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RENDICONTIDEL CIRCOLO MATEMAПCO DIPALERMO 
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EIGENVALUES OF CONFORMALLY INVARIANT OPERATORS ON 
SPHERES 

JAROLÍM BUREŠ , VLADIMÍR SOUČEK 

1 Introduction 

Let M be a smooth oriented compact n-dimensional manifold, n > 3, endowed with 
a Riemannian metric and a spin structure. A huge amount of information has been 
collected concerning spectral properties of the basic invariant differential operators on 
M. Spectra of the Laplace and the Dirac operators has been computed explicitely on 
many examples of homogeneous spaces ([Bl, B2, BGM, CaH, CFG, Mi, MS, Sa]). 
Estimates concerning the first eigenvalues and relation to geometry of M has been 
studied in many papers ([Fril, Hi, Kir, KSW, Li2, Lo, Su]) In a general case, exact 
formulae for eigenvalues are not available but their asymptotic behaviour is a classical 
subject studied for a long time already ([DF, Ga]). 

Recently, a growing interest is paid to properties of more complicated invariant 
first order differential operators on M. A prototype of them is the Rarita-Schwinger 
operator (see [Fral, Fra2, FraS, MP, N, NGRN, Pel, Pe2, Pe3, Pe4, Pe5, RaS, US, 
Wa]). It acts on sections of the bundle associated to a more complicated representation 
of the group Spin(n). In the paper, we are going to study spectral properties of a certain 
class of differential operators on M which has been intensively used in Clifford analysis 
in connection with monogenic differential forms (see [DSS, Ryl, Sol, So2, SoS, So3]). 
The aim of the paper is to compute explicitely spectra of this class of conformally 
invariant operators on the flat model, i.e. on spheres. 

As for the Dirac and the Laplace operators, methods of representation theory can 
be used in homogeneous case. The main tool used in the paper are general results of 
Branson, Olafsson and 0rsted (see [BOO]) describing a construction of intertwinning 
operators between principal series representations of semisimple Lie groups. They are 
able to compute spectra of a wide class of invariant operators up to a normalisation, 
i.e. they are giving explicit formulae for ratios of eigenvalues. These formulae can 
be used directly in odd dimensions. In even dimensions, differential operators studied 
here are not covered by the results in [BOO], nevertheless the methods used there can 
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be adapted for our purpose (see Sect.3). 
The symbol of the Dirac operator is given by the Clifford multiplication. Hence 

the question of normalisation is answered here by a choice of the Clifford action. For 
higher spin representations and the associated invariant operators, the question of 
normalisation of the studied operators is first to be settled (see Sect.2). To compute 
exact formulae for spectra, it is then sufficient to find explicitely one eigenvalue. It is 
done in Sect.4 using methods developed in [VSe]. 

After submitting the paper to press, we have learnt that a general procedure how to 
compute spectra of invariant first order operators was described in [Br]. The normal­
ization of operators involved is different from ours and the scale of spectra is computed 
as a result of a general scheme worked for all operators. For cases, discussed in our 
paper, we use simpler tools for computing the scale. The strong irreducibility result 
proved in [Br] is not needed in our cases. 

2 First order conformally invariant operators 

A classification and a description of first order conformally invariant differential op­
erators was first described by Fegan in ([F]). There is a standard definition of an 
invariant (homogeneous) operator on homogeneous spaces but there are several dif­
ferent definitions of conformally invariant operators in a curved case (for details see 
a [BE, S, CSS1, CSS2]). A construction of curved analogues of invariant operators 
is a difficult task which is not yet completely understood (see [BE, GJM]). For first 
order operators, however, there are no additional complications in the curved case 
with respect to the homogenous model. A general scheme for a construction of such 
invariant operators is as follows (see [F]). 

Let M be a compact oriented manifold with a conformal structure. Let us choose 
a Riemannian metric in the given conformal class and suppose that a spin structure 
is given on M, i.e. that we have principal fibre bundles 

V = VSpin -> Vso -> M. 

on the manifold M. 
Finite-dimensional irreducible representations V\ of the group H = Spin(n) are 

classified by their highest weights A 6 A+, where for n = 2k even, we have 

A+ = {A = (Ai,.... A*); Ax > A2 > ... > Afc_i > |A*|}, X{ e Z U \L 
2 

and for n = 2k + 1 odd, we have 

A+ = {A = (Alf..., A*); Ax > A2 > ... > \k-X > \k > 0}, A, G Z U ^Z. 

Invariant operators are acting among spaces of sections of the corresponding asso­
ciated bundles 

Vx = VxHVx 
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over M. Let us consider the Levi-Civita connection u of the chosen Riemannian metric 
on V and let u be its (unique) lift to V. For any choice of A € A+, we have the associated 
covariant derivative 

Vx:T(Vx)->r(Vx®T*(M)). 

There are standard algorithms (see [Sal]) for a decomposition of the tensor product 
VA <S> C„ into irreducible components 

vA<g>cn = eA.€AvA,, 

where A is the set of highest weights of all irreducible components (multiplicities 
included). There are simple rules how to describe A = A(X) explicitely for any A (see 
[F, S]). Let 7TA' be the projection from VA ® Cn to Vx*. Then operators 

DXtX, : T(VX) -» T(VX.), DXiX, := TTA, O V A 

are first order conformally invariant differential operators and all such operators can 
be constructed in this way. 

Any conformally invariant first order differential operator is uniquely determined 
(up to a constant multiple) by a choice of allowed A and A' but there is no natural 
normalization in general. To study spectral properties, it is necessary to remove this 
ambiguity and to fix a scale of the operator, to choose appropriate normalization. For 
the Dirac operator, the choice of normalization is given by the Clifford action. By 
using twisted Dirac operators, we shall extend this normalization to a wide class of 
first order operators. 

Definition 1 Let S (for n = 2k + I), resp. S = S+ 0 S" (for n = 2k), denote 
the basic spinor representations with highest weights a = ( j , . . . , 5 , §), resp. a± = 
f- l ±M 
\ 2 » " ' ' » 2 ' 2 / ' 

Let X G A+, (forn = 2k+\), resp: X± e A+ (forn = 2k) be dominant weights with 
X = (Ai,...,Afc_i,5), resp. X± = (Ai,...,Afc_i,±|). Denote further X' = A - a € A+, 
resp. A' = A+ — a + G A+. In even dimensions, we shall use the notation 

v A = v A + e v A - . 

The representation VA appears with multiplicity one in the decomposition of the 
tensor product S <g> VA' (it is the Cartan product of both representations). Hence we 
can write the product as 

s®vA, = vAew, 

where W is the sum of all other irreducible components in the decomposition. 
Let Djf be the twisted Dirac operator on S <g> Vx». If we write the operator Dj, in 

the block form as 
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DT 

r(s®vA.) A' • r(5®v v) 

Г(VA) - — > Г(Vл) 

> < 
T(W) • T(W) 

we have defined 4 new invariant operators, one of them being the operator 

Dx : T(VX) -> r(VA). 

Operators D\ defined in such a way will be called higher spin Dirac operators. 

A certain subclass of invariant operators discussed above have appeared often in 
discussions of higher dimensional generalizations of holomorphic differential forms (see 
[DSS, So2]). They are arising in the following way. Let us consider spinor valued 
differential forms, they are coming as elements of the twisted de Rham sequence, 

r(s±)5...r(a*®s±)5...5r(nj®s±) 
where V s denotes the associated covariant derivative on spinor bundles extended to 
5-valued forms (see [So2, VSe]). 

Every representation A*(Cn) ® S can be split into irreducible pieces. There are 
no multiplicities in the decomposition, so the irreducible pieces are well defined. For 
k forms (A; < [n/2]), there are k pieces in the decomposition and the decomposition 
is symmetric with respect to the action of the Hodge star operator. The space of 
spinor valued fc-forms T(Qk ® S*) (k < [n/2]) can be written as the sum ®k

=lE
ktj and 

it can be checked (see [DSS, VSe, So2]) that Ektj is the bundle associated with the 
representation with the highest weight A; = ( § , . . . , § , § , . . . , §, ± | ) , where the number 
j indicates that the component § appears with multiplicity equal to j . Signs ± at the 
last components are relevant only in even dimensions (more details can be found in 
[VSe]). The whole splitting can be described by the following triangle shaped diagram 
(in odd dimensions, there are two columns of the same length in the middle). 

£0,0 £°} £l,0 J>2^ Do^ Ekt0 _Do^ _£o^ £2*-l,0 J ^ jpkfl 

ST\ «T\ /T\ £T\ /T\ 
^17 Q7 ^17 \I7 yj? 

£1,1 £l> . . . _£!> £M _Ei> . . . -Ei> £2*-l,l 

e © e 
----> : -% 

e 
£*,* 

The general construction of invariant operators described above can be used in the 
special case of spinor valued forms. The covariant derivative V 5 restricted to .B*J 
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and projected to .E*+1>-,'' is an example of this general construction. It can be shown 
that if \j —f\ > 1, then the corresponding invariant operator is trivial. We shall be 
mainly interested in 'horizontal arrows', i.e. in operators Dj given by restriction to 
Ek* and projection to Ek+lti. They are indicated in the above scheme. The simplest 
cases among them are well known. The operator D0 is (a multiple of) the Dirac oper­
ator. The operator D\ is (an elliptic version of) the operator called Rarita--Schwinger 
operator by physicists (see [EP, RaS, Wa]). All of them are elliptic operators (see 
[Sol]). Note that all operators Dj on the same row in the scheme above cannot be 
identified without further comments. To compare them, it is necessary first to choose 
an equivariant isomorphism among corresponding bundles. Then they coincide up to 
a constant multiple. 

To compare the operators Dj in the above scheme with the higher spin Dirac 
operators (see Def.l), we shall choose a certain identification of the corresponding 
source and target bundles. We shall do it for the first operator Dj in the row. 

Let us characterize an algebraic operator Y : r(fi*+ 10 5 ) -> t(flk ® S) by a local 
formula 

Y(LJ ® s) = — 53 (̂e»)-̂  ® ei • s, 
t 

where { e j is a (local) orthonormal basis of TM and i denotes the contraction of a 
differential form by a vector. As shown in [VSe], the map Y : Ek+l* —> EkJ,j < k < 
[n/2] is an isomorphism. 

The twisted Dirac operator DT maps the space r(Q*®5) to itself. In [VSe], it was 
proved that we have a relation V o V + y o V = — DT. Let us denote the projection 
from Qk ® S onto Ektj by TT̂ J. Symbols Dj, 0 < j < [n/2] will denote operators 

Dj = Yo Dj = TTJJ 0Y0 VS\EJJ, 

mapping the space of sections of E™ to itself. Then Y\Ejj = 0 implies that 

Dj = TTjj OYO VS\EJJ = -TTjj o DT\Eu = - D A . , 

where D\. is the higher spin Dirac operator corresponding to the bundle V\., Xj = 
(§i . . . - §i | i . . . i 5) (component | appearing j times). More precisely, there are no signs 
in odd dimensions, while in even dimension, V\. = Vx+ 0 V^-. To compute spectrum 

of the higher spin Dirac operators, it is hence sufficient to do it for Dj. 
Now, we shall restrict our study to operators Dj and we shall consider them on 

spheres. We would like to compute their spectra. The spectrum of the Dirac operator 
is well-known (see [B2]). 

Lemma 1 The eigenvalues of the Dirac operator on the sphere Sn with standard met­
ric are 

/.. = ± g + . ) ; . = 0,1,2,.... 
with multiplicity 
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The main result of the paper is given in the following theorem. 

Theorem 1 Let D\. = -Dj, 0<j< n/2, be the higher spin Dirac operators defined 
above, considered on the sphere S„ with the standard metric. Then their eigenvalues 
are : 

џ\ = ± 

with multiplicity 

and 

with multiplicity 

[-=$5(í+')]"-"-

g i y / n + l W l + t-A ( n - 2 j + 2)j 
(l+j-l)(l + n-j + l) 

/.? = ± g + .);. = 1.2,... 

m / n + l W . + n \ (n-2j)( j + l) 
\j + l)\l-l)(l+j)(l + n-jy (i+m+n-jy 

The rest of the paper will be devoted to the proof of the theorem. 

3 Ratios of eigenvalues 

A main tool for computation of eigenvalues will be taken from the paper of Branson, 
Olafsson and 0rsted (see [BOO]). Their paper is designed to construct invariant op­
erators on homogeneous spaces in a diagonal form. They have developed a powerful 
method of study of invariant operators (not necessarily differential ones!) using rep­
resentation theoretical methods. They are prescribing the so called spectral function, 
giving eigenvalues (up to a multiple) of an operator in question on suitably defined 
finite dimensional spaces of eigenfunc'tions. It applies to a broad class of homogeneous 
spaces, which includes the conformally invariant operators considered above in case of 
odd dimensions. But operators D\. in even dimensional case are explicitely excluded 
from consideration in their paper. Our task here is different so that we can compute 
ratios of eigenvalues using their method also in even dimensions. 

The first thing to note is that eigenspaces of our operators can be easily identified 
and described using representation theory. Let us consider the n-dimensional sphere 
Sn as a homogeneous space 

S n = G/P = K/H 

where G = Spin0(n + 1,1) , if = Spin(n + 1) is a maximal compact subgroup of G, 
H = Spin(n) and P is a (noncompact) maximal parabolic P = MAN with M C K. 
The invariant metric g on Sn is constructed by left translation of the Killing form 
B = 2?/2n, then S11 has constant sectional curvature K = 1 with respect to this 
metric. We shall need here the compact picture Sn = K/H only. 
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Let A G A+ and let V\ be the corresponding homogeneous bundle on the sphere. 
The group K acts on the space of sections T(V\) by the left regular representation. The 
group K is compact, hence the space of sections can be decomposed to corresponding 
isotypic components, which are finite-dimensional. The main case considered in [BOO] 
is the multiplicity one case, when these isotypic components are irreducible. Then 
by Schur lemma, any invariant operator (when restricted to these components and 
acting among identical bundles) is a multiple of identity. Then these components 
are eigenspaces of the operator. To compute ratios of eigenvalues, the authors use a 
suitable combination of Casimir operators called the spectrum generating operator. 

There are explicit formulas how to find highest weights of isotypic components 
appearing in the decomposition. They are given by the so called branching rules, 
which were carefully studied in representation theory. In the conformal case needed 
below, they are given as follows. 

Let us agree first the following notation. Let A 6 A+(Spin(n)) and a G A+(Spin(n+ 
1)). The symbol a ! A is defined by the following relations: 

1) Let n = 2k. 

a .1A ^=> c*i > Ai > a2 > X2 > ... > ak > \Xk\. 

2) Let n = 2k + 1. 

a | A -<=> a\ > Ai > a2 > A2 > . . . > ak > Xk > \ak+\\. 

If we consider now the space of sections W = T(V\), X G A+(/f) as a K - modul, 
then all isotypic components Va}a G A+(K) have multiplcity at most one and are 
nontrivial iff a 4- A. The sum (Ba,ax\Wa is then dense in T(V\). 

Methods and results of [BOO] can be used to show 

Theorem 2 Let D\, X G A+,|A*| = | , be a higher spin Dirac operator (see Def.l) 
and let /x, \J! be its two different eigenvalues, having both the same sign. Let W, resp. 
W1 be the corresponding spaces of eigenvectors. 

Then there exist isotypic components W^W^ with highest weights ayol G A+(.K") 
such that W C Wa% W' C Wa', and 

Л _ л[ф)_________±__ )Г(l(n + l ) - a + a'а) 
)r(i(n + l ) - a + a a) 

Proof: Suppose first that n is odd, n = 2k + 1. Then the space V* is irreducible, all 
isotypic conponents of T(V\) have multiplicity one and the formula above for ratios of 
their eigenvalues was proved in [BOO]. 

So suppose next that n = 2k. In the paper [BOO], they have to exclude this 
case from their construction. The main reason was that in this case, they had no 
control over certain compatibility conditions needed for it. Nevertheless, if the aim 
is not to construct intertwining operators but to compute their eigenvalues under the 
assumption that they exist, it is not necessary to verify corresponding compatibility 
conditions and their methods are applicable. 
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So only problem to discuss is that isotypic components of the space of sections T(V\) 
have multiplicity two. Indeed, V\ = VA+ © V*-. Isotypic components of T(VA+), have 
all multiplicity one, but they are identical with the corresponding isotypic components 
ofr(yA_). 

The operator D\ intertwines action of K, so it preserves individual isotypic com­
ponents. If s = (s+ ,s~), s± G r(V^±) is eigenvector of D\ with eigenvalue /i, then 
(s+, —s~) is eigenvector with eigenvalue —/i.Hence the restriction of D\ to any iso­
typic component Wa has at least two eigenvalues ±/z. The corresponding eigenspaces 
are then /^-modules and the isotypic component Wa is a direct sum of them. Let 
us denote by W+ the closure of the sum of all eigenspaces corresponding to positive 
eigenvalues. The corresponding isotypic components have multiplicity one, W+ is an 
invariant subspace with respect to the action of G and the computation in [BOO] can 
be repeated to prove the result. 

• 

4 Normalisation of eigenvalues 

To finish the computation of spectra, it is necessary to compute at least one eigenvalue 
of a given operator. The spectrum of the Dirac operator is known. We shall show how 
to compute inductively one eigenvalue for operators Dj = — D\., 0 < j < [n/2]. It will 
lead then in next section to a formula for their full spectrum. 

A useful relation among spectra operators Dj was shown in [VSe], the following 
theorem is proved there. 

Theorem 3 Let M be aconformally flat Einstein spin manifold, dim M = n.. Let us 
define a first order differential operator Tj by 

Tj = TTJ+1J+1 o V5|s;,;, 0 < j < [n/2] - 1. 

If s is an eigenvector of the operator Dj corresponding to an eigenvalue /i and if 
Tj(s) ^ 0, then s' = TAs) is an eigenvector of the operator Dj+\ corresponding to the 
eigenvalue / / = n~'{~ /A. 

As a consequence, if we are able to find eigenvectors of Dj which does not belong 
to the kernel of Tj, we can compute at least one eigenvalue of .DJ+1. The following 
theorem shows that it is always possible. 

Theorem 4 The operators Tj, 0 < j < % — 1 have nontrivial symbol, hence their 
kernel is a proper subset o/r(VrAi). 

Proof: Let e(v) : Q3
C -> ftj+1, v e Q\ denote the outer multiplication by the element 

v. Then symbol a of the operator _DJ is given by 

<r(v)(u) = 7ri+1J+1 o e(v)(w), ve^ue EjJ C W ® 5. 
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Let Vj denote a nontrivial weight vector of the fundamental representation Cn 

corresponding to a weight Xj = (0 , . . . , 1 , . . . , 0) with 1 on the j-th place, resp. corre­
sponding associated element in ft_. Then v\ A . . . A Vj is a (nontrivial) weight vector 
of AJCn. Denote further by s0 a nontrivial weight vector for the highest weight of S. 
Then 

w = Vi A . . . A Vj ® s0 

is a (nontrivial) weight vector for the highest weight of AJCn ® S. Hence w belongs to 
the Cartan product of ft7 0 5, which is just equal to __yj. 

Hence 
a(vj+i)(vi A . . . A Vj 0 so) = (-l)JVi A . . . A vj+i 0 s0 

is a nontrivial vector and the theorem is proved. • 

5 The proof of Theorem 1 

Now we can finish the proof of the main theorem. It is necessary to distinguish even 
and odd dimensional cases. 
Proof: 
1) Let first n = 2k + 1 . 

The highest weight of the space S = .E0,0 is A0 = (_,..., \) (k components) and 
the space of sections of T(E0fi) is a sum of if-types 

-4a0(±,0> <*o(±,i) = ( —2~> £' • • •' 2 ' ± 2 ) ' l = °'lj2'"''' 

(ao(±yl) having A; + 1 components). 
The highest weight of the space E™, j > 0 is A_ = (§,.. .-§,_•,. . . ,_.) (with § 

appearing j times) and the space of sections of T(E^) is a sum of If-types 

. /2i + l 3 3 1 V l \ . n 

-^.(±,0, M^.iJ = \—Y~,2'"",2,2'"',2 2J ' ' = 1 - 2 > - - - > 

*,__ n f^* 1 3 3 1 1 ^ \ I 1 o 
-fyi(±,i)> Pj(±i *J = I 2 » 2'"""' 2' 2'"'"' 2' 2 7 ' = " ' ' 

and 

where the component § is appearing j — 1 times in the weight aj(±, i) and j times in 
the weight/3_(±,i). 

Using the formula for the ratio of eigenvalues from Th.2, we get first for a = a_(±, i) 

-ji r ( | ( n + 3 ) - a + aa) _ n ^ n _ x 
n-=ir(i(n + l ) - a + a 0 ) - ± ( 2 + i ) 2 (n",(2 j ) ' 

hence there are constant C_, C2 (independent of a .ftT type chosen, but depending on n 
and j) such that the eigenvalues /*__pi(j)»

 resP- A*±,i0)> corresponding to the eigenspace 
-4*(±,o, resp. -9/j(±,i) are equal to 

/4^ = ±Ci(I + ?) 
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resp. 

fa = ±C2(l + ^). 

Moreover, Th.2 implies that 

j4-ib')= ri-2j 

/4,.(i) n-2j + 2' 

The unknown constants C1-C2 will be computed inductively (with respect to j). 
For the Dirac operator, the spectrum is known (see e.g. [B2]), the eigenvalue corre­
sponding to K-typ with a(±, /) is equal to (^ + I). 

For the Rarita-Schwinger operator (j = 1), there are two sequences of AT-types, one 
of them being a subset of that for the Dirac operator (only the first term is missing). 

The twistor operator T0 is invariant (hence should preserve the label of a K-type) 
and has a finite dimensional kernel (hence is nontrivial for at least one if-type). Th.3 
is then saying that 

**>-*(?•.)-=-. 
hence the theorem is valid for j = 1. 

Due to the preceding theorem, operators Tj are nontrivial for all j , so the proof 
can be finished in the same way by induction. 

2) Let n = 2k. In even dimensions, E***, j > 0 is a sum of two ± spaces with highest 
weights Xf = (§, . . . ,§,§,--- , \, ±5) (k components, | appearing j times). Hence the 
space of sections will be a sum of if-types (a's having also k components) 

m /2/ + 1 3 3 1 1\ . i n 

M)Mi) = [^j-,^-^2ir'''2)il = 1^''' 

and 

в Жñ-(2l + 1 3 31 Л ;- i ч 

where | is appearing j — 1 times in the weight a(l) and j times in the weight /3(l). 
This time, however, each type will appear with a multiplicity two. 

As in the proof of Th.2, we can split each isotypic component with respect to K 
as a sum of eigenspaces corresponding to opposite eigenvalues. The sum of spaces 
corresponding to positive ones will be invariant with respect to G and the same proof 
as in odd dimensional case will go through. 

The formula for the dimension of the space of eigenvectors is the consequence of 
the Weyl dimensional formula for the representation with the corresponding highest 
weight. • 
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