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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 46 (1997), pp. 15-28 

SYMMETRIC ALGEBRAS 
AND YANG-BAXTER EQUATION* 

K. Beidar, Y. Fong, A. Stolin 

Abstract. In 1982 Belavin and Drinfeld listed all elliptic and trigonometric 
solutions of CYBE for simple complex Lie algebras. Later the third author classified 
rational solutions of CYBE for the same Lie algebras. In this paper we consider ra­
tional solutions of CYBE and QYBE for algebras with a non-degenerate symmetric 
invariant bilinear form. Such algebras (both Lie and associative) are called symmet­
ric. In the present paper the theory of rational solutions of YBE for these algebras is 
developed. This leads to new examples of rational solutions in both cases - classical 
and quantum. In particular in this paper we will find generalizations of the famous 
Yang rational solution of QYBE in gl(n)-case for all finite-dimensional associative 
symmetric algebras. 

1. Introduction. 
The first known solution of QYBE was found in [Y] and is of the form 1 + £ G 

Mn(<D) 0 Mn(<D), where P is the twist map P(x ® y) = y ® x, x, y G € n . 
The same element P considered as an element of gl(n,$) ® gl(n,<D) provides the 

following rational solution of CYBE r0(u,v) = ^ - j . 
In other words ro(u, v) satisfies the following system: 

[r]2(ui, u2),rl3(uu u3)] + [rl2(ui,u2),rf(u2,u3)] + [rlz(uuu3),rf (u2)u3)] = 0 

rl2(u,v) = -r21(v,u) (1) 

Recently in some papers (for instance [Dl]) the following statement was tacitly 
used to provide a consistency of the Kniznik-Zamolodchikov equation. 

Statement 1. Let L be a Lie algebra. We say that t G L <g) L is invariant if 

(*) [t, a ® 1 + 1 (g) a] = 0 for any a G L. 

Consider the function r(u,v) = ^3-- depending on the formal variables u,v. Then 
r(uyv) satisfies CYBE. 

The proof is straightforward from (*). It is well-known that P G gl(n) ®gl(n) 
satisfies (*). 

* This paper is in final form and no version of it will be submitted elsewhere 
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The relation (*) provides that another statement holds for any Lie algebra L. 
Statement 2. Let r\ G L ® L. Then r(u, v) = ^-3- + r\ is a solution of (1) if 

and only if r\ is a solution of CYBE. 
These two statements are valid for any Lie algebra L but if we wish to establish 

some criteria for a function ^fav) = ^ ~ +p(u,v) with a polynomial part p(uyv) 
to be a solution of (1), we need some assumptions for the given Lie algebra L. 

Definition 1.1. A Lie algebra L is called symmetric if L posseses an in­
variant symmetric non-degenerate bilinear form (a, 6). Here invariancy means that 
([a,6],c) = (a,[6,c]). 

Here we expose some examples of the symmetric Lie algebras. 
Example 1.2. The semisimple Lie algebras with respect to the Killing form. 
Example 1.3. The Manin triples (see [D2] for definition). 
Example 1.4. The Drinfeld double of a finite dimensional Hopf algebra 

considered as a Lie algebra. 
Lemma 1.5. Let {e*} be a basis of a symmetric Lie algebra L and {/*} be 

the dual basis. Then the element 5Zi e» ® /* = * € -4 ® A is an invariant element, 
which does not depend on a choice of basis. 

Proof. Clearly t does not depend on a choice of basis. Therefore it remains 
to prove that [£, ej ® 1 + 1 ® ej] = 0 for all j . 

Let [ej,ej] = c^ek. Then c£ = ([e»,ei],/
fc) = (eu[e5J

k]) and hence [ejjk] = 
c^/5.(We assume the summation is repeated indices). 

We have 

[t,ej® l + l®ej] = [e»®/ , ',e i® l + l®ej] = [ e ^ ] ® / * 

+e< ® [A ej] = c%ek ® / ' - c^e, ® f8 = 0 . 

In what follows we will be looking for solutions of system (1) in the form 

r(uy v) = h p(u, v) . 
u — v 

We will call r(u,v) a rational solution of CYBE for the symmetric Lie algebra 
L. 

Lemma 1.6. Let L((u-1)) be the Lie algebra of Loran series in u"1 with 
coefficients from L. Then L((u~1)) has an invariant symmetric inner product defined 
as follows: 

(auk,bun) = (a,b)5fc+nj_i . 

The proof is straightforward. 
Remark. Throughout this paper we denote both forms in L and L((u -1)) by 

( , ) what should not be misleading. 
The aim of this paper is to develop a theory of rational solutions of CYBE and 

QYBE for symmetric algebras including non-trivial examples. In particular, we will 
generalize the Yang solution in different ways. 
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2. Rational solutions of CYBE for symmetric algebras 
This section is devoted to a theory of the rational solutions of CYBE for arbi­

trary symmetric Lie algebras developed for simple Lie algebras in [SI, S2] 
Following [SI] we prove the basic result. 
Theorem 2.1. Let L be a symmetric Lie algebra. There is a natural one-to-one 

correspondence between the rational solutions of CYBE (1) of the form -J^-J +p(u, v) 
and the subspaces W C L((u~x)) such that 
(i) W is a subalgebra in L((u~x)) 
(ii) W®L[u] = L((u-x)) 

(iii) W = W1 with respect to the inner product ( , ) for L((u~x)) wich was defined 
in Lemma 1.2. We will call such subspaces Lagrangian. 

(iv) W D u-NL((u-x)) for some N > 0. 
Proof. For any p(u,v) G L[u] ® L[v] = (L ® L)[u^] we define the subspace 

Wp C L((u~x)) as follows: 
Let CP : ii"

1L[[ii"1]] -> L[u] be the following linear map (p(a) = (p^(u), a)p^(u) 
where we write formally p(u>v) = p^(u) <8>p(2\v). Then Wp = {a + (p(a) : 
a e u^LRu-1]]} C L((u-X)). Clearly Wp 0 L[u] = L((u~x)) (note that 
L[u] n Wp = (0)!), and Wp D u-NL[[u-1]] for some N > 0 because p is poly­
nomial. Conversely, having W satisfying (ii) and (iv) we can restore p(u> v). 

Consider the following decomposition of 

L((n-1)) = LM©n"1L[[u-1]]. 

Then the projection j : Wp -* i r ^ f i T 1 ] ] along L[u] is an isomorphism due to 
(ii). Let i be the projection of W to L[u] along w-1L[[u-1]]. We can define p : 
u^LRu-1]] -> L[u] as i - j - 1 . 

If {ei, • • •, en} and {fl, • • •, fn} are dual bases of L, then 

p(u,v)= £ p(emu-k-l)®Г-vk 

Then (iv) ensures us that p(u,v) is polynomial, because Ker p D tr^LfliT 1]]. 
Therefore (ii) and (iv) are proved. 

The next step is to prove that (iii) is equivalent to the skew-symmetry of p(n, v), 
i.e. p(u,v) = -p21(v,u). To do this we note that the skew-symmetry of p(u,v) is 
equivalent to the following property of pp : 0 = (a,pp(6) + (6,pp(a)) (1) for any 

a.&ertlK 1 ]] . 
Rewriting (1) as (a+pp(a)i b+pp(b)) = 0 we conclude that (1) implies W1 2 W-

We have to prove that if (a, W) = 0 then aeW. Using (ii) we have a = (x+pP(x)) + 
5, where x € ^x-1L[[^^-1]], s G L[u]. Therefore (s, W) = 0 and (s^u^L^W1]]) = 0. 
Hence 5 = 0 and implies that (1) = > (iii). 

The implication (iii) =-=!> (1) is trivial because (iii) provides that (a-f-pP(a),6-f 
pp(6)) = 0 for any a, 6 € u^L^u'1]]. 

Surely, the main part of Theorem 2.1, namely (i) remains unproved but now we 
can formulate it in a different way. 
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Statement. -ĵ -j + p(u, v) satisfies 

CYBE <=> ([a + pp(a),b + pp(b)],c+ pp(c)) = 0 

for any a, b, c £ u " 1 ! ^ " 1 ] ] . 
Taking into account that ^- satisfies CYBE as well, we can rewrite LHS of 

CYBEas 

£23 
\p12(uuu2),p

13(u1,u3)] + [p12 +P13» ] + {^c/ic perm. (1,2,3)} = 0. 
U2 - U3 

Substituting 
p(tx,t;) = E p ( e m u - f c - 1 ) ® / m . V

f c 

m,fc 

into the first summand we get: 

[p1 v 3 ] = E We-V"1), p t̂*̂ "1)] ® r4 ® r4 
i,j,m,n 

and 

/23 f23 

T=[P12+p13, ——]=r>( e ' u r* _ 1 ) ® [/s«2 ® 1+1 ® /5«3, — — ] 
s,fc 

Since t = en <g> / n is invariant, it is easily seen that 

+23 7 fc _ , fc 

[/•«$ ® 1+1 ® /•«§, --i-—] = [/•, e„] ® r • ̂ —- 1 

1/2 "" ^3 1*2 ~ t̂ 3 

Finally using the invariancy of the form ( , ) we obtain that 

ir,en)=-Y,(iem,enmr 
m 

and hence, 

T = E (Pfemur-1, e n V " 1 ] ) , ^ ^ - 1 ) / ^ ? ® /"V2 ® fV 3 
p,Tn,i-fj=fc—1 

(note that we have no longer the summation in 5 !) 
Applying the same considerations to the other terms of LHS of CYBE and 

denoting by a = ernu~t~l, b = enu~j~x, c = eiu~p~l we yield that 

K = ([p(a), p(b)] — p([a, b]), c) + {cyclic perm, (a, b, c)} = 0 
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If we recall that ([a,6],c) = ([p(a),p(6)],p(c)) = 0 and (p(a),6) + (a,p(6)) = 0, we 
get 

K = ([a + p(a\ 6 + p(6)], c + p(c)) = 0 

This observation completes the proof of the statement and Theorem 2.1. 
Corollary 2.2. Let r(u, v) = ~- j +p(u, v) be a rational solution of CYBE in 

L. Then p(u,v) = const = r if and only if Wp C L^iT"1]]. Moreover, this solution 
defines a subalgebra L0 C L and a skew-symmetric non-degenerate bilinear form 
B0 on Lo such that J9o(K y]>*) + Bo([z, -&]»») + B0([y, z], x) = 0, r G L0 ® L0 and 
r = BQ1 as elements of L0®L0. 

Proof. Clearly, if p(u,v) = const then Wp = {a + pp(a)} C L[[u-1]]. 
Conversely, if W C L[[u~1]] satisfies all the conditions of Theorem 2.1, then 
W = WL D (Lftu-1)])-1 = u-2L[[u~1]]. Further, p defined by such W satisfies 

Ker(p) D u~2L[[u~1]]. Therefore p(u,v) = Y^p(eu~k~l) ® fyk reduces only to 
k=0 

k = 0 and hence p(u, v) = constf. Moreover, we have proved that p maps u L[[u x]] 
to L C L[u). Since W = {a + p(a)} is a subalgebra, it is easily seen that Im(p) C L 
is a subalgebra. Let L0 = Im(p). Then r G Lo ® Lo because r G L0 (8) L by the 
construction and r is skew-symmetric. 

Let us define B0(p(a), p(b)) = (p(a), 6). To show that B0 is well-defined on Lo it 
is sufficient to prove that (Ker(p),6) = 0, which is obvious because 6 £ ix"1L[[n~"1]] 
and Ker(p) C w~1L[[u""1]]. Thus, B0 is non-degenerate by its construction. Since 
(p(a), b) + (a, p(6)) = 0, B0 is skew-symmetric. The fact that r = BQ1 follows now 
from the construction of r and B0 and elementary linear algebra. 

It remains to prove that Ho is a 2-cocycle, which is equivalent to the following 
identity for any a, 6, c G w^1L[[n~1]] 

(p[a, 6], c) + (p[c, a], 6) + (p[6, c], a) = 0 . 

The fact that W = {x + p(x)} C Lftu"1]] is a subalgebra immediately implies that 

p([a,6] + [a,p(6)] + [p(a),6]) = [p(a),p(6)] 

Hence, (p[a, 6], c) = ([p(a),p(6)], c) + ([a, p(6)], p(c)) + ([p(a), 6], p(c)) (we have used 
that (p([a,p(6)]),c) = -([a,p(6)],p(c)). On the other hand we have proved in The­
orem 2.1 that ([a + p(a),6 + p(6)],c + p(c)) = 0 for any a,6,c G tx~1L[[u""1]]. In 
our case ([a,6],p(c)) = ([a,6],c) = ([p(a),p(6)],p(c)) = 0. Therefore we have 
([p(a),6],p(c)) + ([p(a),6],p(c)) + ([p(a),p(6)],c) = 0. This observation completes 
the proof. 

Remark. Here we note that Theorem 2.1 and Corollary 2.2 are valid for 
symmetric Lie algebras over arbitrary fields, in particular over real numbers. 

Proposition 2.3. Let L be a symmetric Lie algebra over field F and A be an 
associative symmetric commutative algebra over the same field, which means that 
there exists / G A* such that f(xy) is a non-degenerate symmetric bilinear form. 
Then L <8>j? A is a symmetric Lie algebra with respect to the operation [£\ 0 oi, £2 <8> 
a2] = [£1^2]^ axa2. 
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If B is the invariant symmetric non-degenerate bilinear form on L then 

(B®f)(ti®aut2®a2) = B(lut2).f(aia2) 

is the form which defines the structure of the symmetric Lie algebra on L ® F -4. 

Proof. Clearly L O F A is a Lie algebra with respect to the indicated operation 
and B ® / is the symmetric non-degenerate form. 

The invariancy of B ® / is also clear because 

(B ® f)([ti 0 oi, t2 ® a2], t3 ® a3) = 

=-5([/i,/2],«3)/(aia2fl3) = B(tu [t2tts]' /(flia2a3) = 

=(J5®/)(£i®ai, [^2® a 2 , 4 ® o3]) . 

Corollary 2.4. Let L be a symmetric Lie algebra and W C L((u~x)) satisfying 
the conditions of Theorem 2.1. If A is a symmetric associative algebra, the W®.A C 
(L ® A)((u~~1)) also satisfies the conditions of Theorem 2.1 and therefore defines a 
rational solution of CYBE in L ® F A. 

Example 2.5. Let L be a simple Lie algebra over <D and A be an arbitrary 
symmetric algebra over <D, for instance we can put A = <D + <De, where e2 = 0 and 
f(a + be,c + cfc) = ad + 6c. Then the results of [S1,S2] provide infinitely many 
solutions of CYBE in L ®̂ rj A. 

We will now consider an example of this type in the next section. 
3. Rational solutions of CYBE and the quasi-maximal orders in 

8t(n,E[e]). 
Let <D[e] be the symmetric associative algebra defined in Example 2.5. It is easily 

seen that st(n,<D[e]) is a Manin triple (s^(n,<D[£]),s£(n,(D),̂ (ra,<C)*) with the trivial 
Lie algebra structure on st(n,<D)*. 

Definition 3.1. Let L be a symmetric Lie algebra. We say that the subalgebra 
W C L((u~1)) is an order if u ^ L ^ u - 1 ] ] C W C ukL[[u~1]] for some integer n, K. 

Lemma 3.2. Let L be a symmetric Lie algebra, r(u, v) = ^3-j + p(u, v) be a 
rational solution of CYBE and W be the corresponding subalgebra. Then W is an 
order in L((w-1)). 

Proof. We know that W = WL and W D u*-NL[[u~1]] for some N. This 
implies that WL C (u~NL[[u~l]])L = uN~lL[[u~1]]. Thus the lemma is proved. 

Example 3.3. Let L = st(n,<D[e]). Then Wk = 5^(n,€[[n"1]]) + 
i^s^njCCTu"1]]) • e is an order for any k. 

For the simple complex Lie algebras the theory of orders was developed in [SI, 
S2, S3], The point is that any order in this case can be embedded into a maximal 
order and the set of maximal orders can be described. More exactly, there is a 
one-to-one correspondence between the maximal orders in g((u~1)) and the co-root 
lattice in I/jR, where H is the Cart an subalgebra of g. 

If we consider an order W corresponding to a rational solution then W C Q a for 
some maximal order Qa . Such a maximal order Qa satisfiesQa+^[t/] = g((u~1)) (***) 
because of 2.1 (ii). 
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The set of the maximal orders satisfying (* * *) turns out to be finite and is in a 
one-to-one correspondence with the vertices of the extended Dynkin diagram for g. 
This is the basis for classification of rational solutions of CYBE for simple complex 
Lie algebras (see [SI, S2, S3] for details). 

For L = ŝ (n,<C[e]) unfortunately there are no maximal orders as Example 3.3 
shows. However the following result is valid. 

Theorem 3.4. Any order W in 5£(n,<D[£])((u"1)) can be embedded into an 
order of the form gWkg~l, where g e GL(n,<E((u~1))) and Wk is as in Example 3.3. 

Moreover, there exists a gauge transformation g{ e GL(n,C[u]) such that 
QiWgi1 C dWkd-1 where 

d = diag(uk\--iu
kn) with h<k2-- <kn . 

If W satisfies W + */(n,C[e])[t*] = ^(n,C[s])((u-1)), then k{ = 0,1. 
Proof. Let us consider any order W C ufc5/(n,(C[e])([[u-1]]. Since 

e • sl(n,<D((u-1))) is an ideal in sl(n,<D[e])((u-1)), we have a canonical projection 

j : sl(n^])((^1)) -» 8l(n,V((«-1)))-
Clearly j(W) is an order in dfaCfttT1))) and W C j(W)+e-uksl(n,<D[[u-1]}). 
It was proved in [SI] that j(W) C g ^ ( ^ [ [ t r 1 ] ] ) ^ - 1 for some g E 

GL(n,<C((u"1)). Hence 

WCg si(n,v[[u-l]])g-1 + £9{uk • 9'1' ^ . c R t r 1 ] ] ) ^ - 1 . 

Clearly, ^ ^ © [ [ t r 1 ] ^ £ uklsl(n9C[[u'1]]). Thus, W C gW^g'1 for some 
k2. 

It follows from the results of [SI] that there exists gi e GL(n,(D[u]) g2 e 
GL(n,<D[[w-1]]) such that g = gxdg2 with d = diag(ukl, • • • ,u k n ) , 0 = kx < k2 • • • < 
in. 

Finally, let W + sl(nM*])W] = s/(n,C(e))((n-1)) and let IV C gWkg'1 = 
ffidWfcd"1^1 since ^ J W 1 = Wk. Therefore gidWkd-lg^ + sJ(n,C[e])[ti] = 
5/(n,<D[e])((u"1)) and hence, 

dWkd-1 + sl(n,V[e])[u] = s/(n,(D[e])((tx-1)) 

since 
^^'(w.ClcDM^i = sl(n,U[e])[u] . 

Clearly, the latter implies that 

d sl(nMu~1]])drl + *f(n,C[t*]) = s/(n,<D((0)) 

that provides the required form for d. Thus the theorem is proved. 
Remark 3.5. Solutions of CYBE constructed in Corollary 2.4 correspond to 

the orders imbedded into Wo. We will call Wk quasi-maximal orders. 
Now we are going to describe the solutions of CYBE such that the corresponding 

orders can be embedded into Wk, k > 1. 
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Lemma 3.6. 

Wk/Wjt = s/(n,<D) + (J"1 • s/(n,<D) + . . . + . . . u~k-1sl(n,<D)+ 

+esl(n,<D) • uk • • • + e s/(n,<D) • u'1 . 

Here u is the image of u and informally saying u~k-2 = ojk = 0. Further Wk/Wjj- = 
S + eS*, where 5 is a graded Lie algebra S = s/(n,<D[o;-1]/(cj-fc-2)) = sZ(n,<D) + 
u"1sl(nJ<D) h u~k-1sl(n,<D) and S* is dual to S. The proof is straightforward. 

Let Pi be a parabolic subalgebra of sl(n) corresponding to the i-th simple root 
cti, i.e. is generated by all root vectors corresponding to the simple roots a i , • • •, a^-i 
and their opposite exect for (-at). 

Let di = diag(ly"',l,u,"-,u) e GL(n,€((ix_1))). 

i 

Lemma 3.7. 
Tkti = Wknd^l8l(n9C[e])[u]di 

= (Pi + t r 1 . / ^ ) + eP-- • u'1 +ePi + e- sl(n,<D) • u + • • • + e • s/(n,<C)ufc . 

Here P/- is the orthogonal complement to Pi in s/(n,<D) with respect to the 
Killing form. 

Proof: Direct computations. 
Now let r(u,v) be a rational solution of CYBE for s/(n,<D[e]) and W the corre­

sponding order. Using a gauge transformation from GL(n,€[it]) we can consdier W 
as a subalgebra in diWkdJ1 for some i and k. 

Lemmas 3.6 and 3.7 show that we can view Tkyi as a subalgebra of S + eS*, 
where S was defined in Lemma 3.6. 

Note that 5 + eS* has a natural invariant symmetric non-degenerate bilinear 
form induced by (a,eb) = b(a). Moreover, Tkti is a Lagrangian subalgebra with 
respect to this symmetric form, because it is easy to see that (x,y) = 0 for any 
x,y G Tk,i and dim Tkti = \ dim(S + eS*). 

Proposition 3.8. Let W satisfy the conditions of Theorem 2.4 and 
W C diWkdJ1. Then the image of d^Wdi in Wk/W£ = S + eS* is a Lagrangian 
subalgebra W such that W 0 Tk,i = S + eS*. 

Conversely, if W is a Lagrangian subalgebra of S + eS* such that W 0 Tk}i = 
S + eS* and W0 is the preimage of W in Wk, then diWodJ1 C diWkdJ1 satisfies all 
the conditions of Theorem 2.4 and therefore provides a rational solution of CYBE 
for sl(n,C[e]). 

Proof. All the statements follow from Lemmas 3.6 and 3.7. 
Theorem 3.9. Let W be a Lagrangian subalgebra of S + eS* such that 

W®Tik = S + eS* . 

Then there exists a one-to-one correspondence between the set of such a W and the 
set of the subalgebras M of S such that 
(i) M + (Pi+u-1P±) = S 
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(ii) There exists a 2-cocycle B on M that non-degenerate on M n (P{ + u^P-1). 
Note that Pt+cj"1Pf

J- is a subalgebra of 5 since Pr1 is a commutative subalgebra 
of s/(n,(D). 

Proof. Consider the image of W under the canonical projection j : S+eS* -> 
S (eS* is an ideal in S + eS*). Let M = j(JV). Since j(Tk,i) = P; +0T1 /y- we have 

M + (Pi + u-lPtr
l) = S . 

LetM-^C S* be the set {s e S : s(M) = 0}. Clearly W cM + eS* and since 
W1 = W (W is Lagrangian with respect to the canonical form in S + £-?*), W D 
(M + eS*)1- = eM1-. Therefore, W is uniquely defined by its image W$ in (M + 
eS*)/eM± = M + eM*. It is not difficult to see that M + eM* has a canonical 
invariant symmetric non-degenerate form induced by (m,ea) = a(m) and Wo is a 
Lagrangian subalgebra with respect to this form. We have: dim JVo = dim M = 
\dim(M + eM*) and WQ is projected onto M under the canonical projection M + 
eM* -> M. This implies that JV0 = {a + ef(a) : a G M}, where / is a linear 
map / : M -> M*. Then B is the image of / under the canonical isomorphism 
Hom(M, M*)—>M* (g> M*. £ is skew-symmetric since VVo is Lagrangian. The fact 
that B is a 2-cocycle i.e., satisfies B([x,y],z) + B([z,x],y) + B([y,z],x) = 0 for all 
xy 2/, z G M can be established exactly in the same way as Corollary 2.2. 

It remains to prove that B is non-degenerate on (Pi + cj"1Pi
±) n M. 

First we recover W from (M, B) or which is the same from the pair (M, / : 
M -> M*), namely 

W = {a + ef(a) + emL laeM.m1- G M"1} . 

If B is degenerate on M n (P» + r 1 i^1) , there exists 0 ^ a G M n (P» + cj"1Pi
±) 

such that /(a) = 0. Then a G JV (we just put mL = 0) and simultaneously 
a e Pi + u-lP^ C Tktt. Hence, W n 2*.-: ?- (0) which is a contradiction. The 
theorem is proved. 

Now we are ready to construct a series of examples of the rational solutions. 
The idea is to set M = 5 in notations of the Theorem 3.9. Then the condition 

(i) of Theorem 3.9 is satisfied and all we need to the existence of B on M = 5 l such 
that B is non-degenerate on M n (Pi + u~lP±) = Pi+ u;"1^1 . 

Now we would like to remind a definition of the Frobenius Lie algebra. 
Definition 3.10. A Lie algebra L is called Frobenius if there exists / G L* 

such that f([x,y]) is a non-degenerate bilinear form on L. 
For a general discussion on the Frobenius Lie algebras see [E, SI]. Note that 

over IR,<D one has another definition for the Frobenius Lie algebras. 
Definition 3.11. A Lie algebra L over IR or <D is called Frobenius if the 

coadjoint representation ad* is locally transitive (see [E, 0]). 
A bilinear form of the type /([x, y]) is a 2-cocycle and even a 2-coboundary. 
Theorem 3.9 implies the following result. 
Corollary 3.12. Let Pi + u^P^- be a Frobenius Lie algebra with the linear 

form / . Extend / to 5 in any way and put B(x,y) = f([x,y]) on 5. Then the pair 
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(5, B) satisfies the conditions (i), (ii) of theorem 3.9 and thus provides a rational 
solution of CYBE. 

Example 3.13. Let i = 1. Then 

Px +u~xPt C S = sl(n$[u~l]/(u~k~2)) 

is isomorphic to the semidirect product 

^Z(n-l,C)e(<Dn"1e<Dn-1) , 

Here gl(n — 1,<D) acts on each copy of <Dn~x in the standard way. It was proved in 
[E] that gl(r,<D) 0 ((Dr 8 • • • 9<Drj is Frobenius if and only if p divides r. 

p times 

Hence, Pi -f UJ-1P\ is Frobenius if and only if n is odd. 
Conclusion. We have constructed rational solutions for any odd n and any 

fc>l. 
Remark 3.14. Since it is possible to embed sZ(n,<D[e]) -> sZ(2n,<D), one 

can pose a natural question whether the solutions constructed above fall into the 
classification theory obtained in [BD, SI, S2]? The answer is negative because these 
solutions are not "non-degenerate" in the sense of [BD]. 

4. Rational solutions of CYBE for gl(n). 
Now gl(n, F) is a symmetric Lie algebra with respect to the form Tr(xy). Here 

F is any field. Let e»j be the matrix units. Then the corresponding invariant 
element t = ^ . ey ® e$% G gl(n, F) 0 gl(n, F) acts on Fn ® Fn as the twist map 
t{a <8> 6) = b <8> a. This twist map usually is denoted by P and we write P instead 
of t in this case. The theory of the rational solutions of CYBE for pZ(n,<D) is very 
similar to those of sZ(n,<D[e]). Since the proofs are also rather similar, we omit them 
and make just corresponding statements. 

Theorem 4.1. Let z be a central element of yZ(n,<D). Then any order in 
<7Z(n,<D((u-1))) can be embedded into an order of the form 0(-sZ(n,<D[[ir"lr] + z • uk • 
^[[u"1]])^-1 for some g <E GL(n,<D((u"1))). 

Applying a gauge transformation (an element from GL(n,<D[u])) we can achieve 
that g = diag(ukl, • • •,ukn) with 0 = fci < • • • < fc„. 

Proposition 4.2. Let the order W correspond to a rational solution of CYBE 
by Theorem 2.1. Then for a maximal order, which contains W, we have fc$ = 0,1 
and fc > - 1 in the notations of Theorem 4.1. 

Theorem 4.3. Let W be the order corresponding to a rational solution of 
CYBE for gl(n), which is embedded into di^n^u'1]] + z • ^ [ [ M " 1 ] ] ) ^ " 1 !

 w h e r e 

di = diag(l---lyu---u) . 
t 

Let S = sl(n,<D) + z •<D[u]/(ufc+1) and Pi be the same as in Lemma 3.7. Then the set 
of such W is in a one-to-one correspondence with the set of pairs (M, B) satisfying 
the following two conditions 
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(i) M + (Pi + z •<D[u]/V+1) = S 
(ii) B is a 2-cocycle on M and non-degenerate on M n (Pi + z •<D[tx]/(wfc+1)). 

Moreover, since 5 is a splitting central extension of s/(n), we see that M = 
Mi © M2, where Mi is a subalgebra of s/(n,€) such that M\ + Pi = s/(n,<D) and 
M2Cz-<D[u]/(uk+1). 

Remark 4.4. The pairs (Mi, B) are classified in [Si] if B is non-degenerate 
on Mi n Pi. 

Theorem 4.3 provides a classification of rational solutions of CYBE for £/(n,<D). 
For instance the following statement is obtained: 

Corollary 4.5. Consider p/(2,<D). Then all rational solutions fall into the 
following classes: 

I. W C a,i(s/(2,CC[[w-1]] + z - ^ [ [ t r 1 ] ] ) ^ 1 . Then Mx = s/(2,<D), M2 is any 
even-dimensional subspace of (D[u]/(ufc+1) 
B = B\ ® £2 , where Hi is defined on Mi(i = 1,2) as follows: 
#i(x,2/) = /([*,!/]), where / (A ) = aX2 for any A G 0/(2). 

B2 is any non-degenerate skew-symmetric form-on M2. 
II. W C 5/(2,<D[[u-1]]) + z • ̂ [ [ i r 1 ] ] . 

Then either: 

Mi = {Borel subalgebra of s/(2,<D)} 

M2 = {any even dimensional subspace of <D[u]/(ufc+1)} 

-91 Mi = B\ from part I 

B\M2 = B2 from part I 

B is subject to a cross-relation, namely B(e\2y M2) = 0; 
or 

Mi is a 1 - dimensional subspace of s/(2,€), 

M2 is any odd dimensional subspace m<D[u]/(ufc+1), 

B is any nondegenerate skew form on M\ © M2 

Proof. Consider Case I: i.e. W C di(5/(2fC[[irx]] + z • ̂ [ [ t r 1 ] ] ) ^ 1 -
It follows from [SI] that Mi = s/(2,<D), otherwise there exists a gauge transfor­

mation from GL(n,C[ti]) mapping W to sIp-CKir1]]) + z • ^ [ [ i r 1 ] ] . 
Further, since [Mi,M2] = Mi, we see that _9(Mi,M2) = 0 because B is a 

2-cocycle and M2 is in the center. Now it is clear that B = B\(BB2 and B\ is non-
degenerate on MiHPi = Pi while H2 is non-degenerate on M2. This suffices to estab­
lish all the claims in the case I. Now we go on to the case II. We have just two possibili­
ties mentioned above for Mx. Let us assume that Mi = {Borel subalgebra of 5/(2)}. 

We would like to prove that J5, which is non-degenerate on Mi © M2, is non-
degenerate on each M^ The Borel subalgebra has two generators h and 6 satisfying 
[ft, b] = b. Then B(b, M2) = 0 (again because B is a 2-cocycle and M2 in the center) 
and if B was degenerate on Mi, we get that B(byM) = 0 which contradicts to the 
non-degeneracy of B on M. 

Suppose now that B is degenerate on M2 and since B is skew-symmetric, there 
exists at least two independent vectors d\y d2 G M2 such that B(b,di) = o. Let 
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B(di, h) = A;. Then B(Xxd2 - X2du h) = 0 and B(Xxd2 - X2du M) = 0. Hence, we 
have checked all the claims for B in this case. 

The remaining case is obvious. The proof is complete 

5. Rational solutions of QYBE and symmetric associative algebras 
Definition 5.1. An associative finite dimensional algebra A over a field 

F is called symmetric if there exists f e A* such that f(xy) is a non-degenerate 
symmetric form on A 

Example 5.2. The set of all n x n matrices Mn(F), f(X) = tr(X). Note that 
we used the notation gl(n,F) for the same object considered as a Lie algebra. 

Example 5.3. Let H be a finite dimensional unimodular almost co-
commutative Hopf algebra over F. Then H is symmetric. 

Proof. It is known that H is a Probenius associative algebra which means 
that there exists / i G H* such that fi(xy) is a non-degenerate bilinear form (see 
[LS, P]). Moreover, there exists a so-called Nakayama automorphism a : H -> H 
such that fi(xy) = fi(ya(x)) for all x,y G H. 

It was proved in ([LS, BF1] ) that a = S2 for unimodular Hopf algebras, where 
S is the antipod in H and S2 is an inner automorphism for almost co-commutative 
Hopf algebras ([D3, M]). 

Let S2(a) = vav'1 for some invertible element v G H. Then f(xy) = fi(xyv) is 
a non-degenerate symmetric bilinear form in x,y. Note that any DrinfekTs double 
is a Hopf algebra of this kind. 

Lemma 5.4. Consider a symmetric associative algebra A and define the Lie 
algebra structure on A by [a, 6] = ab - ba. (The standard notation is A^). Then 
A.(~) is a symmetric Lie algebra with respect to (a, b) = f(ab). 

The proof is straightforward. 
Corollary 5.5. Let t G A^ ® A^ be the invariant element constructed 

in Lemma 1.5 and r G A^ ® A^~\ Then r + —-; satisfies CYBE if and only if r 
satisfies CYBE. 

We are going to quantize this rational solution of CYBE. This means that we 
are looking for a solution of the quantum Yang-Baxter equation (QYBE) 

R12(ui - u2)R
13(ui - u3)R

23(u2 - u3) = R23(u2 - u3)R
13(ui - u3)R

12(ux - u2) 

in the form R(u) = 1 0 1 + hRi + ... + hnRn +. . such that Ri are rational functions 
with values in A ® A and R\(u) = r + £. 

Let us assume that the algebra A is defined over real or complex numbers. Since 
r G A(~) ® A(~) is a constant solution of CYBE, one can quantize it in the following 
sense: there exists 

Rh = i ® i + f2hkRke u(A~)llh}] ® I W - M l 
fc=i 

satisfying QYBE with i*i = r and H^ • R2^ = 1 ® 1 (see [D]). According to the 
PBW-theorem there is a canonical homomorphism a : U(A )[[h]] -> A[[h]]. Clearly, 
R = a(Rh) G A ® A satisfies QYBE and is of the form .R = 1 ® 1 + hr + ... 
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In what follows we need a result concerning the element t obtained in [BF2]. 
Theorem 5.6. The element t G A ® A has the following properties: 
(i) (a ® b)t = t(b ® a) for all a, 6 G A] 
(ii) *12i13 = t23t12 = *13*23 and *12*23 = *23*13 = t13t12; 
(iii) t satisfies QYBE without parameter. 

It turns out that having R, which quanizes r and using the properties of t one 
can quantize r + £. More exactly: 

Theorem 5.7. .R + ^ satisfies QYBE with parameter and quantizes r + £. 
Proof. Taking into account that R and £ satisfy QYBE to prove that R + ^ 

is a solution of QYBE it suffices to verify the following equalities: 
p l2 pl3.f23 _ £23^13^12. 

t12R13R23 = fl23.R13*12! 
# 1 2 ^ 2 3 = # 2 3 ^ 1 2 . 
i12t13^23 = *23*13/*12; 
*12H13*23 = fl23*13*12; 
R12t13t23 = t23R13t12; 
Let us check for instance the fourth one: 

*12*13#23 = t12R21t13 = R12t12t13 

because of Theorem 5.6 (i). 
By the same arguments t23t13R12 = A12*23*13. Then Theorem 5.6 (ii) provides 

the required equality. All the other equalities can be established in a similar way. 
Obviously iZ + ^ quantizes r + £. The theorem is proved. 

Final remarks. If A = gl(n) and r = 0, then one gets exactly the Yang 
solution of QYBE (see Introduction). In this case (i.e. A = gl(n)) it is possible 
to employ Yangians to prove Theorem 5.7. Moreover, the representation theory of 
Yangians enables one to construct infinitely many rational solutions of QYBE having 
given r and the simpliest one is exactly that of Theorem 5.7 (see [KST]). Probably 
this indicates that there exist Yangians for symmetric Lie algebras. 
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