Akhmetiev

Abstract

A high-order invariant for links in 3-dimensional space, called the
Rokhlin invariant, is introduced. The invariant gives an integer modulo
2 for an arbitrary multicomponents link. The invariant is an extension
modulo 2 of the Sato-Levine invariant of semi-boundary links.

1 Introduction

The classification problem of links in 3-dimensional space arises in dif-
ferent branches of natural sciences [9] [20]. Physical properties of magnetic
fields in conductive medium can be investigated by topological methods.
The spatial distribution of magnetic components of fields is given by vector
ﬁ(i‘), div(B()) = 0. The main topological characteristic of fields is called
the helicity invariant. The simplest integral form of this invariant is the
Gauss integral. The helicity invariant is given by the following expression

H= [ AB dR®, (1)
R*
where rotAd = ﬁ;/i‘lm = ﬁim = 0.

The freezing-in theorem holds true in the course of the motion of plas-
ma with infinite conductivity [13]. In this case the following conception of
magnetic tubes is natural. The union of closed oriented curves is surround-
ed by thin toroadal volume U(s). Each volume U(i) contains magnetic
(divergence-free) fields B(¢) . Under this assumption the expression (1) can
be presented in the form:

H =Y &®Lk(i,j) + 3_(:)Lk(i, i), (2)
<4 [}

*This paper is in final form and no version of it will be submitted for publication
elswhere.
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where ®; is the flow of the vector 5(;) in the tube U(s); Lk(s,J) is the
pair-wise linking number, Lk(i,1) is the self-linking number [7], [14].

High-order topological invariants in Dynamo theory had been studied
in [4], [6], [8], [16], [17]. Moffatt conjectures that every non-trivial high-
order invariant of magnetic fields gives a lower boundary of the magnetic
energy [15]. For the 2-order helicity invariant (1) this conjecture had been
proved by M.Freedman [10]. The investigation of 4-order invariant, called
the Robertello invariant, is related to a fluctuation of helicity under the
reconnection of magnetic lines (3].

The generalization of (1) for high-order invariants of magnetic fields is
not found. Note, that a number of magnetic tubes is sufficiently large,
therefore we are interested in invariants of multi-components links.

We describe a new topological invariant of links, called the Rokhlin in-
variant. An application of classical invariants of links, such as Massey triple
product and Sato-Lewine invariants is considered in [4], [8], [16]. Unfor-
tunately, all the invariants are defined under strong conditions on linking
numbers between tubes. More exactly, to define a high-order invariant an
assumption Lk(s,j) = 0 for every pair (3,5) of tubes is required. Such link
is called semi-boundary link. Of course, configurations of magnetic tubs,
presented by semi-boundary links, should be investigated, but the condition
is not natural.

The Rokhlin invariant is a generalization of Sato-Lewine invariant. To
construct the Rokhlin invariant we use the approach, proposed by V.I.Arnold
in [5], and the conseption of Prem-maps, proposed by A.Szucs in [18], [19].
The generalisation is based on the Rokhlin theorem about signature of 4-
dimension manifolds. The Sato-Lewine invariant, denoted below by w, is
defined only if a link is semi-boundary. The Rokhlin invariant, denoted
below by W, is defined without any assumption on linking numbers of com-
ponents. On the other hand, the Sato-Levine invariant gives for an arbitrary
semi-boundary link L an integer number w(L). The Rokhlin invariant gives
for an arbitrary link M an integer W (M )(mod2). If M is a semi-boundary
link, we have W(M) = w(M)(mod2). An analytical expression of W is
given by an integral with values {+1,~1} on the circle §! .

Finally, note that the Casson invariant is direct generalization of the
Rokhlin x -invariant for homological 3-spheres. Casson invariant takes inte-
ger values, and we conjecture that W can be defined as an integer.
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2 Construction of the Rokhlin invariant

Let L = |Ji, S!(),1 < ¢ < n be a finite union of circles, ¢ : L — R? be
a map ( immersion ) in general position. We denote a set of double points
of the immersed curve (L), by Az(p) C RZ.

UA(M') = Aa(e),  AGLF) = ¢(S () N (S ())-

We consider a function o: Az(p) — Z/2 = {+1;-1}.

Let M be an oriented close surface, ® : M? — R® be a map in gener-
al position with finite number of singular points. We denote by A;(®) a
curve of double self-intersection points of #(M?), by A3(®) the set of triple
self-intersection points of ®(M?), A3(®) C Ay(®). We denote by O an
orientation on the curve A(®) .

For an arbitrary pair ($,0), we divide the points A3(®) into two types,
denoted below by A and B. Let L;,L;,L3 be three sheets of the surface
#(M?) in a small neighborhood of a triple point z € A3(®) . We choose an
order of the branches of the curve Aj(¢), such that O; L L; . For each i, we
define an integer sign(s) = +1, if O; is a positive normal vector to L; and
sign(i) = —1 otherwise.

2.1 Definition

A point z € A3(®) is a point of the type A, if the integers sign(f), =
{1,2,3} form the following two combinations (+,+,—) or (+,—,—). A point
z is a point of the type B, if the integers form a combination (+,+, +) ( the
variety B, +) or a combination (—,—,—) ( the variety B,-).

Let us assume that M? = U; M?3(j) is decomposed on components. A
point z € A3(®) of the type B is called point of subtype B2, if two sheets
Ly L of the surface ®(M?) are at the same component of M, L;,L; C
M?3(j) and the last sheet L3 is at the component M?3(j),j # k . H three
sheets L;,L;,L3 are at the same component M?2(j), the point x is called
point of of subtype Bl.

We define two cobordism relations on the set of pairs (¢,0).
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2.2 Definition

Let (¢0,<0);(¥1,<1) be two pairs. The pairs are AB-cobordant,
(v0,00) ~ap (¥1,01), if there exist a homotopy & : L x I — R?* x I in
general position and an orientation O on the curve Ay(®) under the follow-
ing condition

®lox{)=¢4 O loxy= —0¢, te {0;1}

2.3 Definition

Pairs (¢o;00),(¢1;01) are called A-cobordant, (¢g,00) ~a (¢1,01), if
there exists a pair (®;0) that gives AB-cobordism between the pairs, and
the set A3(®) contains no points of the type B2.

2.4 Denotion

We denote by ImmAB(n), (ImmA(n)) the set of AB- ( A-) cobordism
classes of n-components pairs.

Note that the symmetric group £(n) acts on the sets by renumeration
of components of immersed curve.

We describe the relation between the constructed cobordism sets and
links in three-dimensional space. Let ¢ : L — R® be n-component link,
7 : B> — R? be the standard projection onto the plane, ¢ = 10 @ : L — R?
be the projection in general position of the link @. Consider the double
points set of the projection. A function o : Aj(¢) — Z/; is defined in
the following way. For every = € A,(p) let (€;,€2) be a base on the plane,
composed by the tangent vectors along the branches of ¢(L) at x. The order
of the vectors corresponds to coordinates of two inverse images x;,%; of the
point x, z;,z; € @(L). We define o(z) = +1, if the base (£;,{3) is positive
and o(z) = —1 otherwise. The pair (g, 0) determs an element of the set
ImmA(n) ( ImmB(n) ).

Each isotopy between links @, @; in R® produces a cobordism pair (2, 0)
without triple points of B-type. Therefore each invariant on the sets Im-
mA(n), InmB(n) gives the corresponded invariant of isotopy classe of links.
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2.5 Preposition
There exists a natural bijection
Lk = @;c;Lk(i,j) : ImmAB(n) — @¢;Z(%,j),1 << j < n,

which commuts with the natural action of £(n) on the set ImmAB(n) and
the group @®,<; Z(%,j). The map Lk(i,j) is given by the formula

LkG, §) =

N |

Y. O@)1gi<i<n
z.€A(\,j)

The main result is the following theorem.

2.6 Theorem
1. The set ImmA(n) is included into the following exact sequence
0 — KImmA(n) — ImmA(n) — ImmAB(n) — 0,

where p: ImmA(n) — ImmAB(n) is a natural projection.
2. There exists a £(n) -equivariant map

W :ImmA(n) — Z/,,

called the Rokhlin invariant. The restriction W |kImm4(n) is given by the
formula

W(p,0) =Y w(i,j) (mod2), (p,0)€ KImmA(n), (3)
+<5)

where w(s,j) is the Sato-Levine invariant for two-components semi-
boundary links.

2.7 Remark

The set KImmB(n) is composed of projections of semi-boundary n-
components links. The definition and properties of the Sato-Levine invariant
w: KImmA(n) — Z can be taken from [4], [17]. For an arbitrary two-
components semi-boundary link @(L; U Ly), there is the following formula

w(1,2) = R(1) + R(2) + R(1,2),

where R is the Robertello invariant, see [1], (3].
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2.8 Construction

We start by the construction of the Rokhlin invariant in the case n = 2,
By Preposition 7 we have ImmA(2) = Z. In each cobordism class (z) € Z
we choose the simplest link. The link can be presented by an embedding

@:5'(1)u s'(2) € R®,

where $(§'(1)) is the standard inclusion, @(S!(2)) is a (1,3)-toric winding
along the component @(S(1)) .

Let (¢,0) € ImmB(2), »p(¢,0) = (z) . Let ($,0) be a cobordism,
which joins the elements p(¢,0) and (z) € ImmA(2). We define

W(y,0) = ord(B2) (mod2),

where ord(B2) is a number of triple points of the subtype B2 for the cobor-
dism. In general case n > 3, we define W by the following formula

W(p,0) =D W(ij),

<5

where W(i,j) is the invariant for two-components links, constructed above,
The extention of W from two-components links to multy-components
links is proposed by A.Ruzmaikin.

3 The Rokhlin invariant and the Rokhlin
theorem.

In this section we prove, that W is well-defined. We recall the Rokhlin
theorem from {11}, [12].

3.1 The Rokhlin Theorem.

Let K* be a closed 4-dimensional manifold with H;(K*;Z) = 0. Let
M? € K* be an oriented characteristic surface, (M, M) be the integer self-
intersection number of M, Arf(M) be the Arf-number (mod2) of M, o(K)
be the signature of K* ( see [11] ). The following expression holds

(M,M) — o(K*) = 8Arf(M) (mod18). (4)

We recall some constructions from [2]. Let ¢ : M? — R® be a map in
general position of an oriented surface M, O be an orientation on the curve
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A;(p). By the construction 6, there exists 2 map ¢ : M — R*, such that
Mog =¢ ,M:R* —» R3 where Il is the standart projection. The map @ is
an embedding everywhere, except a finite number of small disks D} € R
Projections II(D}) € R® contain triple points {z;} € A;3(¢) of the type B on
the surface p(M?. Bach boundary 8D} = S} intersects the surface @(M?)
along 3-components link L; € SJ'“-* y called "Borromeo Rings”.

We attach three 2-handles (D? x D?);, i =1,2,3 to §] by maps § :
(D?* x 8');; — S?. Here the map §; gives a parameterization of a little
neighborhood of L; € SJ"-’. A frame of the embedding §; is equal to +1 or -1,
with respect to the positive or negative subtype of the point #; . The result
of the surgery is denoted by (K*,8K*). The boundary 8K* is an union of
3-dimensional homology Poincare spheres, corresponded to the points z; .

We have an embedding ¢ : M? — K*. The surface ¢(M?) is a charac-
teristic surface for K*. For this surface we have

(M, M) = —o(K*). (5)
Using (4), we get
ord{z;} = Arf(F(M?) (mod2). ©)

We prove that W is well-defined in the case n = 2. Let (2,0) be a
cobordism, such that

(2,0)lex(0) = (¢y0)y (2,0)lLx(1) = (¢, —0).
We identify ¢ along L x 0 and L x 1 and obtane an immersion
=0 U, :TPUT} - R®

of two copies T2, T3 of oriented tori with the corresponded orientation O’
on the curve of double points. Using (6) for &}; ®};®' , we obtain

ord{z;} = Arf(®)) + Arf(®}) + Arf(®') (mod2),

where {z;} be a set of points of the B2- type for the immersion &' . By the
evident reason, we have

A‘l’f(@;) = Aff(‘b;) = 0.

By direct computations we have Arf(®’) = 0, because the quadratic form
for the characteristic surface &’ is represented by the direct sum of two
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isomorphical forms. We have proved that in case n = 2, the number of
triple points of the type B2 doesn't depended on the choise of a cobordism
(®,0) ( see Comnstruction 7). The prove for n > 2 is evident. The invariant
W is well-defined. ‘

We prove the formula ( 3 ). Let ¢; € I be a value of parameter, such
that the restriction (¢y;,04) = (®,0)|i= contains a triple point z of the
type B2. For the Sato-Levine invariant we hawe

w(tly —e)=w(t+e)+1 (mod2).

If t is & critical value such that the paire (p¢,0¢) doesn’t containe triple point
of the type B2, we have

w(t—¢e)=w(t+e) (modZ).

This provs the formula (3). The Theorem is proved.
The proof of the Preposition 7 follows from the following remark.

3.2 Remark

Let (¢0,00), (¢1,01) be two pairs, such that ¢y = ¢; = ¢, 09 = 0, for ev-
ery ¢ € Az(p) , exept two points z;,z2, 0o(z1) = 01(Z3) = +1; o0o(zy) =
01(z2) = —1. Than (¢q,00) and (¢1,0;) are AB-cobordant.
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