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INTEGRABILITY OF THE POISSON ALGEBRA ON A 

LOCALLY CONFORMAL SYMPLECTIC MANIFOLD 

STEFAN HALLER AND TOMASZ RYBICKI 

ABSTRACT. It is proven that the Poisson algebra of a locally conformal symplectic 
manifold is integrable by making use of a convenient setting in global analysis. It is 
also observed that, contrary to the symplectic case, a unified approach to the compact 
and non-compact case is possible. 

1. INTRODUCTION 

The aim of this note is to find the Lie group for the Poisson algebra of a locally 
conformal symplectic structure. The locally conformal symplectic manifolds consti
tute an intermediate notion between almost symplectic and symplectic manifolds. 

An almost symplectic manifold (M, ft) is called locally conformal symplectic (Las.) 
if there exists an open covering {Ui}teI and a family of positive functions a» G 
C°°(UUR) such that dfaQ) = 0 on Ut. It was first observed by H.C.Lee in [10] 
that then dlnai glue up to a closed 1-form u. So equivalently, and this will be our 
working definition, an l.c.s. manifold is a triple (M, ft^u) where a; is a closed 1-form 
and fi is a non-degenerate 2-form satisfying 

cTfi := dft + w A ft = 0. 

Since ft is non-degenerate we get a canonical vector bundle isomorphism b : TM = 
T*M given by X »-> i^O- By jt we denote the inverse of b. 

The properties of l.c.s. structures have been studied in [4], [6], [7], [8], [14]. The 
l.c.s. manifolds are geometrically significant because they are exactly transitive Ja-
cobi manifolds of even dimension, and any even dimensional leaf of the characteristic 
foliation of a Jacobi manifold carries an l.c.s. structure. But they also provide a 
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physics motivation as they can serve as a more general model of the phase-space 
with all its good properties, cf. [14]. r 

The third theorem of Lie asserts that any finite dimensional Lie algebra is actually 
the Lie algebra of a Lie group. This is no longer true in the infinite dimensional case, 
see, e.g., [5]. However there are several remarkable generalizations of this theorem, 
cf. [1], [3], [12], [13]. 

In the present note we extend some integrability results ([13],[1]) in the symplectic 
geometry to the Las. case. It is surprising that, contrary to the symplectic case, the 
integrability of the l.cs. Poisson algebra can be proven without discerning the com
pactness and non-eompactness of a manifold (provided it is not globally conformal 
symplectic). 

2. PRELIMINARIES AND THE "WEAK" INTEGRABILITY 

Let (M, fi,c-J) be an l.cs. manifold. Alternatively it is defined by a couple (A,E) 
where A is a non-degenerate skew-symmetric (2,0)-tensor field, and E is a vector 
field which satisfy the relations 

[A, A] = 2E A A, LEA = [E, A] = 0, 

where [•,•] denotes the Schouten-Nijenhuis bracket. The bracket on C°°(M, R) is 
then given by: 

{u, v} = A(du, dv) + udv(E) - vdu(E), 

and Vc(M,n,uj) wild stand for the Poisson algebra (C°°(M,R), {•, •}). 
Suppose a is a nowhere vanishing function on M. Then one can define a new 

bracket by {f,g}a •= ^{afia9}- We then have Aa = aA, Ea = aE + A(da) 
and fta = ^0 , ua = w + ~ . Moreover (M,Qa,uja) is again an l.cs. manifold 
which is called conformally equivalent to the given one. We will denote this by 
(M, Q,u) ~ (M,fta,uja). An l.cs. manifold is called globally conformal symplectic 
iff it is conformally equivalent to a symplectic manifold. This is the case if and only 
if u is exact. 

If g is a diffeomorphism of M then (M,g*Q,g*uj) is again an l.cs. manifold. We 
write Diff^°(M, ft, UJ) for the group of all compactly supported diffeomorphisms that 
preserve the l.cs, structure (O, UJ) up to conformal equivalence, i.e. 

Diff^°(M,fi,u/) := {g € Diff^(M) : (M,g*Q,g*u) ~ (M,Q,UJ)} . 

More explicitly, g € DiSf(M,n,uj) iff there exists a € C°°(M,R\ 0) such that 
g*Vt = \Sl and g*u = UJ + d(ln \a\). If dimM > 2 then the first equation implies the 
second since UJ is unique. Next we set 

Xc(M,Q,w) := {X € XC(M) : 3u G C°°(M,R) : LXQ = -UQ,LXUJ = du) . 

Again, if dimM > 2 then the equation LXQ = -uQ implies the equation Lxu = du. 
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Notice that any Hamiltonian vector field Xu = (jcf̂ u G Xc(M,Vt,u) for u G 
CC°°(M,M), since LXuQ = -u(Xu)n and LXuu = d(u(Xu)). In terms of A and E 
the Hamiltonian is Xu = A(du) + uE. Then we have 

{u, v} = -Q,(XU, Xv) = Xuv + vu(Xu) = ~(Xvu + uu(Xv)). 

In [8] it is shown that XC(M, tt,u) is the Lie algebra of Diff£°(M,fi,u;) in the 
following sense: 

Proposition 2.1. Let g G C°°((R,0), (Diffc
x>(M),id)). Then we have: 

g G C°°(R,Diff^(M,Q,u;)) & 8rg G Ql(R;Xc(M,n,u)) 

&gteXc(M,n,u) 

(Here Srg is the right logarithmic derivative, cf. [9].) 
Especially F l x G C00(R,Diffc

X)(M,fi,a;)) iff X G Xc(M,n,u). 

The mapping V. : VC(M, Q,,u) 3 u »-> Xu G Xc(M, £l,u) is a Lie algebra homo-
morphism, i.e. K{u>t,} = [K^X,,]. We have that VC(M, Q,u) is weakly integrable (in 
terms of [1]) and, moreover, in a more unified manner than in the symplectic case 
(cf. [1]). 

Proposition 2.2 [14]. Suppose (M, Q, u) is not globally conformal symplectic. Then 
% is an isomorphism from Vc(M,£l,u) onto its image Wc(M,Q,u). 

In fact, the mapping u *-» duu is injective, since its kernel is H®* (M) = 0 for a 
non-exact u. See the section below for this (Lemma 3.1). 

3 . d^-COHOMOLOGY 

Let u be a closed 1-form on a manifold M and consider the differential: 

rf" : JT (M) -> fi*+1(M) d?a := da + u A a 

Since u is closed we have d" o d" = 0. We denote the corresponding cohomology 
by H^(M), and the cohomology with compact support by H^(M). If [u] = [uf] G 
Hl(M) we can choose a G C°°(M,R) such that u' = u + ^ = u + dln|a| and 
obtain an isomorphism £ : H^(M) -> H^,(M) given by multiplication with \. So 
the cF-cohomology does only depend on the cohomology class of u. Especially it is 
isomorphic to the ordinary de Rham cohomology if u is exact. 

Consider the sheaf FU(U) := {/ G C°°(U,R) : d"f = 0}. It is a locally constant 
sheaf and the following is a fine resolution: 

So H%u (M) is simply the sheaf cohomology of Tw. Moreover one can easily construct 
a bundle of coefficients on M such that the sheaf of sections is precisely T^. Thus 
#£, (M) is a kind of twisted de Rham cohomology. See [7] and [8] for more details. 
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Lemma 3.1. Let M be connected and let u> be a closed l-form which is not exact. 
Then H%„ (M) as well as H^ (M) vanishes. 

Proof. Consider first the case M = Sl. We may assume u> = Xd9 for some A £ R. 
We consider / € Q°(51) as periodic function on the line. Being cP-closed translates 
to / ' 4- A/ = 0, which has no nontrivial periodic solution. So H^(SX) = 0. 

For arbitrary M we may choose a mapping i : Sl -* M such that i*u is non
exact. If / <E Q°(M) is c^-closed we get drui*f = 0 and thus i*f = 0 by the 
previous paragraph. Since the zero set of a d^-closed function is open and closed, 
we get / = 0 from the connectedness of M. • 

4. SOME INVARIANTS 

The following facts have been established in [8]. 

Proposition 4.1. A compactly supported vector field X 6 XC(M, Q,u;) if and only 
if there exists a locally constant function ex € C°°(M, R) with d"(bX) = c^Q-
In this case ex = ix^ — u>x> where ux € C°°(M,R) satisfies LxQ = —uxft and 
Lx& = dux- Moreover the mapping 

<p:£c(M,Q,u;)->Hc
0(M), X :-> [cx] 

is a Lie algebra homomorphism. If M is compact it is surjective iffVt is d"-exact. 
If (M,Q,u>) - (M,Q',u/) then £c(M,Q,u/) = 3£c(M,Q',u/) and <D = <pf. If 

g € Diff~(M,Q,u;) then £c(M,Q,u/) = Xc(M,g*Q,g*u>), <p o g* = g* o <p and if 
g € Diff£°(M, Q,u;)0 have even get <p o g* = <D. (The subscript o indicates the 
identity component.) 

That (p does not vanish in general, cf. [8] and the above examples. 

Proposition 4.2. The Lie algebra homomorphism (p integrates to a group homo
morphism 

$ : Dirtr(M,Q,u;)0 -> HC°(M), 

i.e. <l o exp = expotp, or $(F\X) = <p(X). <l is expressed as 

*(fl) = / / <P*(sr9) = fi <p(9t)dt = [J0
X Cgtdt) = [fl g*tcgtdt] . 

I/(M,Q,u;)~(M,Q',u/) thenDm^(Mjniu>)0 = mS^(M,n\u>,)0 and <l' = <l. 
Now we define an analog of the flux homomorphism. This concept is essentially 

due to E.Calabi [2]. The following facts ensure us that this concept works on the 
ground of the l.c.s. theory. 

Proposition 4.3. We have a surjective Lie algebra homomorphism 

ip : ker<p -> Bdl(M), X ^ [\>X]. 

If (M,Q,u;) ~ (M,Q',u/) with Q' = ^Q, u/ = u + d(ln|a|) then kerip = ker<D' and 

\$ = ^'-
Ifg e Diff£°(M,Q,u;) and (M,Q",u/') := (M,g*n,g*u>) then kery> = ker<p" and 

^tp o g* = g* o\j> and if g € ker<S? we even get tp o g* = tp. 
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Proposition 4.4. The Lie algebra homomorphism \l> integrates to a surjective group 
homomorphism 

*:ker^->H^(M) , 

i.e. ^ o exp = ip o exp, or *(F1X) = ip(X). * is defined by 

*fo) = fiMPg) = fittitW = [fiiitndt] = [fiat9*i§tndt], 

where g*tl = £f l . / / (M,n ,w) '~ (M,n',a/) twtt Jl' = £ft and a;' = w + d(ln|a|) 

fhen ker$' = ker$ and i * ' = * . 

We let T := (̂71*1 (ker $)). Then T is countable, cf. [8]. ^ descends to a surjective 
homomorphism 

$ : k e r $ - r H ^ ( M ) / T . 

Suppose now that (M, Q,CJ) is exact, i.e. fi = d^a. Then for g G ker$ we have 

$(g) = [a1g{a-a}eH1
d„(M), 

where 0*1} = ^-Jl and gt*o; = a; + d(ln \at\). In particular, T = 0. 
The following gives a characterization of Hamiltonian isotopies. 

Proposition 4.5. Let g G C°°((R,0), (Difff (M,n,o/),id)). Then 

g G C°°(R, ker #) <=t> <T# G fi^R; ker ^) <* gt G ker ^ . 

Specifically, F l x G C°°(R,ker*) iff X £ ker^. Moreover, ker\I> is connected by 
smooth arcs, and ker $ = ker§. 

Let us now give some examples of l.c.s. manifolds which motivate our interest. 
As in the symplectic case there is also a 'canonical' l.c.s. structure on T*M. Given 

a closed 1-form u on M we let u' := n*uj G Q1(T*M), where it : T*M -> M is the 
projection. Let ©M € nx(T*M) be the canonical 1-form and set Q' := d^'OM- Then 
(T*M, fy,a/) is an l.c.s. manifold. It is globally conformal symplectic iff w is exact. 
Moreover the graph of a G fix(M) is a Lagrangian submanifold iff a is dw-closed. 

On S3 there exists a global frame of 1-forms a, /3,7 satisfying da = /?A7, d/3 = 7Aa 
and d7 = a A /?. Let u; := dt G Q}(Sl) be the angular form and 0 := d^a G 
tt2(Sl x S3). Then (S1 x S3,fi,u;) is an exact l.c.s. manifold with non-vanishing <D. 
Notice that there exists no symplectic structure on Sl x S3. 

Finally consider the 4-dimensional torus T4 and let dx, dy, dx\ dyl denote the 
invariant 1-forms. Let u := drc, a := sin(t/)da:, + cos(y)dyf and 0 := dwa. Then one 
can easily check that (M, ft, a;) is an exact l.c.s. manifold with non-vanishing ip. 
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5. ker# is A LIE GROUP 

In this section we will show that, under some assumption, ker$ is a Lie group 
and the Lie algebra of it agrees with ker^ = HC(M, fl^u). Hence in view of Propo
sition 2.2 PC(M, Q,u;) is then integrable. We will assume that (M,fi,u;) satisfies the 
condition: 

(*) the space B^ (M) of d£-exact forms is a convenient direct 

summand in the space Z\* (M) of all d^-closed forms. 

This is of course satisfied if HJW (M) is finite dimensional, especially all compact 
manifolds satisfy (*). 

Theorem 5.1. Diff£°(M, fi,u;) is a Lie group in the sense of [9] modeled on the 
convenient vector space £C(M, $1, u/). Furthermore, under the condition (*) the group 
ker^ is a regular Lie group with Lie algebra WC(M, Q,u;). 

Proof. In [7] one of us has shown the first assertion. To prove the second it will be 
useful to give a sketch of the proof of the first. 

Assume Q is not d^-exact (i.e. <p = 0). The remaining case is a bit more compli
cated but similar. Let us consider the l.c.s. manifold (T*M,Q^u/) where a/ = n*uj, 
Q' = d"' 9 M , 0 M is the canonical 1-form living on T*M, and n : T*M -> M is the 
projection, cf. Section 4. It is well known that for any 1-form a one has a* OM = a 
and, consequently, a*fl' = d^ a. 

If Pi,P2 ; M x M -4 M be the projections to the first and second factor then 
p\w — p\w is closed and equal to zero on the diagonal A. Therefore one can choose 
a smooth function A defined locally around A such that p*,u — p\uj = din A and 
A|A = 1. 

On some neighborhood of A we consider the l.c.s. structure (fi,cD) with Q := p\uo 
and 0 := p\ft — Xpffl. Then we have 

g £ Diff^°(M,0,o;) & (id,#)*Q = 0. 

Let exp : TM -> M x M be the exponential mapping of a Riemannian metric on 
M. We have a diffeomorphisms 

7 := expo)}: T*M DV^W cMxM. 

Then one can arrange so that (V,7*fi,7*tD) and (V, Q',u/) are equivalent and the 
zero section is their common Lagrange submanifold. 

There is an open neighborhood U of id in Diff^°(M) with a chart u : U —> u(U) C 
fii(M) for Diff^(M) at id given by 

u(g) := 7" 1 ° (id, g) o (?r o 7 - 1 o (id, g))"1. 

Now g e Difff)(M,0,w) <-> dc(u(g)) = 0 and, consequently 

u(U H Diff̂ ° (M, 0, u))) = u(U) n Z\» (M). 
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Observe that the 1-form u(g) is d£-exact iff so is the pullback of QM on L = 
u(g)(M), or 0i = (7""1)*0jif on W pulls back to a d^-exact form on the graph of 
g. Equivalently, (id,#)*0i is d^-exact on M. 

The chart u may be also regarded as a chart on Diff£°(M, Q,UJ). Let gt € U, 
t e [0,1], with #o = id. Then igtQ is d^-exact if and only if (id,#*)*6i is d^-exact 
for any t. We wish to show that, shrinking U if necessary, one has 

p € U f l k e r ^ & u(g) e u(U) DB^(M) . 

This follows by a standard argument (cf. [9]) provided (*) is fulfilled. Finally it is 
visible from Proposition 4.5 that the Lie algebra of ker # is actually UC(M, fi,o>). • 

That ker ^ is a Lie group can be derived also from a complicated theory due to 
H.Omori. By using both Probenius theorem and implicit function theorem in the 
case of ILH-Lie groups he proved essentially the following result. 

Theorem 5.2 [11], IX,7.2. Diff£°(M,Q,u;) is a strong ILH-Lie group. 

Proposition 5.3. Let G be the kernel of a continuous, surjective homomorphism 
from Diff£°(M, fi, u) onto a finite dimensional Lie group. Then G carries a structure 
of a Frechet-Lie group. Specifically, ker \I> possesses a Lie group structure. 

Indeed, Diff£°(M, fi,u;) is a strong ILH-Lie group, and an argument from [11], 
p. 226, ensures us that G is a Frechet-Lie group (but not necessarily an ILH-Lie 
group). 
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