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LAGRANGE FUNCTIONS GENERATING POISSON MANIFOLDS
OF GEODESIC ARCS

LUBOMIR KLAPKA

ABSTRACT. Necessary and sufficient conditions are found under which a given La-
grange function generates a Poisson manifold of geodesic arcs. These conditions are
framed in terms of tangent Frobenius algebras.

1. BASIC NOTIONS

In this paper notions of geodesics, Lagrangian mechanics, linear connections, Poisson
manifolds, Frobenius algebras and homogeneous functions are used in the usual sense
(see, e.g. [1], [2], [4], [5] and [6]). In all local expressions we use the standard summation
convention.

Let us consider the closed interval [0,1] C R, a smooth finite-dimensional manifold
X, the tangent bundle TX, the canonical projection 7 : TX — X, and a smooth
symmetric linear connection I' on TX. A geodesic [0,1] = X of the connection I is
called a geodesic arc. Let Wr(X) be the set of all geodesic arcs. It is well known that
there exists a bijective mapping fr : Wr(X) 3 ¥ — 4(0) € codom fBr, where + is the
prolongation of the geodesic arc v on tangent bundle 7X. The subset codom fr C TX
is open and contains the zero section. The set Wr(X) equipped with a structure of
smooth fibered manifold such that fr is an isomorphism of smooth fibered manifolds
is called a manifold of geodesic arcs.

Let M be the set of all polynomial mappings [0,1] — [0, 1] of degree < 1. Then it
is known that for any pu € M there exists the smooth mapping R, : Wr(X) > v —
You € Wr(X). A Poisson manifold of geodesic arcs is a manifold of geodesic arcs
Wr(X) equipped with a Poisson structure such that all mappings R, where p € M,
are endomorphisms of Wr(X). General Poisson manifolds of geodesic arcs are the
subject of the paper [3].
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A mapping whose codomain is R will be called a function. Let us consider a smooth
regular Lagrange function L, where dom L C TX is an open submanifold equipped
with the canonical symplectic structure. Any mapping [0, 1] — X satisfying the corre-
sponding Euler-Lagrange equations is called an ertremal arc of the Lagrange function
L. Let W(X) be the set of all extremal arcs of L. The set W(X) equipped with
a symplectic structure such that the bijective mapping B : W(X) 3 v — 4(0) ¢
codom 3, C dom L is an isomorphism of symplectic manifolds is called a symplectic
manifold of extremal arcs. We say that the Lagrange function L generates a Poisson
manifold of geodesic arcs Wir(X) if and only if

(1) Wi(X) c Wr(X) is a symplectic submanifold,
(2) Wr(X)>~v— v(0) € X is a surjective mapping.

Let us remark that using local expressions (see [3]) we get the following two assertions:
No Poisson manifold of geodesic arcs is symplectic, so Wi(X) # Wr(X). If L is a
Lagrange function satisfying (2), then there exists at most one Poisson manifold of
geodesic arcs satisfying (1).

Let Z — X be a fibered manifold, f be a function such that dom f C Z. We say that
f is X -projectable if there exists a function f such that f = fo#, where 7: Z —» X
is the canonical projection.

2. FIBRATIONS OF ALGEBRAS

Throughout this paper an algebra A is a finite-dimensional R-module A together
with a bilinear multiplication A x A — A which makes A into an associative ring with
the unity element. A structure tensor of A is the tensor of the type (2, 1) associated
with this multiplication. An algebra A is called commutative if A is a commutative
ring. Any algebra A is a left A-module. The dual R-module A* equipped with the
multiplication A x A* 3 (a,a) = (A 3 b — a(ba) € R) € A" is a left A-module
as well. An algebra A is a Frobenius algebra if and only if the left A-modules A and
A* are isomorphic. An algebra A* is a dual Frobenius algebra of A if and only if the
following conditions hold: (i) A is a Frobenius algebra; (ii) there exists an isomorphism
of algebras A — A*; (iii) the isomorphism of algebras A — A* is an isomorphism of
left A-modules. The unity element in the dual Frobenius algebra A* will be denoted
by (-):A3a— (a) eR.

Let A be an algebra. Denote by exp the mapping that takes each point a € A to
y(1) € A, where y : R — A is the solution of the differential equation dy/dr = ay
under the condition y(0) = 1. The mapping exp exists and the solution y is given by
y:R 31 — exp(ra) € A. Moreover, the mapping exp is a local diffeomorphism. This
means that for any ag € A there is a neighborhood U 3 ag such that the mapping
U > a—sexpa € expU is a diffeomorphism. Therefore, we can locally define a smooth
mapping In : expU — U by the formula lnoexp|y = idy.

Let A be an commutative algebra. By the above for each pair a,b € A it follows
that exp(a + b) = exp(a) exp(b) and so

dexp(a + br)

() dr

= bexp(a).

=0
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A vector bundle Z — X is called a fibration of algebras if the following conditions
hold: (i) any fiber of Z is an algebra; (ii) the structure tensor field is smooth. If
Z — X is a fibration of algebras, then the mapping Z 3 z — exp(z) € Z is a local
diffeomorphism. Over the manifold X we shall consider partly a fibration of tangent
algebras T'X, partly a fibration of cotangent algebras 7" X.

If g/ are components of a cotangent algebra structure tensor field, then the com-
mutativity gives

(4) % =a
and the associativity gives
(5) 9 g = g™ om.

There exists a differential invariant of a structure tensor field. This invariant is a tensor
field of the type (3,2). Its components are

lag;m+ wnagl + szags szagk slagk %

itm _
Jlm_saxk 9s 5ok T 9%k aj+9135+9333+g;m313

(6) .
209" imi‘l_ii «0gm  0g" _ 299" _ o097

=95 B Ozl 5 Oxd -9 Oz* ~ 9% dzs Ik Bgs T Ik Gps-

It is easy to prove that (4), (5), (6) imply Ji™ = Jim = Jipt = —Jitm,

3. LOCAL EXPRESSIONS

On TX we shall use standard local fiber coordinates z*, v*. The canonical symplectic
structure on codom B, C dom L is defined by the relations

o oL oL
7 1 J = _— =
7) {x,z} { 6111} I {Bvi’avf}
The Hamilton function is defined by the relation
. OL
(8) H=1 —a—— -L
vt

Lemma 1. A given smooth Lagrange function L, where dom L C TX, m(codom ) =
X, generates a Poisson manifold of geodesic arcs if and only if on a neighborhood of

every point vy € codom By, there exist X -projectable functions gi¥ = gft, 19, = T, such
that

&L ;

ik l £

(9) gl Bv" 6Uj - 6_7')
8L ; ., 0L ., dL

g LA -
wow # T Buwon Ut o
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Proof. Let us suppose that L generates a Poisson manifold of geodesic arcs Wr(X).
Then from (1) we get codom §;, C codom fr. On codom fy, relations (7) imply

(11) {z, 27} = 0.

Since z' are X-projectable functions, (11) can be extended to codom fr. Let us consider
a Poisson structure on codom G such that fr is an isomorphism of Poisson manifolds.
If k € [0,1], v € codom fr, k : [0,1] 2 7 = k7 € [0, 1], then

Br o R o Br'(v) = kv.

Let 2*, v* be standard fiber coordinates on a neighborhood of a point vy € codom .
Since fro R, ofr! is an endomorphism of the Poisson manifold codom G, {z*,v*} are
homogeneous functions of degree 1 in v'. Because codom fr contains the zero section
of TX, these homogeneous functions are polynomials (see, e.g. [5]). Then there exist
X-projectable functions gj* such that

(12) {z', v} = glv*.

Relations (1), (7), (12) imply (9), relation (9) implies g}/ = g,]cl Denoting by I}, =T},
components of the connection T', from (1) we get (10).

Conversely, let gi¥ = gk, '}, = '), be X-projectable functions on a neighborhood
of a point vy € codom 3, such that (9) and (10) hold. Then from (7), (9), (10) we
have (11), (12) and
(13) {v', v} = (6" Tl = 9" Ty 0" '

Consider the Hamilton vector field £y generated by the Hamilton function (8) on
codom f. Its components are given, according to (7) and (10), by the relations

(14) {z',H} =+, {v',H}=-T}vv*.

Since ', gi*, [}, are X-projectable functions, v* are globally defined on any fiber, and
m(codom B1) = X, we can extend the Poisson structure defined by the relations (11),
(12), (13), the linear symmetric connection I' defined by the components F;k, and the
Hamilton vector field £y defined by the relations (14) from the symplectic manifold
codom f, to the whole manifold 7X. The set Wr(X) of all geodesic arcs of the con-
nection I can be equipped with a Poisson structure such that Gr is an isomorphism
of Poisson manifolds. Hence, for all 4 € M we have

R, = Br" 0 0,u01)-u(0) © exp(1(0)1r) © Br,

where ,(1)—(0) is the mapping TX 3> v — (1(1)—p(0))v € TX and exp(u(0)€y) is the
flow of the vector field p(0)éy. Since R, : Wr(X) — Wr(X) is the composition of four
homomorphisms, it is an endomorphism of the Poisson manifold and so Wp(X) is the
Poisson manifold of geodesic arcs. From (9), (10) we get (1) and from 7(codom ) = X
we get (2). Thus, the Lagrange function L generates the Poisson manifold of geodesic

arcs Wr(X). This completes the proof.
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Lemma 2. Let us suppose that a Lagrange function L, dom L C TX, w(codom ;) =
X, satisfies condition (9) of Lemma 1. Then condition (10) of Lemma 1 is satisfied if
and only if on a neighborhood of every point vy € codom By, there ezist X -projectable
functions g; such that

(15) Jit=0,

(16) H = g;v' — const,
ik v

(17) 95 9 = 5j~

Proof. Let (9), (10) hold. According to (9), 8°L/8v* 0v? are homogeneous functions
of degree —1 in v*. Hence,

. PL PL
U o ov | ok ow

From (8), (18) we obtain 8?2H/dv*8v? = 0. Therefore the Hamilton function is a
polynomial of degree less than 2 in v*. Differentiating (10) with respect to v™ we see
that §2L/0z' Gv™ — 02L/8z™ dv' are homogeneous function of degree 0 in v'. Thus,
according to (8), (10), 9H/0z' must be a homogeneous function of degree 1 in v. We
have proved (16). From (9), (10) we get -

(18)

i 6%L oL i
ij 0 k_ 77 ) _mi
(19) e <6vf oz * sz> =TI
where
(20) D = Ty ok
Differentiating (19) with respect to v7, v*, v!, according to (6), (9) we obtain
2 2 2 3
o i PL__PL_PL .. 0T

In Y 50i 0vp GuF vt 0t v ™ " T Gui vk aul
Differentiating (8) with respect to v7, according to (16) we obtain
o’L
Borow =9
Combining (9), (20), (21), (22) we obtain (15), (17).

Conversely, suppose that (9), (15), (16), (17) hold and I'* is given by (19). Rela-
tions (8), (16), (19) imply

(22)

.OT! ;i [09; Og
23 J ) R Y ¥ AL I U
) Vw0 <0$’ azz)“ v
From (6), (17) we get
(24) 0g; _ 0 _ 1 yim

5{::“5;__'5 jk 9igi9m -

According to (15), (23), (24), T are homogeneous functions of degree 2 in v'. Further,
according to (15), (21), I'* are polynomials in v'. Hence, there exist X-projectable
functions I, = [}, such that (20) holds. Finally from (9), (19), (20) we get (10). This
completes the proof.
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4. LAGRANGE FUNCTIONS

Theorem. A given smooth Lagrange function L, where domL C TX, codom[L =
R, generates a Poisson manifold of geodesic arcs if and only if the three following
conditions hold:

1. there ezists a fibration of tangent commutative Frobenius algebras TX such that
for every v € codom f§;,

L(v) = (v(In v —1)) + const,

2. there exists a fibration of dual Frobenius algebras T*X such that the differential
invariant (6) is zero,
3. m(codom ) = X.
Proof. Let us suppose that L generates a Poisson manifold of geodesic arcs Wr(X).
Then from (2) we get m(codom f,) = X. Hence, (4), (9), (10) follow from Lemma 1
and (15), (16), (17) follow from Lemma 2. The functions gj* are components of a tensor
field. Its type is (2, 1). Since m(codom ;) = X, this field is defined on the whole man-
ifold X. Consider the associated bilinear multiplication T; X x T;X — T;X for any
z € X. According to (4), this multiplication is commutative. Differentiating (9) with
respect to v™, and multiplying by (gP™g% — g™ gP’) v v*, we obtain (5). Therefore, the
multiplication T; X xT; X — T, X is associative. Since by (17) there exists the unity el-
ement, the cotangent space 7 X is a commutative algebra. Put g;; = 9 exp; o A(v)/9v7,
where A : T, X Ncodom f;, — T>X is the Legendre transformation A;(v) = 0L(v)/dv".
Since (3) implies

dexpi(p) _ ik
(25) o, Y expy(p) »
we obtain
_ 8214(”) kil
(26) g‘lJ - 61)] 611’: gi exp,o)\('l)).

According to (5), (9), (25), all second derivatives of the mapping expo A are zeros.
Whence, g;;’s are independent of v7’s. Multiplying (26) by v*, according to (9) we
obtain

(27) exp; 0 A(v) = gi; v’
Therefore, there exists a linear mapping ¢ : T, X — T X such that
(28) SplT,chodom g, = €Xpo A

Because ), exp are local diffeomorphisms, ¢ is a linear isomorphism. Since (9), (26),
(27) imply g 0 = 9197, we have (p(a)p(B))(c) = (o(c)p(a))(b) for all a,b,c €
T, X. If we consider the structure of algebra on T, X such that ¢ is an isomorphism
of algebras, we get w(ab)(c) = w(ca)(h). If a = 1, then ¢(b)(c) = ¢(c)(b). Hence,
w(ab)(c) = ¢(b)(ca), and so p(ab) = ap(b). Therefore, ¢ is an isomorphism of left
T, X-modules, T, X is a Frobenius algebra, and T2 X is a dual Frobenius algebra of
T.X. Since z € X is arbitrary, we get a fibration of tangent commutative Frobenius
algebras TX and a fibration of dual Frobenius algebras T* X . From (15) it follows that
the corresponding differential invariant (6) is zero. Suppose that v € codom ;. Then
v € T, X Ncodom f1,, where = = 7(v). Since ¢ is an isomorphism of Frobenius algebras
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and isomorphism of left modules, from (28) we obtain v' 9L(v)/0v' = A(v)(v)
In(p(v))(v) = ¢(Inv)(v) = (Inve(l))(w) = ¢(1)(vinv) = (vinv). Since (16), (17)
imply H(v) = (v) — const, from (8) we get condition 1 of the Theorem.

Conversely, suppose that the conditions 1-3 of the Theorem are satisfied. Denoting
by g and g; components of the cotangent algebra structure tensor field and the
cotangent algebra unity element field, we have (15) and (17). From (8) and condition
1 of the Theorem by a straightforward computation we get (9), (16). Thus, from
Lemmas 1 and 2 it follows that the Lagrange function L generates a Poisson manifold
of geodesic arcs. This completes the proof.

Il
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