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RENDICONП DEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 59 (1999) pp. 143-153 

DEFORMATIONS OF MINIMAL SURFACES OF R3 CONTAINING 
PLANAR GEODESICS 

HUBERT GOLLEK 

Abstract 

We study an operator deforming an arbitrary minimal curve, i.e., a mero-
morphic curve of infinitesimal arc length 0 in 3-dimensional complex space C3, 
into meromorphic curves of prescribed innmtesimal arc length d. A meromorphic 
function h is the deformation parameter. For d = 0 this deformation preserves 
the class of niinimal curves and yields a deformation of minimal surfaces. We 
show that the class of surfaces containing a planar geodesic is preserved under 
deformations with functions of the form \/±ih where h is real. 

1 Introduction 

There is a well known bijective correspondence between minimal surfaces in R3 in 
conformal parametrization and minimal curves in C3, i.e., parametrized curves $ : 
M c C —• C3 such that ($', $') = 0, where (.,.) is the bilinear complex extension 
of the Euclidean scalar product of JR3. 

We will assume that the components of the curve $ are meromorphic functions on 
an open subset U of C. This bijectiori is established by assigning to $ the parametric 
surface x(u,i;) = Re($(u + iv)). The mapping x(«,u) so constructed is a minimal 
surface of R3 in conformal parametrization, defined and regular outside the points of 
U where $ has a pole or where $' vanishes. The poles of $ correspond to topological 
ends of x and the zeroes of $ ' to branch points of x (see [1], [2] or [9]). 

Consequently, solving the minimal surface equation in R3 is equivalent to solving 
the ordinary differential equation Q'^ + Q^ + ty2 = 0 for the components $i, $2> $3 of 
$. One tool to achieve this by integrations is the Weierstrafi formula. Putting $i = 
f/2 (l - g2j, $2 = * //2 (1 + 92)> $3 = / 9 where / and g are arbitrary meromorphic 
functions on U, and integrating yields the minimal curve 

(1.1) Wd/t f (z) = £ /(C)/2 (l - 5
2(C), i (l + 5(C)2) , 2g(0) dO 

'The paper is in final form and no version of it will be submitted elsewhere. 
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Conversely, any minimal curve $ with $_ - i $'3 ^ 0 can be represented as $ = Wei/i5 

with 

(1.2)/ = $ ; - . $ ' , and 9 = ^%r-

One practical advantage of the Weierstrafi formula is the direct access to basic 
geometric quantities such as Gaufl map U : C —> S2, first and second fundamental 
form I and II and the gaussian curvature k of the surface x associated to Weiji9. 
Putting A2 = |/|2 (1 + M2)2/-! one gets 

(1.3) 
U = 

_ (* 0 \ / -Re(/д') I m ( / 5 ' ) \ 
~ \0 \2)> \ M/P') Ћ*(fg>))> 

-Retø)\ / 4И \ 2 

l 5 | 2 + 1 U i 2 - W 
These and other simple relations are useful for the construction of embedded minimal 
surfaces, invariant with respect to certain groups of congruence transformations of R3 

(see for instance in [6] or [7]). 
An other solution of the equation ($', <_>') = 0 is obtained by putting 

(1.4) &(z) = a'(z) -ia'(z) x 7(z), z £ U C C, 

where x denotes the cross product of C3 associated to the scalar product (,) and (a, 7) 
is an analytic strip of R3, i.e., a pair (a(t),7(t)) of regular analytically parametrized 
real curves such that (a', 7) = 0 and |7'| = 1. The curves a and 7 in (1.4) are local 
holomorphic extensions of a and 7 to an open subset U of C. We denoted them by 
the same symbols. 

Integration of (1.4) leads to the Bjorling-representation formula, denoted here as 
Bja,7(z) = a(z)-i fct{Q x 7(C)dC (see also [2] or [3]). We have a(t) = Re (Bj0,7(t)) 
for all real t in the domain of definition of a. Therefore the minimal surface x associated 
to the minimal curve $(z) = Bja/y(z) contains the curve a. Moreover, *y(t) is the unit 
surface normal of x along a(t) and the minimal surface x is uniquely determined 
by these properties. The operator (a,7) —> B j a 7 commutes with the actions of 
SO(3,R) C SO(3,C) on real curves and minimal curves respectively, while the real 
part of Bj commutes with the actions of SO(3, R) on real analytic curves and minimal 
surfaces. 

Specializing to the case of a planar curve a : R —•> R2 C R3 and choosing for 7 
the normal vector of a one obtaines the following representation formula 

(1.5) Bjtt(~) = (a(0,b(0,iiya'2(0 + V2(OdC) , («(«) = «t),b(t),0)). 

This formula describes all minimal surfaces intersecting the rcy-plane R2 C R3 

perpendicularly in the curve a. These surfaces are invariant under the orthogonal 
reflection of R3 with respect to the xy—plane and a is a geodesic of these surfaces. 
If, for instance, a is a circle in R2 then BjQ(z) is the minimal curve of a catenoid. 
It is easily observed that the representation formula Bj* commutes with real analytic 
transformations t: R —¥ R of the parameter, i. e., Bj*ot = Bj* o t. 
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A minimal curve is of type $ = Bj* if and only if its first and second compbnent 
are real functions. An other criterion can be formulated in terms of the WeierstraB-
functions / = a1 — iV and g = —is'/f of $, where (a(t),b(t),0) = a(t) and $' = 

Wv2. 
Since a and 6 are real functions we have yjal2 + l/2 = | |/| | for real arguments. 

Therefore the condition 

(1.6) if(t)g(t) = \\f(t)\\ for real t 

for $ to be of the form $ = Bj* is necessary and sufficient. 
In section 2 we discuss properties of the parameter of E. Study of minimal curves 

and its relations to the Weierstrafi and the Bjorling formula. Some facts are provided 
that are necessary for considerations of the subsequent sections. 

Section 3 is devoted to the construction of a rational operator A*,^ deforming 
a minimal curve $ with ^ J - t ^ f^O into a meromorphic curve of prescribed in­
finitesimal arc length d. A depends on an arbitrary meromorphic function h. For 
$ = Wei*/ we show that the operator Def : (/,h,d) —• D e f / ^ = i^^^d is in­
variant under reparametrizations (see proposition 3.1 for the precise meaning of this 
invariance). This result leads to an global analogue of the operator Def acting from 
the space of triples (/,h,cj), consisting of a function /, a meromorphic vector field h, 
and a meromorphic 1-form a; on a Riemann surface 7£ into the space of meromorphic 
mappings Q of H into C3 such that iu is the differential of the arc length of ft. A 
and Def reduce for d = 0 to a deformation operator of minimal curves and a rational 
representation formula of minimal curves respectively. We show that basic geometric 
quantities of A*,*,** can be expressed algebraically in terms of the natural parameter 
of A«^to and the minimal curvature of $. 

Finally, in section 4 we show that A^ .̂o is consistent with the special Bjoerling 
formula Bj* for functions h of the form h(z) = \fih\(z)> where hi is a real function. 
We display some examples: deformation of the catenoid with the functions h(t) = 
a (cos3 t + sin3 t\. 

2 E. Study's Parameter 

Next we discuss some basic properties of two invariants of minimal curves, the nat­
ural parameter p and the minimal curvature K. The latter is sometimes named after 
E. Study, (see [11] and also [1] and [10]). They resemble the classical invariants arc 
length and curvature of real curves in Euclidean 3-space. We note that also an or­
thogonal moving frame for such curves can be defined in such the way that Frenet's 
equations hold in almost the same form as in the 3-dimensional real case, the role of 
torsion in the minimal case being performed by the logarithmic derivative K'/K (see 
for instance [5]). 

The invariants p and K will be needed for the definition of the deformation Def ^^ 
of a minimal curve of section 3 below. Let $ : U —> C3 be a minimal curve in 
general position, i.e., $', $", $"' are assumed to be linearly independent. Choosing 
a branch of the function zltA define u = ($"(z),$"(z))1/4dz. One can show that u 



146 HUBERT GOLLEK 

is a nonvanishing meromorphic differential and that any function p$ with dp* = u is 
locally invertible. An other expression for LJ = j/^dz is given by 

(2.1) -4(-) = ./-($'(*) x^'(z),v(*)>/<$'(z),v(-)) . 

where v(z) is an arbitrary complex vector function (see [1]). Write p = p$ for short, 
assume that $ is locally reparametrized to p, and denote by $,p, $ jjp,... the derivatives 
with respect to p. We call this p the natural parameter of $ and have ($iPp, $ ^ ) = — 1. 

The minimal curvature K$ of $ is defined as /c$ = J($j>pp(z)> $j>pp(z)}- Again, 
the definition depends on the choice of a branch of the square root function but in 
applications below only the function K\ and its derivatives will appear. The invariant 
/c$ transforms as a function, i. e., for a holomorphic parameter transform t: V —> U 
one has K$Qt = K$ O t. Equation (2.5) below gives K\ in arbitrary parametrization. 

The derivative j / of Wei/iff is j/(z) = y/—if(z)gr(z). Therefore, by Wei% = 
W e i , / ^ we obtain a representation formula for minimal curves in natural parametriza­
tion. The square of the minimal curvature Kf of Wei*/ is the Schwarz derivative of 
/ : 

(2.2) 4 = /'-2(~) (3/"2(*)-2/'(z)/<3)(-)). 

If Kf is an arbitrary meromorphic function, a minimal curve with minimal curvature 
Kf can be constructed by solving the differential equation (2.2) for / and putting 
$ = Wei*/. The result is not unique. The Schwarz derivative is an invariant of 
the group S1(2,C), acting on functions by fractional linear transformations / —> 
(a f + b)l(c / + d) and / is determined uniquely up to such transformations. One can 
show that fractional linear transformations of Sl(2, C) on functions correspond under 
Wei* to actions of elements of SO(3,C) given by the group homomorphism /i assigning 

to a matrix g = I , J G G1(2,C) the complex orthogonal matrix 

( a2-b2-c2 + <P i(a2 + 6 2 - c 2 - d 2 ) 2 (cd-a6) 

- i ^ - f i ' - r . c ' - d 2 ) a* + # + <? + # 2i(a6 + cd) 

2 (bd - ac) - 2 i (ac + bd) 2 (6c + ad) 

More precisely, if / = (a / + b)/(c f + d) then Wei* r = /x(p) Wei*/ + c, where c is a 
constant vector. In other words: 

Proposition 2.1 The derivative of Wei* considered as an operator acting from mero­
morphic functions to derivatives of minimal curves, is equivariant with respect to the 
homomorphism (2.3) of Gl(2,C) to 50(3,C). 

A complete proof of the following proposition can be found in [5] or [10]. 

Proposition 2.2 A minimal curve is uniquely determined up to translations and 
transformations with elements of the group 50(3, C) by its natural parameter and its 
minimal curvature. 
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If the derivatives $j,, $„, , fcj^, of a minimal curve are linear independent all other 
derivatives of $ can be expressed as linear combinations of them with coefficients that 
must be expressions in terms of these invariants. The following relation gives the 
coefficients in the case of the derivative of order 4: 

»яp-(2.4) $,pppp = K«p$p + « 2 $ 

Since it is substantial for the constructions of the next section let us give a short proof: 
We infer from (&#,$#) = 0, ($&>,$&>) = - 1 and {$#&,$#&) = * 2 b v successive 
differentiation ($^,$.3,) = 0, ($p,$ppp) = 1, ($,ppJ$,ppp) = 0. Differentiating once 
more we obtain (fcj.ppp,^) = 0, ( ^ j ^ S p p ) = - * 2 , (*««»*,«*) = * * > W e u s e 

the last three equations to show, that the coefficients aXj a2, a$ in a tentative 'ansatz' 
*IPPPP = a - * * + fl2 *.PP + fl3 $,PPP come out as a3 = 0, 02 = K2 and ax = KKJ,. 

Similar considerations give an formula for the minimal curvature of a minimal 
curve in arbitrary parametrization: The chain rule of order 3 gives $tZZX = $j>ppP*z + 
3 ^mP^Pfz + $j>P,zzz and from the above list of scalar products (d*$/dp*, d?$/dpj) 
of derivatives of various order we obtain the following formula. 

(2.5) K% = p " 6 (<*,„,, $ , „ ) + 9pfzpf« - 2 p ^ p ^ z ) . 

Let us return to the formula Bj*. If a minimal surface intersects the (x,y)-plane 
perpendicularly along a curve a then the natural parameter and the minimal curvature 
of the corresponding minimal curve depend only on the curvature of a. In fact, by the 
invariance of the representation formula Bj* under real parameter transformations we 
can assume that a is given by its natural equation in the form 

(2.6) a(t) = ľ(coвИO),đnMC)))dÇ, 
Jto 

where w'(t) is the curvature of a. Put $ = Bj*. A direct computation with (2.1) 
yields p$, while AC$ is computed with (2.5). Altogether we have the following. 

Proposition 2.3 Let a(t) be a parametrized analytic planar curve with (a7, a') = 1, 
w'(t) its signed curvature and $ = Bj*. 

Then the derivative j/ of the natural parameter and the minimal curvature Kof$ 
are given by 

,0 * // N / - 7 7 T A 2, x 4t// 4 (z)- 7W"2(Z) + 4W'(Z) W&(Z) 
(2.7) p'(z) = >J-iw'(z) andK2(Z) = --- Aiw'\z)— ' 

Consequently, these invariants satisfy the equation 

(2.8) iK2(z)p%) =p'*(z) - Sp"2(z) + 2p'(z)pW(z) 

Conversely, if the minimal curvature and the natural parameter of a minimal curve $ 
satisfy (2.8) then there exists a real analytic planar curve a with (of, a') = 1 such that 
$ agrees with Bj* up to a translation and a transformation of 50(3, C). 

Proof. Equation (2.8) is obtained by eliminating w' from (2.7). For the proof of the 
converse consider a minimal curve $ such that p$ a n d *$ satisfy (2.8), define the 
curvature w of the prospective curve a by w'(z) = ipf2(z) and a by (2.6). Expressing 
K* in terms of w by (2.8) yields an expression that agrees with the second term of (2.7). 
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Therefore the natural parameter and the minimal curvature of $ and Bj* are the same. 
By proposition 2.2 $ and Bj* must be equal up to a translation and a certain complex 
congruence transformation of SO(3, C). • 

Corollary 1 Locally, any minimal curve $ can be reparametrized to a minimal curve 
of the form t Bj* for some real analytic planar curve a and a complex orthogonal 
transformation t € 50(3, C). 

Proof. Given $, determine the derivative p$ of its natural parameter and its minimal 
curvature K$. A parameter transformation t yields. j/$ot = tf (p'$ ° t) and K$ot = K*ot. 
Inserting j/^ot and K$ot in (2.8) one obtains an ordinary differential equation of order 
2 for t. Transforming $ to new parameters with a solution of this eqation gives a 
minimal curve $ o t whose natural parameter and minimal curvature satisfy (2.8). 
Now refer to proposition 2.3 to see that $ o t is the transform of a curve of type Bj* 
by an element of S0(3,C). • 

3 Deformations 

At first we turn for a moment to arbitrary meromorphic curves Q and show that they 
can be represented in a unique way as a linear combination of the derivatives of an 
appropriate minimal curve $ in natural parametrization. The coefficients of this linear 
combination involve the infinitesimal arc length d of ft, the minimal curvature K of 
$ and a free function h. This yields a rational representation formula not only of 
minimal curves but also of meromorphic curves with prescribed arc length function, 
especially a general solution of the ordinary differential equation ft'J+ft'^-r-ft'a = —d2 

by algebraic expressions (formula (3.5) below). 

Theorem 3.1 Let $ be a nonplanar minimal curve with minimal curvature K and h 
and d two arbitrary meromorphic functions. Let p be the natural parameter of $ and 
define two other curves A and ^! by 

(3.1) A*>M = (d + hjv - h K2) $ j , - hjQjv + A ^ . and # * , M = $ + A * ^ . 

Then both A*thtd
 and ^ $ , M have infinitesimal arc length i d. Moreover, ($, hy d) —> 

A$,hjti »5 an infective mapping onto the space of meromorphic curves ft with ft^ —ift'3 ?-= 
0. ' ' 

Proof. Let us abbreviate A * ^ and $$^4 to A (resp. ^ ) and write $', $", / i ' , . . . 
instead of $ p, $,pp, A p , . . . . We infer from (2.4) that 

(3.2) A'=(d! + h'"-tiK2-hKK') Phi' + d$". 

Since ($' , $') = ($', $") = 0 and ($", $") = - 1 we obtain immediately (A', A') = -d 2 

and ||tt||2 = ($ ' + A ' ,$ ' + A') = 2 ($',A') - d2 = -d 2 . 
For a given curve ft with ft£ — t ft'3 7-= 0 a tripel ($, h, d) with ft = A ^ j is 

determined as follows. At frist we obtain immediately d from (ft', ft') = —d2. Next we 
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can assume that $ = Wei*/ = Weij//-t/ for some function / . We use the Weierstrafl 
formula and (3.2) to compute 

/ {l.ip)r_2dff2 + d(f-l)f" 
(3.3)$r = .*' + d$" = - i A . ( / ( / 2 + l ) / ' + 2 d / / ' 2 - d ( / 2 + l)/") 

2 / V 2(d/'2 + / ( . / ' - d / " ) ) 

with I = dl + hi" — h!K2 — hKK'. But the special form of the factor I is unimportant. 
We obtain from (3.3) the following generalization of (1.2) 

fo.4^ f= n 3 ~ i d
 = " 3 - > / ( " ' , " ' ) 

K ' ' fii-ifi^ ni-ifi'2 " 
Thus $ = Wei*/ has been determined. Finally from (3.1) and ($', $"') = 1 we get 
A =-(«', ft). • 

Putting $ = Wei*/ in A^,^ we obtain the following rational representation for­
mula, denoted by (/, h, d) —• -~/,M> f°r meromorphic curves with prescribed in­
finitesimal arc length function d. 

f f (2ff2h' + h'f" - ph'f" + fh" - f2fh") - d (/2 - 1) f2 y 

+ h (-2/'4 + 2//'2 /" - f"2 + /2/"2 + /'/'" - pff"), 
i(f (~2ff2h' + h'f" + ph'f" + /'/." + f2fh") + d (/2 +1) /'2 

+ h (2f* - 2//'2 /" - /"2 - /2/"2 + /'/'" + f2ff") ), 
^ 2(dff2-f3h'-fhf"2 + f2{fh"-hf") + ff{h'f" + hf")) ) 

(3-5) £ 

A/,/i,d is a bijection onto the set of curves SI with Q!x — i Q!2 ^ 0 whose inverse is given 
by elementary operations. 

Moreover, proposition 3.1 below shows an interesting invariance of A / ^ under 
parameter transformations. It shows that for any Riemann surface ft there exists 
a natural bijective nonlinear differential operator A acting from the space of tripels 
(/,h,cj), where / is a meromorphic function on ft, h a meromorphic vector field and 
u) a meromorphic differential 1- form into the space of meromorphic mappings ft of 
ft into C such that (dfi, dQ) = —u ® w. Namely, if in a local coordinate system z 
on an open subset W C ft one has h = hd/dz and u = ddz then by (3.6), putting 
A(/,h,tj)|w = A(/,/i,d), this local expression does not depend on the choice of the 
local coordinate. 

Let M c C b e open and denote by A^ the algebra of all meromorphic functions on 
U and by M^ = A^ x Au x A^ the space of all meromorphic mappings of U into C3. 

Proposition 3.1 Denote by Au the operator mapping (/, ft, d) 6 A^ x A^ x A^ to the 
curve Afth,d £ Mw defined by (3.5). Au is a bijective map onto the set of meromorphic 
curves f2 with Q[ — i£l2 ¥" 0- I/V C C ia an other open subset and t: V —> U a 
holomorphic parameter transformation then 

(3.6) M Л л, d) o f = Д v (f o ť, ^ - , ť (d o A 
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Moreover, t/r = I " "J € G.(2,C), ltf = 2 L ± 5 tten -*•-(: i) 
(3.7) д (r) (det(г) Д ( L Л, d)) = Д(. r /, det(r) h, det(r) d). 

The proof is elementary but involved. It can be achieved with the help of a com­
puter algebra system such as Mathematica (see [4]). A non-electronic proof can be 
found in [5]. 

Minimal curves come in as the special case d = 0. The curves A ^ o and tf^.o are 
new minimal curves. We denote them by Var$^ = As^o and D e f ^ = $ + A ^ o 
and call them variation and deformation of $ by h respectively. 

Proposition 3.2 //$ is a minimal curve andp its natural parameter then, the deriva­
tive IT' of the natural parameter of V a r ^ is 

(3.8) n'2 = h'"-h'K2-hKK'. 

In the case $ = Wei*/ the expression (2.2) for the minimal curvature gives 

(3.9) TT'2 = / '" 3 (3 h /"3 - /' /" .(3 h' f" + 4 h /'") + f ti" + f'2 (2 h' /'" + h / » ) ) . 

Moreover, if V(f, h) denotes the differential operator defined by the right hand side 
of (3.9), then under a holomorphic coordinate change t, D(/, h) transforms according 
to the rule V(f ot,(ho t)/t') = f 2 (V(t, h) o t). 

Write again A = A/^^ for short. Then (A', A') = -d2. On can ask for the complex 
length (A", A") of the second derivative. This highly involved expression in /, h and 
d can be expressed by 7r and the Schwarz derivative Kf in a simple way. Solving (3.9) 
for /W and substituting /W and f^ in (A", A") leads to a significant simplification: 

(A", A") = d (2d" + 3d/"2//'2 - 2d/<3>//' - TT4 + 47rd7r' - 47rV - 4dr2) 

Replacing here f^ according to (2.1) gives an expression depending only on 7r, /C/ 
and d: 

(3.10)(A", A") = -TT4 + d2*/2 + 47rd7r' - 47r2d' - 4d'2 + 2dd" 

In a similar way an expression for (A'", A'") is obtained: 

<A'",A'") = 7T4/cJ-d2/c) + 47r37r" + 6d/c/(d'/c'/-/c/d") 

(3.11) 

ÍT4*2. - d2/.4. + 47r37r" + 6dK/ (dV, - K/d") 
-4TT (2d^7r'-3ď7r" + 67r'ď') 
+2TT2 (-e^ + ZK^ď + dKfKfj + d3^ 

+3 (47r/2ď + 3/s}ď2-3ď'2 + 2ďdW) 

For d(z) = t the operator A/,/̂  describes meromorphic curves of constant speed 1 
in C3. Curvature K and torsion f of A/^t are given by K = J—TT4 — /c2+4i7T7r' and 
r = -K-2 (TT6 + TT2 K) - 6i7r37r' - 2T^ -iKfK

f
f- 27r7r") . 



DEFORMATIONS OF MINIMAL SURFACES OF R3 CONTAINING PLANAR GEODESICS 1 5 1 

4 Deformations and the Bjorling Formula 

We are going to show that the Bjorling formula behaves well under deformations. 
Assume that a planar unit speed curve a is defined in terms of its curvature w' by (2.6). 
We will refer to a as the base curve of Bj*. The variation of Bj* must be a differential 
expression in w' and ft to be computed from definition (3.1) and equations (2.7). The 
explicit result is the following 

Proposition 4.1 If a is a real planar curve given by its curvature w' as in (2.6) then 
the variation o/Bj*(z) with a function y/ih(z) is the minimal curve 

(4.1) VarBJ.)Víh = JL-. 

/ -4sin(u;)Л'«;'3 + Зcos(w)W 2 -2cos(tü)Wti/"- ^ 
2to'2 (2cos(to)ft" + Лsin(to)u>"), 

4cos(u>)AV3 + Зftsin(гo)to"2 - 2ftsin(to)u/u/"+ 
w'2 (-4 sin(u>) A" + 2 cos(ю) hw"), 

^ .(4u/2ft" + ft(4u/4-Зu/'2 + 2t«V'')) j 

Again the proof is elementary but involved. We conclude from this that for real 
functions ft the curve VarBj. ^h is again of type Bj*. The base curve f3 of VarBj.yjA 

is given by the first and second component of the vector (4.1). If one tries to express 
P directly in terms of the components a and b of the curve a = (a, b) one arrives at 
very involved terms. There are relatively simple expressions for the infinitesimal arc 
length dsp and the signed curvature Kp of (3: 

(4.2) 

' ds} = {4 w'2 (2 w' h® - 3 h" to") + 2 tí w' (4 u/4 - 3 w"2 + 2 w' w®) 

+ h (4tu'4 w" + 21 tu"3 - 22u/w"u><3) + 4tu'2 u)W) } (8«;'»)_1 

itfi = 8w,37{4w'2 (-3h"w" + 2w'h&) 

+ 2tívf (4w1*-3to"2 + 2u/tu<3>) 

+ h (4u/4 to" + 21 u)"3 - 22 tt/u>" u)<3) + 4to'2 toW) } ~ \ 

Let us have a look at an example. The catenoid is the surface of revolution of the 
catenary. The associated minimal curve of the catenoid and of its deformation with a 
function y/i h are 

/ cos(z) \ / - cos(-) /.'(-) + sin(-) h"(z) \ 
$» . (*)= s i m » aadVar r (z) = - sin(-) h'(z) - cos(-) h"(z) 

{ -iz ) *<">Vth { i(h(z) + h"(z)) ) 

The derivative of the natural parameter and minimal curvature of $Cat are constant: 
Peat = ĉat = >/». For Var^catyjfc these invariants are j/ = y/h1 + ft'" and K2 = 
i (4 ft'2 + 5 ft"2 + 4 ft' ft'" +10 ft" ft"" + 5 ft""2 - 4 ft' ft<5> - 4 ft'" ft<5>) (2 (ft' + ft'"))"3 re­
spectively. 
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Two simple examples give a visual idea ot the bjorlmg tormuia and its deformation. 

Although the catenoid is a regular embedded minimal surface, it seems that almost 
all detormations loose these properties. The detormed surtaces have branchpoints and 
selhntersections. We choose for the first picture h(z) -= a (sin3(z) +cos3(z)) with 
a real parameter a and draw for a = 1 the base curve of the catenoid, i. e. the 
unit circle, together with that ot the deformed curve. For a smaller deformation the 
curve of intersection with the sy-plane has no singularities but the associated minimal 
surface has still branch points and seltintersections. We choose a = 1/13 to obtain the 
configuration of the second picture. 
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