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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
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ON SECTIONING M U L T I P L E S O F T H E N O N T R T V I A L 

LINE BUNDLE OVER GRASSMANNIANS 

LUBOMÍRA HORANSKÁ 

1. INTRODUCTION 

Let GUfk denote the Grassmann manifold of all fc-dimensional vector subspaces in 
the real Euclidean space Rn(n > k = 1). All oriented k-dimensional vector subspaces 
in W1 form the so called oriented Grassmann manifold Gn.fc. One has the obvious 
double covering p : GUyk -* Gn>k (universal, if n - 3). Identifying each pair (x,t) G 
Gn,k x K with (x;, —t) whenever x and x' are two distinct points such that p(x) = 
p(x'), one obtains the total space of a line bundle £nyk over Gn>fc. Since, as is well 
known, isomorphism classes of line bundles over a CW-complex are in one-to-one 
correspondence with its first Z2-cohomology group and one has H1(Gn)/t;Z2) = Z2, 
the line bundle £ is usually referred to as the nontrivial line bundle over the Grassmann 
manifold Gn>fc. Without loss of generality, we shall suppose n — 2k in the sequel (GUik 
is diffeomorphic to Gn>n_fc). 

Now fixing n and k and putting $£„,* := fn k ® • • • © £n,fc> one can naturally ask 
v v ' 

8 times 

the following. 

Question 1.1. What is the least s such that the vector bundle $£„.* admits a nowhere 
vanishing section? 

Remark. Question 1.1 can easily be generalized to: What is the least integer s r, for 
a given r > 0, such that srfn,fc admits r everywhere linearly independent sections? 
But we will deal only with r = 1 in this note. 

Denote dUyk := k(n -k)= dim(Gn,fc); dn>k will be written simply d throughout (n 
and k will always be clear from the context). As an easy consequence of the Stcenrod 
obstruction theory, one sees that (c?+ l)Cn,fc always has a nowhere vanishing section. 
Hence the solution to the above question must be less than or equal to d + 1. 

For the special case of Gn>i, which is nothing but the projective space RP n " 1 , 
Question 1.1. is readily answered. Indeed, by that what we said above, nfn,i possesses 
a nowhere zero section, but the value of any cross-section of (n—l)fn,i must be zero at 
some point, because the top Stiefel-Whitney class w n_i((n- l)fn>i) = ^in~1(^n,i) e 
Hn'l(Gn}1;Z2) is non-zero. 
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But Question 1.1 can be considered also from a different point of view. Namely, 
e.g. by Gitler-Handel [6] (or see [9]), the vector bundle sfn,fc has a nowhere vanishing 
section if and only if there exists a map / : Gnyk -+ G8t\ = IP 5 " 1 such that the pull-
back /*(f5,i) is precisely £„,* or equivalently that f*(w\(£8t\)) = wi(fn,fc). However 
(see e.g. [8]), this is equivalent to the existence of a map / : Gn,jfc -> GSt\ = S8~l 

such that the diagram 

Gn,k > G8tl 

>i t 'i 
GUtk y GSt\ 

commutes, hence to the existence of a map / that is equivariant with respect to the 
obvious Z2-action on the oriented Grassmann manifolds. 

If T is a fixed point free involution on a topological space X, then the least integer 
q for which there exists an equivariant map from X into Sq~l is called the level of 
(X, T) by Dai and Lam ([4]), which is the same as the genus of (X, T) in the sense of 
Svarc [16], or up 

to 1 the same as the co-index of (X,T) studied by Conner and Floyd [2]. Taking 
the Z2-action mentioned above in the role of T and denoting s(X) the level of (X, T), 
we have that the least s such that s£n,fc admits a nowhere zero section is nothing but 
s(Gn}k) and thus Question 1.1 is answered when one can solve the following. 

Problem 1.1'. For given n and fc, find the level s(GUtk). 

As we have seen above, s(Gn}1) = s(Sn~l) = n (and co-index(Sn~1) = n - 1). 
Hence we shall confine ourselves to Gn>fc with k _ 2. 

For general n and k - 2, Question 1.1 seems to be very difficult. 
It is true that (see e.g. Conner-Floyd [2;(3.5)]) 

s(Gntk) = 1 + co-ind(Gn,fc) = 1 + cat(Gn,fc/Z2) = 1 + cat(Gn,fc), (1.2) 

where cat(Gn,fc) is the Lyusternik-ShnirePman category of Gn.fc. But unfortunately 
cat(6rn,fc) seems to be known only in some special cases. On the other hand, there is 
no indication that the difference 1 + cat(Gn.fc) - s(Gntk) must be small. 

Using results of Korbas and Sankaran [8;Theorem 4(i)], we can formulate the fol­
lowing. 

Proposition 1.3. (a) Let I = 2. Then s(G2i+\t2) = d + 1 = 2 / + 1 - 1. 
(b) Ifn = 2k = 4: and (n, k) 7- (2' + 1,2), then s(Gntk) _ d. 

Now let ht(iui) := height(wi) = sup{m | w\m 7- 0}, where w\ is the first Stiefel-
Whitney class of fn,A.- The top Stiefel-Whitney class of sfn,fc, ws(s£ntk) = t-V, is 
non-zero for s _ ht(w;i); the value of ht(w\) is known due to Stong [15]. Consequently, 
there is no nowhere zero section of sfn,fc if s ^ ht(wi), and we obtain the following 
lower bound for s(Gn,fc). 
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Proposition 1.4. If n _ 2k _ 4, then s(Gn^) > ht(wi). 

In addition to this, we are able to calculate s(Gn}k) in several low-dimensional 
cases. 

Proposition 1.5. s(Gsy3) = s(O6,3) = ^(67,3) = 8. 

In the situation of Proposition 1.3(b), it seems reasonable to try to 
decide whether or not (d — l)fn,fc has a nowhere vanishing section. On this we 

prove in §2 the following result. 

Proposition 1.6. (a) Let n be even and k _ 3 be odd, n = 2k. Then (d — l)£n,fc 
has a nowhere vanishing section on the (d — \)-skeleton of Gn,fc. Moreover, either the 
restriction to the (d — 2)-skeleton of every such section can be extended to a non-
vanishing section on Gn,jt or the restriction to the (d — 2)-skeleton of no such section 
can be extended to a non-vanishing section on Gn,&. 

(b) For Gst3 the restriction to the 13-skeleton of every nowhere zero section of 
14^8,3 existing on the 14-skeleton extends to a nowhere zero section on Gst3. 

Now let e denote a trivial line-bundle and span(a) be the largest number of ev­
erywhere linearly independent sections of the vector bundle a. As a step towards 
deciding whether or not span((d - l)£n,fc) _ 1, we can consider a "stable version" of 
the above problem, namely the question whether or not span((d — l)fn,fc ® 2e) ^ 3. 
On this we prove in §2 the following theorem. 

Theorem 1.7. Let X be a finite CW-complex of dimension m = 1 (mod 4) and A be 
any vector bundle of rank ra+1 over X. Then span(A) _ 3 if and oniy if ivm_i( A) = 0. 

Corollary 1.8. Let n = 2 (mod 4) and k odd be such that n _ 2k _ 4. Then 
span((d-l)£n , fce2£)_3. 

Remark 1.9. By Crabb [3; Prop. 2.4.] or Stolz [14], one knows that (for d > 4) 
span((d- l)fn,fc) _ 1 if and only if the cohomotopy Euler class of (d- l)£n,fc vanishes. 
However our efforts to compute this Euler class have failed. 

2. PROOFS OF RESULTS 

Proof of Proposition 1.5. By [8, Theorem 4(ii)] there exists a map / : t7s,3 —> Gs,i 
such that /*(^8,i) — ^8,3- Notice that the vector bundle 8̂ 8,1 is trivial. Indeed, using 
the well-known description of the stable tangent bundle of the projective space and 
parallelizability of RP7, we obtain 

86,1 = TGs,i 0 e = TRP7 e£ = 7eee = Se. 

Therefore 8£s,3 is also trivial and it follows that s(Gs,3) _ 8. 
On the other hand applying Proposition 1.4 and Stong's result [15], we obtain 

s(GSt3) > ht(wi) = 7. This shows that 5(63,3) = 8. 
Each nowhere zero section of ^8,3 induces a nowhere zero section of ^6,3» because 

there exists an equivariant map CJ6,3 -> O8,3 ([8]). Hence s(Gey3) _ s(Gst3) = 8. Also 
by [15] ht(wi) = 7 < s(G6,3). Consequently S(L76J3) = 8. 
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The proof for G7,3 is similar. 

The following proof is based on obstruction theory (Liao [10], Mahowald [11], 
Milnor and Stasheff [12]). 

Proof of Proposition 1.6(a). The vector bundle (d — l)£n,fc has a nowhere vanishing 
section on the (d — l)-skeleton of Gn,fc if and only if the primary obstruction class 
vanishes. This primary obstruction class is nothing but the Euler class of (d — l)£n,fc 

considered with a fixed orientation. 
We first show that the Euler class e((d - l)fn,fc) £ i-T^G^fcjZ) vanishes. 
Indeed, e(8£6,3) = 0, because (see [8]) the vector bundle 8^,3 is trivial. Now take 

the remaining Grassmannians considered in 1.6(a). For them one readily verifies that 
for s such that 3 = k = 2 s < n = 25+1 we have d - 3 = 2*+1. Since by Stong 
[15] ht(w{) = 28+1 - 1 in each of those cases, we have that the mod 2 reduction of 
e((d - 3)£n>fc), which is precisely wd~3, vanishes. Hence e((d - 3)£n>fc) = 2x for some 
x e Hd~3(Gn,k\ Z). Finally we have 

<(d - l)£n,fc) = e((d - 3)£n,fc)e(2£n,fc) = :r2e(2fn,fc) = 0 

(for 2e(2fn>fc) = 0 see [12; Problem 9.A]). 
Now, the secondary obstructions for two non-vanishing sections of the vector bun­

dle (d - l)fn,fc on (Gn)fc)(d_!) differ by an element of the subgroup (Sq2 + w2((d -
l)Zn,k))Hd-2(Gnyk]Z) in #d(Gn,fc;Z2). Hence if we show that 

(Sq2 + w2((d - l)en>fc))^
d-2(Gn,fc; Z) = 0, 

that will prove that either the secondary obstruction for any non-vanishing section of 
(d — l)fn,fc on (Gn,fc)(d_!) is zero or the secondary obstruction for any non-vanishing 
section of (d — l)£n,fc on (Gn,fc)(d_i) is non-zero, which will then complete the proof 
of 1.6(a). 

To start, first observe that ifd-2(Gn,fc;Z) = Z2 and Hd"2(Gn,fc;Z2) = Z2 0 Z2 

(see Fuchs [5]). For computing 5g2(Hd-2(Gn,fc;Z)) we need to recognize those co-
homology classes in #d"2(Gn,fc;Z2) which lie in the image of the mod 2 reduction 
homomorphism p2 : H

d-2(Gn,fc;Z) -> Hd_2(Gn,fc;Z2). This homomorphism appears 
in the exact sequence 

. . . - - -» Hd-2(Gn,fc;Z) A H"-2(G„,fc;Z2) A H*~\GnMZ) -?->. . . , 

where 6 is the Bockstein homomorphism associated with the short exact sequence of 
coefiicients 0 - > Z - 2 A Z - > Z 2 - > 0 . 

Since Hd~2(Gn>k;Z) * Z2, we see that p2 : Hd"2(Gn,fc;Z) -> Hd"2(Gn,fc;Z2) 
is a monomorphism. That means that there exists a unique nonzero class a € 
Hd_2(Gn,fc;Z2) such that a € Im(p2) = Ker(5). However p2 o 6 is nothing but the 
Steenrod square Sq1, and therefore we have Sq1(a) = 0. 

The following lemma will also be useful. 
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Lemma 2.1. Under the hypotheses of 1.6(a), let y € Hd~2(Gn fc;Z2). Then (Sq2 + 
W2((d-l)^k))(y) = wi2(^ntkyy. 

Proof. It is known (Milnor and Stasheff [12]) that Sq2(y) = v2.y for all 
y 6 Hd~2(Gntk',%2), where v2 = uii2(G„,fc) + tu2(G„,fc) is the second Wu class. 

Now, if n = 0 (mod 4), then v2 = 0 by [1] and w2((d- l)£„,fc) = (V)u>i2(£„ fc) = 
wi2(^„,fc). Hence (Sq2 + w2((d - l)£n,k))(y) = wi2(£»,k).y. 

If n = 2 (mod 4), then we have v2 = Wi2(£„,fc) by [1] and w2((d - l)£„,fc) = 
(VW2(£„,fc) = 0. So again (S<?2 + «,2((d - l)tn,k))(y) = wi2(£„ifc).y. 

To complete the proof of Proposition 1.6(a), first observe that by Jaworowski [7] 
Wk-2Wkn-k~l,Wk-i2Wkn~k~2 and wk-2Wkn~k~l -\- Wk-i2wk

n~k~2 can be taken as 
the three non-zero elements in iId"2(Gn>fc; Z2) = Z2 ® Z2. Now analyse the following 
four possibilities in Hd((7njfc;Z2) =" Z2. ' 

(1) V t ^ t i , ^ - 1 ± 0, wi2wk-i
2wk

n~k~2 ^ 0; 
(2) wx-w^w^-1 + 0, wi2wk-i

2wk
n~k~2 = 0; 

(3) wi2wk-2wk
n~k~l = 0, wi2wk-i

2wk
n~k~2 ^ 0; 

(4) w;i2w;fc_2ti;fc
n-fc-1 = 0, wi2Wk-i2wk

n~k~2 = 0. 
The Cartan and Wu formulae give that in the situation under consideration 

Sql(wk-2wk
n-k-1) = wiwk-2wk

n~k~\ ql(wk-i
2wk

n-k-2) = t ^ i ^ . i 2 ^ ^ - 2 . 

Hence in case (1), ti;fc_2infc
n_fc-1 + Wk-i2Wkn~k~2 is the unique nonzero element in 

Im(i2)) and by Lemma 2.1 we have that (Sq2 + w2((d - l)£n>fc))H
d-2((7n>fc;Z) is 

generated by wi2(wk-2Wkn~k~1 + wfc-i
2wfc

n~~fc-2) = 0, and therefore the subgroup 
in question is trivial. 

Similarly one shows in cases (2) and (3) that (Sq2 -\-w2((d- l)£ntk))Hd-2(Gn,k\ Z) 
is trivial. Finally, in case (4) the unique nonzero element in lm(p2) is one of the 
elements Wk-2Wkn~k~x ,Wk-i2Wkn~k~2 ,Wk-2Wkn~k~x + infc_i2infc

n"fc-2. But since 
the (Sq2 + w2((d - l)£n>fc))-image of each of them is zero (see Lemma 2.1), we have 
that the subgroup (Sq2 + w2((d - l)fn>fc))H

d"2(t7n>fc;Z) is trivial also in this case. 
This closes the proof of Proposition 1.6(a). 

Proof of Proposition 1.6(b). By Proposition 1.5 span(8fs,3) _̂  1. Then of course also 
14&.3 has a nowhere vanishing section whose restriction to (t78,3)(i4) has its secondary 
obstruction zero. But then, as we know from the proof of 1.6(a), the secondary 
obstructions for all nowhere vanishing sections of 14£8)3 on (t78)3)(i4) vanish. This 
completes the proof. 

Proof of Theorem 1.7. The existence of three sections of A is equivalent to the exis­
tence of a section for the associated bundle V (̂A) whose fiber is the Stiefel manifold 
of orthonormal 3-frames in the fiber of A. This manifold is (m — 3)-connected, and 
therefore V3(A) has a section over the (m - 2)-skeleton of X. 

Then the primary obstruction to extending the above section to the (m—l)-skeleton 
is nothing but the Stiefel-Whitney class wm_i(A) (note that we have 
7Tm-2(V3(R

m+1)) = Z2). 
It is clear that span(A) = 3 implies wm_i(A) = 0. On the other hand, inm_i(A) = 0 

implies that we have a section of V3(A) on the (m — l)-skeleton of X. Hence we 
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certainly have a section of V3(A) on X with a finite singularity set. But this set can 
be removed, since the homotopy group '~m-i(Vz(Wn+l)) is trivial (see Paechter [13]) 
in our situation. This closes the proof. 

Proof of Corollary 1.8. Using Stong's result on the height of w\ we compute Wd-i((d— 
l)fn,Jk 0 2e) = wi^Hfn,*:) = 0. Thus we can apply Theorem 1.7 in this case. 
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