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RENDICONTIDEГCIRCÖĽÖ MATEMÀTГCO tЯПPÀĽEKMO 
Serie II, Suppl. 46 (1997), pp. 123-127 

K-CONCIRCULAR VECTOR FIELDS AND 
HOLOMORPHICALLY PROJECTIVE MAPPINGS ON 

KAHLERIAN SPACES 

J. MIKES, G.A. STARKO 

ABSTRACT. In the paper K-concircular vector fields on Kahlerian and hyperbolically 
Kahlerian spaces are studied. Metric tensors of these spaces are found in explicit 

. form. Metrics admitting K-concircular vector fields which are in holomorphically 
projective correspondence are found. 

1. Introduction. S. Yamaguchi [14] investigated Kahlerian torsion-forming 
vector fields which we call further K-concircular vector fields. K.R. Esenov [2], [3] 
deals with special cases of the above mentioned vector fields which we call further 
K-concircular vector fields. 

This type of vector fields develops K. Yano's concircular vector fields [15] for the 
theory of Kahlerian spaces (we understand by that both classic Kahlerian spaces and 
hyperbolically Kahlerian spaces). 

In the paper we find metrics of Kahlerian spaces in which K-concircular vector fields 
exist and we investigate holomorphically projective mappings of the spaces. 

In this paper the concept of Kahlerian spaces means a wider class of spaces in 
-accordance with the following definition. 

A (pseudo-)Riemannian space Kn is called a Kahlerian space if it contains, along 
with the metric tensor gij(x)> an affine structure Fh(x) satisfying the following relations 

F„hi? = e<5,\ F?9j<, + F?gia = 0, f * = 0 . (1) 

where comma denotes the covariant derivative in Kn, Sh is Kronecker symbol and 
e = ± l . 

If e = —1 then Kn is an (elliptically) Kahlerian space K~, if e = 1 then Kn is a 
hyperbolically Kahlerian space K+. 

The spaces K~ were introduced by P.A. Shirokov [13], the spaces K+ by P.A. Ra-
shevsky [11]. In their works these spaces were called A-spaces. Independently of 
P.A. Shirokov the spaces K~ were studied by E. Kahler [4]. In the available literature 
these spaces are mostly called Kahlerian. 

A vector field \h in Kn is called Kahlerian torso-forming if the following condition 

\h. = aS? + bFx
h + <pt\

h +e<paF? \PFh, (2) 
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holds, where a, b are functions, <# is a covector (for K~ see [14]). 
If the covector A* (= Xaga%) is a gradient, then for n > 4 condition (2) can be written 

in the form 

Kj=a 9ij + c (A,- XJ - eAi Xj) , (3) 

where A,- = XaF
a

y c is a function. These vector fields A; we called K-concircular. 
In [2] formula (3) is proved for Xh being gradient and nonisotropic. If a 7- 0 then 

Xh is nonisotropic. When we investigate the conditions of integrability of (3) we can 
learn that a and c are functions of parameter A which generates the gradient A,- = o\ A, 
di = d/dx\ 

Metrics of all Kahlerian spaces which admit covariantly nonconstant convergent 
vector fields, that is Kn} in which a vector A,- satisfying Xij = agij -^ 0 (a - const) 
exists, were shown [6], [7], [9], These spaces admit nonafBne geodesic and nonaffine 
holomorphically projective mapping. 

2. Kahlerian spaces with K-concircular vector fields. 

Theorem 1. Let a Riemannian space have a metric defined by the relations 

9ab = 9a+mb+m = &abG + da+mi,+mG; gab+m = &ab+mG — da+m6<3, (4) 

where G = G(xl + s(x2, x\... , xm, xm+2, xm+3,... , xn)); G' • G" ~- 0, G, s 6 C3 are 
functions of the given arguments, a, b = 1,2, .. . , m; ra = n/2, \gij\ 7- 0. 

Then this space is the Kahlerian space K~ which admits a K-concircular vector 
.fields. 

Proof. In coordinates a;, in which conditions (4) are valid, we define the affinor 
F?(x): 

From (1) we get directly that Fh(x) is the structure affinor K~ and that the vector 
Xh = Sh satisfies condition (3), where 

a = i ( lnG' ) ' . c=^(lna) ' /G". (6) 

It is obvious that always a ^ 0. 

Theorem 2. Suppose a Kahlerian spaces K~ (n > 4) admitting K-concircular vector 
field for a / 0 . Then in K~ a coordinate system exists such that its metric has the 
given form (4). 

Proof. Since K-concircular vector field Xh in K~ is analytic, i.e. the condition 
XapFhFf = Â t. holds, then on the basis of [6], [7] an adapt coordinate system x, in 
which the structure Fh is of the form (5), exists in K~ and Xh = 5h. Then by an 
analysis of formulas (1) and (3) we get that the metric tensor K~~ is of the form (4). 

Theorem 3. Let a Riemannian space have a metric defined by the relations 

gab+m = dab+mG; gab = ga+mb+m = 0, (7) 

where G = G(xx+ x1+m + s(x2 + rr2+m, . . . ,x m + xn)), G' • G" -± 0, G,s G C3 are 
function of the given arguments, a, b = 1,2, . . . ,m;m = n/2, |py| ^ 0. 
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Then this spaces is the hyperbolically Kahlerian space K+ which admits a K-
concircular vector field. 

Proof. In the coordinates x, in which condition (7) holds, we define the affinor Fh(x): 

Fb
a = -FtiZ = 8a

h; F t
o+m = F6

<'+m = 0. (8) 

Analogically from (1) we get directly that Fh(x) is a structure affinor of the hyper­
bolically Kahlerian space K+ and the vector \h = Sh + Sh+m satisfies condition (3), 
where functions a and c are given by (6). 

3. Holomorphically projective mappings of Kahlerian spaces with K-
concircular vector fields. An analytically planar curve of the Kahlerian space Kn 

is a curve, defined by the equations xh = xh(t), whose tangent vector \h = dxh/dt, 
being parallely transfered, remains in the plane formed by the tangent vector \h and 
its conjugate A = AaF£, i.e., the condition 

VtA* = d\h/dt + rhp\a\p = Pl(t)\
h + p2(*)A\ 

where PuP2 are functions of the argument t, T^ is the Christoffel symbols of Kni 

fulfilled [10], [12]. __ 
The diffeomorphism of Kn onto Kn is a holomorphically projective mapping (HPM) 

if it transforms all analytically planar curves of Kn into anlytically planar curves of 
Kn- _ 

Under HPM the structure of the spaces Kn and Kn is preserved, i.e., in the coordi­
nate system x, generally with respect to the mapping, the conditions F{ (x) = Fh(x) 
are satisfied. To be more precise F^ (x) = ±Fh(x) for Kn. 

The necessary and sufficient conditions for the holomorphically projective mappings 
of Kn onto Kn are the fulfillment of the following condition in a common coordinate 
system with respect to the mapping: 

l> ) = r&.*)+V.)-Vo 
where Thj is Christoffel symbol of K„, (ij) denotes a symmetrization without division, 
V>« is the covariant vector and ipi = ^a

Ft- This relations are equivalent to the equation 
(see [16], [12], [10]): 

9ijtk = Wk 9ij + V(i 9j)k - e V\i Fj)K (9) 

where Fy = JiaF", g^ is the metric tensor of Kn. 
V.V. Domashev and J. MikeS found for K~ [1], [12] and I.N. Kurbatova for K+ [5] 

that the Kahlerian space Kn admits of a nontrivial holomorphically projective mapping 
if only if the system of equations 

%•.* = Z(i9j)k - * l{ipj)k , (10) 

has a nontrivial solution for the unknown tensors a{j (= aji = —eaapFfF?, |a»j| 7-= 0) 
and £ 7- 0, where Fjk = gjaF£, £ = faP7. The solutions of (9) and (10) are 
connected by the relations 

a{j = exp(2V>) TP9ai 9Pj, 6 = - exp(2^) f#ged ^ , (11) 
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where ^ is a function generated by the gradient ipi = V\t, ||<f J|| = H^yll"1* 
Let Kn be the Kahlerian space shown in the Theorem 1 and Theorem 3. In these 

spaces K-concircular vector field Xh exists, which satisfies (3), where a 7-= 0. 
Let 

a{j = agij (A^AJ - eA»Aj) , (12) 

where a, /3 are nonzero constants such that det ||ajj|| 7- 0. 
The constructed tensor â - satisfies the fundamental equations (10) from the theory 

of holomorphically projective mappings. 
From here we get 

Theorem 4. The Kahlerian space K„ with K-concircular vector field Xh (where a 7-
0) admits nontrivial holomorphically projective mapping. 

For holomorphically projective mapping Kn with K-concircular vector field maps 
itself into Kn with K-concircular vector field as well [2]. 

We will find metrics of two Kahlerian spaces Kn and Kn with K-concircular vector 
fields, such that holomorphically projective mapping exists between them. By an 
analysis of (11) and (12) we can see that the metric tensor g^ is of the form 

~9ii = I exp(2^) {<*, - ^ j z fai ~ <%*i) } • (-3) 
By the covariant differentiation of (13) we get according to (3) and (9) that 

^ s * = ; ^ f e * - ( 1 4 ) 

In the corresponding coordinates (3) or (7) we integrate equations (14) and find the 
explicit form of the following objects: Xh, a, ?/), A», A*, AaAa. 

On the basis of Theorem 1 

** = *?, a = j ( l n G')'> *i = G"n\ ^XQ = G" (r); 

Aa = G"ra+m, Aa+m = -G"ra, V = ~ l n | l + 2/3G'| + </)<,, 

hold in K~, where G = G(T), T = x1 + six2,... ,zw , :rw+2 , . . . ,xn), T{ = 9JT, ip0 is 
constant, a, b = 1, m, m = n/2. 

Analogically on the basis of Theorem 3 

Afc = *i+*i+m. a=±(\nG')\ A^G'V, , AaA« = 2G"(r), 

Aa = G"ra, Aa+m =-G'V a + m , t/) = ~ In |l + 4/3G'| + t/j0, 

hold in K+, where G = G (r), r = x1 + x1+w + s(a;2 + :rm+2,... ,x m + x"), r» = 6Yr, 
^0 is constant, a, 6 = 1, m, m = n/2. 

4. Global aspects of the existence of K-concircular vector fields. Now we 
will study the existence of K-concircular vector fields on the compact Kahlerian space 
Kn without a boundary. We suppose that a function A G C2 is defined globally on Kn 

and determines the gradient K-concircular vector fields. 



K-CONCIRCULAR VECTOR FIELDS AND HOLOMORPHICALLY PROJECTIVE MAPPINGS 127 

Theorem 5. Compact Kahlerian spaces Kn with nondefined signature of metrics do 
not admit K-concircular vector field with a 7- 0 (Remark: K+ has always a nondefined 
signature). 

Proof. For any point x0 € Kn a coordinate neighbourhood UXQ can be find such 
that a positively defined form Aafi(x)yayp, Aap(x) € C°(UX0), exists in it such that 
gafi(x)A'*(x) = 0. 

After contracting (3) with Atj we get 

-4a/3AQ/3 + B aA a = 0, 

where Ba e C°(UXo) are components which can depend on A. 
These formulas hold in all UXQy that is why only trivial solution A =const of (3) 

exists according to a modification of Hopf theorem [8]. It is a contradiction to a 7- 0. 
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