
WSGP 17

Tomasz Rybicki
On the flux homomorphism for regular Poisson manifolds

In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 17th Winter School ”Geometry and
Physics”. Circolo Matematico di Palermo, Palermo, 1998. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 54. pp. [91]–99.

Persistent URL: http://dml.cz/dmlcz/701619

Terms of use:
© Circolo Matematico di Palermo, 1998

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/701619
http://dml.cz


RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 54 (1998), pp. 91-99 

ON THE FLUX HOMOMORPHISM 
FOR REGULAR POISSON MANIFOLDS 

TOMASZ RYBICKI 

ABSTRACT. We introduce the concept of the flux homomorphism for regular Poisson 
manifolds. First we establish a one-to-one correspondence between Poisson diffeomor-
phisms close to id and closed foliated 1-forms close to 0. This allows to show that the 
group of Poisson automorphisms is locally contractible and to define the flux locally. 
Then by means of the foliated cohomology we extend this local homomorphism to a 
global one. 
KEYWORDS. Poisson manifold, Lagrangian submanifold, locally contractible, flux ho­
momorphism 

1. INTRODUCTION 

Let (M, A) be a compact regular Poisson manifold of rank 2k < n = dim(M)> 
that is A is an antisymmetric (2,0)-tensor of rank 2k which satisfies the integrability 
condition [A, A] = 0 (cf. [4]). By 

ft : nx(M) 9 a 4 a « 6 *(M), where /J(a§) = A(a,/3) Va,/J € nl(Af), 

we denote the associated bundle homomorphism. The image of fl is an integrable 
distribution. The resulting 2fc-dimensional foliation is called symplectic and denoted 
by J7 (A). By L(M, A) we denote the Lie algebra of all infinitesimal automorphisms 
of (M, A) which are tangent to ^"(A). 

Let us recall that there is a bijective correspondence between smooth isotopies ft 

in Diff£°(M) satisfying /0 = id and and smooth families of compactly supported 
vector fields Xt. This correspondence is given by the equality 

a) *-*./. . 
In particular, a time-independent vector field corresponds to its flow. 

The symbol G(M, A) stands for the group of all leaf preserving diffeomorphisms 
satisfying /* A = A. An isotopy ft with /o = id is said to be Poisson iff Xt e L(M, A) 
for each t. By <7(M, A)o we denote the group of all Poisson automorphisms / such that 
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there is a Poisson isotopy ft with /o = id and / i = / . As G(M) A) is locally arcwise 
connected (see below), G(M, A)o is its identity component in the C°°-topology. 

The aim of this note is to extend the flux homomorphism (cf. [2], [1], [7]) to the 
case of regular Poisson manifolds. The notion of the differential complex of foliated 
forms allows to do it similarly as in the symplectic case. As a by-product we get the 
local contractibility of the group G(M, A), the property which is important for itself 
and is the starting point for the definition of the flux homomorphism. 

2. FOLIATED FORMS AND THEIR COHOMOLOGY 

Let (Q,*(M),d) be the DeRham complex with compact support of a smooth man­
ifold M. Given a regular foliation T on M we define the subcomplex Q,* (M, T) as 
follows: u e W (M, T) if and only if u 6 Slr(M) and 

u(Xu... yXr) = 0 VXi,... ,Xr tangent to T. 

We set 
Sl*(T) = n*(M)/£l*(M,T). 

By u> E £lr(T) we will denote the class of u; € W(M). By putting du = du we define 
a new differential complex (fl*(T), <2), the complex of foliated smooth forms. Indeed, 
it is straightforward that d is well defined and <P = 0. By H*(T) we denote the 
cohomology of n*(^), and by [u>] the cohomology class of u. Clearly Hr(T) = 0 if 
r > dim J7. 

It is visible that the exterior product A in f2*(M) descends to £l*(T). Next, it 
is easily seen that L(X)Q = L(X)U and f*Q = f*u are correct definitions whenever 
X is tangent to T and / is leaf preserving. The former enables us to have the Lie 
derivative Lx& = i(X)du> + di(X)G) for X tangent to T. 

Further, for a smooth family ut € ftr(M), t G / , we define 

/ Qtdt= / wtdt and / [ut]dt= I utdt\. 

Theorem 1 [3]. Given a smooth manifold M there is a one-to-one correspondence 
between regular Poisson structures A on M with rank of A = 2k and the pairs (T, d) 
where T is a foliation of dim 2k, and d G Q?(T) is a foliated symplectic form of T. 
The word 'symplectic' means that da = 0 and Aka ^ 0. 

In fact, for any / € C°°(M) there is a unique Xf tangent to T such that i(Xj)a = 
—df. Then we define 

A(dfydg) = a(Xf,X9). 

Conversely, it is well-known that at any point there exists a canonical chart (xi , . . . , 
-E2&, yu • • •»yq) (q = n~~ 2&) such that «F(A) is defined by dyi = 0, i = 1, . . . , g, and 
U)L == 5Zi=i dxiAdxi+k where LJL is the symplectic form living on a leaf L. By choosing 
a complement to TT(A) (see e.g. [8]) one can extend the forms UL, L e T(A)> to a 
2-form a on M such that a is related to A. 
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Corollary 1. A compactly supported leaf preserving diffeomorphism f belongs to 
G(MyA)ifff*a = a. 

Finally, it is important that Moser's lemma still holds for compact regular Poisson 
manifolds (cf.[3]). 

Lemma 1. If at is a smooth family of foliated symplectic forms which are ^(A)-
cohomologous then there is a flow ft tangent to T(A) such that &o = ft®u where A 
is related to CQ. 

3. THE LOCAL CONTRACTIBILITY OF G(M,A) 

A deep feature of the symplectic geometry has been revealed by A. Weinstein in 
[11], namely the group of all compactly supported symplectomorphisms is locally 
contractible. An analogous fact is known for contact transformations (cf.[6]). The 
Weinstein's result can be generalized for the case of regular Poisson manifolds by 
making use of the foliated forms and Lemma 1. In this section we give the proof of 
this generalization (partly sketched). 

Let T be a (regular) foliation on a manifold M with dim(M) = n, dim(T) = p, 
q = n - p. Then the cotangent bundle of T, T*T = \JxeM T*LX (Lx is the leaf 
passing through x), possesses a canonical Poisson structure which is exact (cf.[5]). 
That is, one has 

Gf = —d\jr} 

where X? e fi1(r*^'), a? € Q?(T*T) are canonical foliated forms, and T*T is the 
2p dimensional foliation on T*T induced by the canonical projection r :T*T' -> M. 
More precisely, for v G TU(T*T) with u €. T*T one puts 

(2) Xj:(v) = U(TTL*V), 

where L = LXi u£T*L, and 717, : T*L -> L is the canonical projection. 
Let A? be the (2,0)-tensor related to a? by Theorem 1. Then Â r is the image 

of AM, the canonical symplectic structure on T*M under the canonical projection 
T*M -» T*T. Clearly ^(A^r) = T*T and codim(.^(A^)) = codim(T) = q. 

Definition 1 [10]. Given a Poisson manifold (M,A) a submanifold C is called 
coisotropic if 

i(Ann(TxC)) C T-C, Vx G C. 

Here Ann(TxC) = {a € T*C : a(X) = 0, VK e TXC}. Further, C is called La-
grangian if for any x £ C 

tt(Ann(TxC) = r,CnT,(^(A)). 

Observe that the 0-section in T*^"(A) is a Lagrangian submanifold. Observe as well 
that for any Lagrangian C in M dim(C) = k + q, where dim(T(A)) = 2k, q = n — 2k. 
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Proposition 1. Given a regular (M, A) the sections ofT*T(A) which are sufficiently 
C1-close to the 0-section are identified with the foliated 1-forms on (M, A). Moreover, 
a section ofT*J:(A) is a Lagrangian submanifold if and only if the corresponding 1-
form is closed. 

Proof. The first assertion follows by definition. Suppose now Q e fi1(^r(A)) and 
LJ(M) is the corresponding section. It suffices to show that the canonical^foliated 
form tfF(A) vanishes on Q(M). This is equivalent to 0 = Q*(a^\)) = u>*(—d\jr^) = 
-d(u*\r(A)) = -duj.u 

Proposition 2 [12]. Let (Mi, Aj) (* = 1,2) be any Poisson manifold. A mapping 
f : (Mi, Ai) -» (M2,A2) is a Poisson morphism if and only if graph(f) = {(x,y) : 
x G Mi, f(x) = y) is a coisotropic submanifold of (Mi x M2, —Ai 0 A2) (the Poisson 
product, cf[10]). 

For the group G(M, A) we need a more precise result. Given a regular (M, A) one 
constructs a new regular Poisson manifold ((M x M)°, A0). Here 

(M x M)° = {(x, y) e M x M : x, y lie on the same leaf of ^(A)} 

is a (4k + g)-dimensional manifold such that if (x\,... ,x2k, 2/i> • • • > Vq) is a canoni­
cal chart at x, (a^,... , x2k, y[,... , y'q) is a canonical chart at y, then yj = y^ and 
(xi,... , X2k> x'i,... , x2k, 2/i,... , yq) is a canonical chart at (x, y). Next, A0 is of rank 
4k and the leaves of ̂ (A°) are precisely of the form (L x L, -CL © o£) where 07, is the 
symplectic form living on the leaf L. That is, the form <7° e ft2(«F(A0)) corresponding 
to A0 is written in the above chart as 

cr° = 22 —dxi A dxi+k + dx\ A dx'i+k. 
1=1 

Then it is not hard to observe 

Proposition 3. Let f be a leaf preserving diffeomorphism. Then f € G(M,A) if 
and only ifgraph(f) is a Lagrangian submanifold of((M x M)°, A0). 

Specifically, the diagonal A C (MxM)° is a Lagrangian submanifold corresponding 
to the identity. 

Proposition 4. Let (M, A) be any regular Poisson mamfold. Then there is a section 
J of the vector bundle gl(TJr(A0)) -> M which is a Gberwise almost complex structure 
on TJ:(A), i.e. for any u€(Mx M)° one has Ju € gl(TuF(A0)) (where gl(V) is the 
space of all linear mappings on V) satisfying 

Ju = —id, Ju auJu — cu, au(Xu, JUXU) > 0 

for any Xu G TU^(A°), Xu 7- 0. 

Proof. We follow a standard argument. Let g be any metric on M. Then we have 
the fiberwise product metric on the vector bundle TF(A°) by 

(9 e g)u((Xu X2), (Xu Y2)) = ^(Xx, Yx) + gy(X2, Y2), 
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where u = (x^). We define a section A of gl(TJr(A0)) by the equality 

for any u e (M x M)°, X,Y G Ttt(..F(A0)). Then A is skew-adjoint with respect to 
g © 0, and B = A*Ais positive definite with respect to g © g. Let C be the square 
root of B. Then one puts J(g) = C^M and one checks that J(g) verifies the claim. 
• 
Lemma 2. Let C C M be a compact Lagrangian submanifold simultaneously in 
regular Poisson manifolds (M, Ai), (M, A2). Assume that A\ = A2 on C. Then there 
are open neighborhoods U\ and U2 ofC and a Poisson diffeomorphism <j>: U\ —> U2 

which equals the identity on C. 

The proof is a leaf-by-leaf version of that of Lemma 3.14 [7] combined with an 
application of Lemma 1. 

Proposition 5. Let (M, A) be a compact regular Poisson manifold. There are a 
neighborhood U\ of the zero section Z in T*T(A)y a neighborhood U2 of A in (M x 
M)°, and a Poisson diffeomorphism ip : U\ —> U2 such that ip(x>0) = (rc,x) V i G M 
(i.e. ip canonically identifies Z with A). 

Proof. We wish to define a diffeomorphism <j>:U\-+U2 such that <f>(Z) — A and 
pa0 = <TF(A) on Z. Then the assertion will follow by Corollary 1 and Lemma 2. 

By Proposition 4 for metric g on M there exists an almost complex structure J on 
TF(A°) compatible with a0 and (l/2)(g®g). By tf5 : T*F(A) -•> TF(A) we denote 
a fiberwise isomorphism induced by g) i.e. g($g(v),X) = v(X). Then we set 

<t>(x, v) = exp(£C|X)(J(x>:I)(BW,BW)) 
for x G M, v G T*T(A). Here exp is induced by (l/2)(g@g). Clearly <j>(x, 0) = (x, x). 

Let u = (x,0) G Z. A vector X G -ru(r*^(A)) can be written as X - (Y,v) G 
TXL © T^L, where L passes through x. We then get 

du<j>(x) = ((y,y),JM(BW,BM))-
Therefore for K* = (y», *>i) (i = 1,2) we have 

<j>*dl(X\,X2) = 

= *!!((*, n), - W B M , B(«0), (ft, y2), J(.,.)(B(«a), B(**))) 
= ̂ ((y^n), J(,i,)(B(«i),B(«a))) - * f i M M ( I H 8 W » 
= (1/2X0 e g)u((Y\, yx), ( B M , ft* M ) ) 

-(i/2)(p©y)w((y2,y2),(tt?(Vi),BW)) 
= v2(y1)-Vl(y2) 

= -^V(A)u(^l ,^2) = ^(AJiiP-i,-^)' 
To explain the second equality above we note that the subspace T(XfX)A is La­
grangian and, due to the compatibility of (1/2) (g © g), J and <j°, the subspace 
J(Xix)T(XtX)A C T(a.)X)(L x L) is Lagrangian as well. The third equality follows again 
by the compatibility, and the fourth by the definition of Ir9. Finally, the fifth equality 
is a consequence of (2). • 

By summing-up the above propositions we get 
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Theorem 2. Let (M,A) be a compact regular Poisson manifold. There exist C1-
neighborhood Uid of the identity in G(M, A), C1-neighborhood Vo in the vector space 
of all foliated closed 1-forms on (M, ̂ (A)), and a homeomorphism \I>: Uid -> Vo-

Indeed, we make use of the Poisson diffeomorphism V> - Ui -> U2 defined above. 
If / 6 G(M,A) is close to the identity then so is the Lagrangian submanifold 
il>*(graph(f)) in r*^(A) (Propositions 5 and 3). Thus *( / ) = ip*(graphtf)) is 
identified with a closed foliated 1-form by Proposition 1. 

It is visible that the neighborhood Vo above can be chosen convex. Hence we have 

Corollary 2. The group G(M, A) is locally contractible. 

Proceeding in analogy with the symplectic case cf.[7]) one then defines the local 
flux homomorphism as follows. 

Definition 2. Let $ : W^ -•> Vo be as above. It ft is a Poisson isotopy such that 
ft € Uid for any t then 

Ftox{{ft}):=-fa] e &{?&)), 

where Qt = ^(/ t ) . 

In the next section we extend this definition to the whole group and show that it 
is independent of #. 

4. THE FLUX HOMOMORPHISM 

In view of Corollary 2 the group G(M, A)o is locally arcwise connected. There­
fore <?(M, A)0, the universal covering of G(M, A)o, is the totality of pairs (/, {ft}) 
where / = f\ € G(M, A) and {ft} is the homotopy rel. endpoints class of the isotopy 

/*, t € I. The multiplication in G(M, A)0 can be thought of either by the point-
wise multiplication over I of representants or, equivalently, by the juxtaposition of 
representants. The latter means that {gt}-{ft} = {ht} where 

ht = f2t for 0 < t < 1/2 

= 02t-io/i for l / 2 < i < l . 

Our purpose is to generalize the concept of the flux homomorphism (first introduced 
by E.Calabi in [2] for symplectomorphisms) to regular Poisson manifolds. Let a = 
a (A) be the corresponding foliated symplectic form. Given a Poisson isotopy ft we 
let 

Flux({/J):= / \i(Xt)a\dt^E\T(A)) 
Jo 

where the family Xt is defined by (1). 

Theorem 3. Flux : G(M,A)0) -» JI1(^'(A)) is a well defined continuous epimor-
phism. Moreover, Flux extends Definition 2. 

As the proof follows that for symplectomorphisms (cf.[l,p.l82-3]) we give only a 
sketch of it. 
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Let fty gt be two Poisson isotopies such that {ft} = {gt} and fx = gx. Therefore 
there is F8jti a smooth 2-parameter family in G(M, A)o satisfying 

F0,t = ft Fht = gt FSt0 = id F5,i = / i = g i Vs,*eF 

We let 
dFSit ! 9FJ | t „_! 

In particular, £ i->> XS}t corresponds by (1) to t H> FSit. We have the equality 

Then 

= J l(-^i)ddt + J <[X.*Y.d)vdt 

= / i([Xs,uY,,t])adt = d([ d(YStUXt>t)dt). 
JO Jo 

Here the second equality follows (3), the third by YS}o = Y«,i = 0, and the fourth 
by a direct computation. Thus Flux({<7t}) - Flux({/j) = [du] = 0 where Q = 
fIXI-<y9tUX9tt)dtMl8. 

That Flux is a homomorphism follows from the fact that the multiplication in 

G(My A)o can be represented by the juxtaposition. 
Next, let [u>] G Hl(F(A)). This means that du> = 0. The equality t(X)a = Q 

defines uniquely X e £(M, A). It is visible that Flux({<^}) = [u>] where <f>t is the flow 
ofK. 

The compatibility with Definition 2 will be shown after the following 

Proposition 6. If a = —d\ (i.e. a is exact [3]) and ft is a Poisson isotopy then 
Flux({/t}) = [A-/1*A]. 

Proof. Let Xt be related to ft by (1). Then 

Mxt)9] = [ft*i(xt)a] = -mxjdx] = -[/;I-X,A] = - | [ / ; A ] . 

It remains to integrate both sides over [0,1]. • 

To prove the second assertion of Theorem 3 we make use of the diffeomorphism ip 
from Proposition 5. Let gt = ip~l° (id x ft) o %j) be a Poisson isotopy in Vo C r*^(A) 
(Theorem 2). By an obvious argument Flux({/J) = t* Flux({^}), where t is the zero 
section of T*T(A). 
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One can factorize gt o t = ut o ht, where ht is a diffeomorphism family on M and 
Qt from Definition 2 can be regarded as a family of sections of T* F(A). Thanks to 
.̂F(A) = —d^r(\) and to Proposition 6 we have 

Flux({(?t}) = [A^ ( A )-5 lA^ ( A )] . 

In view of the equality d>J ̂ T(\) = a)i we then have 

t*(Flux({cfc})) = -[i*g* V ( A )] = -[fciwJA^A)] = - [ -*] . 

This completes the proof. 
In view of the proof of Theorem 3 we have 

Corollary 3. If<j>t is a flow ofX € L(M, A) then Flux({tf>t}) = M-*)*]-

5. FINAL COMMENTS 

(1) Since G(M,A)0 = G(M,A)0/7r(G(M,A)0) the Flux descends to a homomor-
phism S : G(M, A)o -> JH*1(^7(A))/S, where S is the image under Flux of the first 
homotopy group 7r(G(M, A)o). It can be shown that Ker(S) coincides with the group 
of all Hamiltonian diffeomorphisms. These are homomorphisms generated by the el­
ements of flows of compactly supported Hamiltonian vector fields of (M, A). Recall 
that X e L(M, A) is Hamiltonian [4] if X = (du)* with u e C°°(M). 

(2) If (M, Q) is an open symplectic manifold the second Calabi homomorphism is 

relevant (cf.[2]). We consider the universal covering group Ker(S) of Ker(S). As 

Ker(S) is locally arcwise connected then Ker(S) consists of homotopy rel. endpoints 

classes of Hamiltonian isotopies [1], If (/,{/*}) £ Ker(S) then Xt = (dut)^ where 
a compactly supported smooth function ut is uniquely defined (M open!), and Xt 

corresponds to ft by (1). Then the homomorphism is expressed by 

/ ( / щrj)dt 
Jo Jм 

R:Ker(S)3{ft}>-> ( utn)dt€R 
Jo JM 

where n is the symplectic volume form. R is indispensable to the proof (and even 
to the formulation) the perfectness theorems for symplectic structures (cf.[l]). It has 
been shown in [9] that the group of Poisson-Hamiltonian diffeomorphisms of the torus 
is perfect. Further steps are limited by the lack of analogs of R. 

(3) Denote by G(M, A) the subgroup of G(M, A) generated by all exp(X) where 
X e L(M, A). Clearly G(M,A)0 = G(M,A). The question is whether G(M,A)0 = 
Cr(M,A). It can be deduced from results of [1] that this is the case for symplectic 
manifolds. 
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