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ON QUASIJET BUNDLES

JIRf TOMAS

ABsTRACT. We discuss the Weil approach to the bundles of quasijets and describe the
inclusion of the bundle of non-holonomic r-jets into the bundle of quasijets of order r.
Applying this approach we rededuce a result by Dekrét characterizing non-holonomic
r-jets among quasijets of order r.

1. PRELIMINARIES

We start from the concept of non holonomic r-jet, introduced by Ehresmann, (2]
and investigated in works of Pradines, Koldf, Dekrét, Kures, Virsik and others, [8],
3], 11, 7).

We follow the results of Dekrét from [1], namely the definition of quasijets with
their basic properties and essentially use the result of Kolaf and Mikulski from [4],
giving the description of bundle functors defined on the category Mf,, x Mf from
the point of view of the theory of Weil bundles. We use the standard notation from
(5]

In the very beginning, we remind the basic concepts of non-holonomic r-jet and
quasijet of order r. We also recall their basic properties and present the relation be-
tween them. We define the associated concept of (k, 7)-quasivelocities and introduce
the bundle functor of quasijets on M f, x Mf.

Let M,N,P be manifolds. We recall that a non-holonomic r-jet is defined by
induction as follows.

Definition 1. For r = 1, the set of non-holonomic 1-jets fl(M, N) is the set of
1-jets J!(M, N) with their standard composition.

By induction, let « : j’“l(M, N) — M denote the source projection and S :
J"=}(M,N) = N the target projection of (r — 1)-th order non-holonomic jets. Then
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X is said to be a non-holonomic r-jet with the source z € M and the target y € N,
if there is a local section o : M — J™=1(M, N) such that X = jlo and B(c(z)) = y.

Let Y = jp for a local section p: N — J'=Y(N, P), y = B(o(z)). The composi-
tion Y o X of non-holonomic r-jets is defined by

Y o X = j;(p(B(o(w)) or—1 o (u))

where o,._; denotes the composition of non-holonomic (r—1)-jets and u is an element
of M from a neighbourhood of z.

Now we are going to remind the concept of quasijet. For a manifold M, consider
the r-times iterated tangent bundle T" M. It is well-known that there are 7 structures
of vector bundle on T"M, namely T"~p}, : T"M — T~ M, where p}, : T°M —
T*~'M denote the tangent bundle pro;ectlon The definition of quasijet of order 7
reads as follows

Definition 2. Let z € M and y € N. A map ¢ : (T"M); — (T"N), is said to
be a quasijet of order r with the source z and the target y, if it is a vector bundle
morphism with respect to all vector bundle structures (T"~*pX,), and (T"*pk,),,
k=1,...,r. The set of all such quasijets is denoted by QJI (M, N)y

We need the coordinate description of quasijets. Let z* = z} denote the coordi-
nates on a manifold M and z} = dz}, the additional coordinates on TM. Define the
coordinates on 77 M by induction as follows. Let k.. _, denote the coordinates on
T e;€{0,1} Vie {1,...,r—1}. Thenzi . denote the base coordinates
on T"M with respect to the tangent bundle prOJectlon phy :TTM — T™"1M, while
xi ., =dzi . denote the fiber ones.

By Dekret 11, every quasijet ¢ € QJL(M,N) is expressed in coordinates by
py'

ai’. ,;’ defined by the following equation
Ig . .
(1) ygl...sr - Z a‘u 1;‘ :,ll b "’c;kk
(.
where the sum is taken over all multiindices ~!,...,v* satisfying the following
conditions

D)y +-+yr=e=(e1,...,&)

(ii) degy® < degy?--- < deg~y*, where deg~ denotes the number of the first unit
component in 7.

(Here 7* denotes the i-th multiindex, while v; denotes the i-th component in the
multiindex 7).

In what follows, we interpret non-holonomic r-jets as quasijets of order r and prove
the compatibility of their compositions. Every non-holonomic r-jet X € JZ(M, N),
determines a quasijet uX € QJIL(M,N), as follows

Let r = 1 and X = jlf. Then pX is defined as T, f. By induction, we define
pX Ty M = TyN for X € Jr(M, N)y. Let X = jlo for a local a-section o : M —
J7(M,N). Then o(u) € J;~}(M, N) and p(o(w)) : T;™2M — Tt N. We put
pX = Top(o(u)).



ON QUASIJET BUNDLES 189

Propos:tlon 3. For a non-holonomic r-jet X € J’(M N)y, pX is a quasujet. If
YGJ'(N P), then u(Y o X) = u(Y) o u(X).

Proof. We prove the assertion by induction. Let X = jio for a local a-section
oM J- !(M,N). By induction, u(o(u)) : TI"'M — ﬂ(a(u))N is a quasi-
jet. Moreover, we have a map p(o) : T""'M — T™"IN defined by u(o)(z) =
w(o(p(2)))(2), where p : T""'M — M denotes the base projection. By the induc-
tion assumption, u(c) : T""!M — TT~1N is a vector bundle morphism with respect
to all vector bundle structures 7"~ '~*p}, and T"~1~*p},. Then it is easy to see that
Tp(o) : piy — Py is a vector bundle morphism as well as Tu(o) : T~ iphy = T 'ply
fori=1,...,r — 1. Thus pX = Typ(o) : TE *py, — T'"‘p}v is a quasijet, which
proves the ﬁrst claim.

For the progf of the second assertion, consider local sections o : M — J’ =1(M, N)
and p: N = J'"}(N, P) and define pu(p(0)) : T} \\N — T™"*P by

Blo(w))
1(p())(u(o)(u)) = ulpo Blo(u)))(u(o(u))) -
We prove that u(p) o u(o) (u)=p(p())(1(o(u))). It holds -

1(p) o u(o)(u) = p(p)(u(o)(u)) = u(p)(u(o(p(w)))(u))
= u(p o p(u(a(p(w))) () (u(o (p(u)))(u))
= p(po B(a(u)))(u(o)(u)
= p(p(o))(u(o(u))) -

By induction, we have u(p@)) (1@ (u))) = u((poB(a(u)))oo(u)) which implies p((po
Blo(uw))) oa(u)) = u(p) o u(o)(u). Let X = jlo, Y = j}i(o(z))p. Applying T to both
sides of the last equations yields u(Y o X') = u(Y')op(X). This proves our claim. O

By Dekrét, [1], there is a bundle structure QJ"(M,N) - M x N on quasijets.
Analogously to J”, [5], we can consider QJ" as the bundle functor on the category
M X Mf = me, if we define QJ7(f, 9)(X) = Jp(X)QOXOJf(a(X))f for any
local diffeomorphism f : M — M and any smooth map g : N — N. The composition
in the last expression denotes the composition of quasijets, where holonomic 7-jets
Jp(x)9 and jj,(m(x))f‘l are considered as quasijets.

Now we are going to define the bundle of (m, r)-quasivelocities. We put QT N=
QJ5(R™, N) for a manifold N and QT f = QJ§(idr=, f) for a smooth map f :
N — P. Thus we have the functor QT}, : Mf — FM. It can be easily verified
that, that QT is a product preserving functor and thus it is a Weil bundle TA
for A = QTTR. The situation is analogous to that for non-holonomic r-jets and
non-holonomic (m,r)-velocities. Denote by Qf, the Weil algebra corresponding to
the bundle of (m, r)-quasivelocities and I[~),'n the Weil algebra corresponding to the
bundle of non-holonomic (m, r)- velocities.
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2. WEIL APPROACH TO QUASIIET BUNDLES

We start this section from an important result of Koldf and Mikulski, [4], from
which we gradually deduce the description of quasijet bundles from the point of view
of the theory of Weil bundles. Applying this approach, we also describe the inclusion
of non-holonomic jets into the bundle of quasivelocities.

Let F be a bundle functor defined on the product category Mf,, x Mf. For a
couple of manifolds (M, N) € Mf,, x M f we have two fibered manifold projections
a:F(M,N)— M and b: F(M,N) — N. For another couple of manifolds (M, N) €
M fm x Mf, a local diffeomorphism g : M — M and a smooth map f : N = N,
we have a morphism_ F(g, f) : F(M,N) — F(M,N). Kolaf and Mikulski in [4]
defined the associated bundle functor G¥ on Mf by GF(N) = Fy(R™,N), GF(f) =
Fo(idgm, f). Moreover, they defined the action H¥ of the jet group G7, on GF
by HE(j5v) = Fo(y,idy) in the case F is a bundle functor of order r in the first
factor. For every jiyp € GT,, HF(j3¢) is a natural equivalence on G¥ and thus
HF . Gr, — NE(GF) is a group homomorphism of GT, into the group of all natural
equivalences NE(GF) on GF.

Conversely, let G be a bundle functor defined on Mf,, and H : GT, - NE(G)
be a group homomorphism. We remind the bundle functor (G, H) on Mf,, x Mf
defined in [4]. We have (G, H)(M,N) = P"M[GN, Hy}, the bundle associated to
the frame bundle P"M with the standard fiber GN and the action Hy of G7, on
GN. For a local diffeomorphism g : M — M and a smooth map f : N = N, we
have (G, H)(g, f) = P"g{Gf]. We have bundle projections a : (G,H)(M,N) = M
and b: (G,H)(M,N) — N.

Then the result of Kolaf and Mikulski reads as follows

Proposition 4. (i) For every bundle functor F defined on M f,, x Mf of order r
in the first factor it holds F = (GF, HF).
(ii) For another bundle functor F of this kind, natural transformationst : F — F are
in a bijection with natural transformations 7 : GF — GF satisfying the equivariancy
condition )

HE(i59) o v = 7v 0 HE i)

for any jgp € G,

(iii) A bundle functor F on Mf, x Mf of order r in the first factor preserves
products in the second factor if and only if G¥ = T4 for some Weil algebra A and
H induces a homomorphism GT, — Aut(A) of Lie groups.

The well-known bundle functors satisfying the assumptions of Proposition 4 are
the functors of holonomic jets J, non-holonomic jets J™ and semiholonomic jets J".
It is easy to verify that the functor of quasijets QJ" satisfies the assumptions of (iii)
from Proposition 4 too. Then G?/" = QT7, = T% for the Weil algebra Q7,. The
action of G, on QTy, is defined by Hn(j5p)(X) = X o (j5) 7! for X € QTN and
Jbe € Gr.. The situation is analogous to J”, J™ and J.

We are going to determine the Weil algebra Q, = QT7,R = QJj(R™,R). We
come out from the coordinate expression of quasijets given by (1), using z* for the
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canonical coordinates on R™ and y on R. In what follows, we use multiindices
formed by zeros and units, the number of which not exceed r. Denote by F, the
multiindex composed from 7 units. A multiindex « is said to be contamed in § if

j <4 forany j = 1,...,length(y). Let us assign a polynomial a; 7 ‘7_5’,"‘)

Ty
(11)

w1th variables 7 .,T,ﬁ:‘k) to a (m,r)-quasivelocity determmed by coordinates

a;’:_“:“zk. Consider the Weil algebra Dj of polynomials of k variables of degree at
most r. Then it holds

Proposition 5. Let D7 m(2r -1) be generated by 7:,’) forie {1,...,m}, v C E,.
Then Q. = m(2"—l)/1 is the Weil algebra associated to the bundle of (m,7)-
quasivelocities, where the ideal I is of the fo'rm < ‘r-s )r§” v+0 € E, >. The multi-

plication is defined as follows. For a = atl o T_g“) (L") and b = ng f:rg‘.) T},"),
the element ¢ = ab satisfies

1k 1 il g1 gih
(2) cf]...fh = ls.,'l...bei, fil+l""‘€ih
where the sum on the right-hand side of (2) is taken over all subsets {i1,...,%} C

{1,...,h} including the empty one.

Proof. Let a,b € Q}, = QT~ R be any (m, r)-quasivelocities. Denote by u : R? — R
the multiplication of reals. Then ab = T% yu(a,b) = QT u(a,b) = j(’ﬂ(a)’ﬂ(b))u(a, b).
Since a, b can be considered as maps TfR™ — T"R, fixing an element z € TgR™, we
can evaluate a(z) and b(z). In coordinates, we can express z by z? fori € {1,...,m}
and a(z) and b(z) as follows

k . :
(3) a(z) = B(a) + all W a:fy‘l ‘..r;",‘

() ﬁ(b)+ 11 Jl 5"' ?‘

The element g, ﬁ(b))y can be considered as a quasijet satisfying p§ = B(b), u§ =
Bla), p§s = 1, p§§ = pgd = 0 for any multiindices 6,6 C E, and [Lf:"'f: =0 for
1> 2. Thus T p(a, b)(z) = ,B(b)a(a:)+ﬁ(a)b(x)+a L kxf,‘,. .z,

i1dg g1 '11

where degy! < ...deg~* and degé! < --- < degd'. Comparing the coefﬁments by

L

T ... z.h we obtain
1.¢eh i1 il e+, gih
(4) Cfl...f'. :ﬁ(b) f] Ap +ﬂ( ) L] Lh +af§l...l,e," bfiH»l"'fih
where the sum is taken over all proper subsets {i1,...,%4} C {1,...,h}. The coiin-

cidence of (4) with (2) proves our claim. O

Thus the functor QJ* can be expressed as (T'%, C), where C : GT, — AutQ, is
defined by C(j5¢)(a) = a o j5p~! for any ji¢ € G}, and a € Q.
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Let us remind, that the Weil algebra ]ﬁ){n of non-holonomic (m,r)-velocities is
identified with D}, ® ... ® D}, [3]. Elements of D}, are considered as polynomials
N

. t(il) . t&"r)

A4, .4, 0y
je{l,...,r}
The following assertion describes the canonical inclusion % : Iﬁ:n — Q,, from
which we can deduce the inclusion J© — QJ" from Proposition 4. Moreover, it
determines non—holonomic (m, r)-velocities among (m, r)-quasivelocities by the fact

with variables t(li‘) 8 for u € {0,1,...,m} and t§0) =1 for

that A:’l y ,(7'1‘) . .T,sik) represents a non-holonomic (m,r)-velocity if and only if

A;’l ."'_iz depend on 4%,...,~* only up to deg~?!,...,deg~*.

Proposition 6. Leti: D, — Q, be a map defined by i(a,-l___,-rt(l")...tg")) =

k
A}l e '(vj’l)’ ({") satisfying
ek _
(5) A]l Jk a] 5‘11957'__']-‘6gegvl

Then 1 is on. injective algebra homomorphism.

Proof. Let a = a; 4t ...t¢) and b;, ;. t9)...t9) € Dr,. Then ¢ = ab
t(“+") tﬁ"“'), where t( u _ whenever > 1
Then D = i(a)i(b) satisfies Df;l'j;;fk =¥p Aﬁ1 BBt here A = i(a),

11...th J.- Jk h

satisfies ¢ = ai, ... bj, . ;.

B = i(b) and D is the set of all decomposiotions of {a!,...,a*} onto {8',...,5"}
with complementary {v!,...,7* "} and the bottom indices iy,...,i, as well as
J1,-- .5 Jk—n correspond to the top multiindices. By the definition of ¢ we have

(6) L)_ L’, = Za JdesB' 5desﬁ b Jdeg'y ] 6deg-yr

Further, C = i(ab) satisfies

7 Ca - 1= E a [
( ) b1tk ,6;’08 af el 6363 * X X “6'13:50: -—-j1 ...L,éﬂ“ of
(J1y-ee0dr)

—jr le Jr

where 0 < j; < 6380 < j, < yodese’,

The last equality follows from (2), the multiplication formula for (m,r)-quasi-
velocities. Obviously, (7) corresponds bijectively with decompositions {a!,...a*}
and {7!,...,7¥7"} in (6). This completes the proof. 0O

Proposition 7. Let p : J™ = QJ" be the inclusion of non-holonomic r-jets into
quasijets of order r from Proposition 3. Then the restriction L}, of u to T' R= D’
coincides with i : ID' — @, defined in Proposition 6.

Proof In general let b;, ; denote the coordinates of non-holonomic r-jets from
J ’(IR"‘,]R), created by 1nduct10n according to the definition of non-holonomic jets.
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Let o : R™ — J"(R™,R) be a local section in the neighbourhood of 0 € R™.
Then o(u) is expressed as b;,. ; (u). Put a;,. ;, = b;, . ,,(0) = 0(0) Further as-

sume p(o(u)) has the coordinates B"l“' k( ) and put ATt =B (0) As the

1. ‘k 1. 1k

assumption hypothesis we assume B;’l " (u) = 6‘““ sgdest (u) which implies
des i 68
the assertion for order r. To prove it for r + 1, we have jlo(u), in coordinates
Bbi, i,
(bl'lnir(v)?bi1~-~irir+1 (’U)), where bil...irir+x ('U) _3‘L—;T(l‘—|v Further, [1,(0'( )) con-

sidered as the map T_R™ — T§(o(u))R is expressed by y = B} i (u)u

8B] 7 (u) ; :d
i1.--Sg 11 tx , tk41
Jutk+1 |v") 1 VUi + Zl 1 n ik (v)

where e,;; denotes the multiindex with just one unit on the

Then T,(p(o(u))) satisﬁes dy =
i it

Ve Ve e i

(r 4+ 1)-st position. Setting v = 0 € R™, comparing the components xfx‘, ...:ci‘, for

ah C E, 41 and taking into account Proposition 5 and Proposition 6, we prove our

claim. O

’U

Corollary 8. Let,u:f'(M,N) — QJI.(M,N) be the inclusion from Proposition 3.
The p is the natural inclusion corresponding to i : D], - Q.

Proof. By Proposition 4 (i), every X € J™(M, N) is identified with {ibta(x), X o
Jota(x)} € PPM [T,;N , H¥/ ], where t,, is the translation, mapping 0 onto u. It follows
from Proposition 4 (ii) and (iii) and Proposition 7 that {jfta(x), (X © jgta(x))} =
{38tacx) (X 0 J5tacx))} = {i8tacx), u(X) o ultax))} = p(X). O

Remark. We finish this section by a more geometrical description of the Weil
algebra Q2, and QJ2(M, N),. In general, let A; = R x N; and A; = R x N; be
Weil algebras with nilpotent ideals N; and N,. Their direct sum A; & A, is defined
as R x Ny x N, where we put niny = 0 for n € N; and ny € N;. By a direct
evaluation, using Proposition 5, we obtain Q2, = D2 @D}, = (D}, ® D},)®D},. In
this way we find QJ2(M, N), = J2(M,N), ® JL(M, N),.

3. QUASIJ_ETS AND NON-HOLONOMIC JETS

In this section, we are going to apply the approach from Section 2 to rededuce a
result by Dekrét in [1], giving the criterion how to recognize non-holonomic r-jets
among quasijets of order r.

Let us recall the concept of the kernel injection, [1]. For a vector bundleq : E — M
we have two structures of vector bundle on TFE, namelyp: TE - Eand Tq: TE —
TM. Denote by HE — M (the so called heart of a vector bundle E — M, [8], [6])
the vector bundle VpNVTq — M. The identification VE = E x 5 E is well-known.
The kernel injection V¥ : E ~ HE — TE is expressed by Vi€ (z%,3?) = (z%,0,0,37),
[6].

Let us consider a vector bundle T~ ' : T*M — T*=1 M from Section 1. Denote
by V§M . Tk=iph, — T*=+1p}, the kernel injection on T*M with respect to the i-th

vector bundle structure on T"M In Section 1, we defined the coordinates z2, ., on
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T*M. There is a Weil bundle structure on T* M, namely T M corresponding to the
Weil algebra D¥ = D®...®D, where D denotes the algebra of dual numbers. Thus
every element of T*M with coordinates z? ., can be represented by p polynomials
of the form 22 . 7i*...7c*. It can be easily verified that

(9) 1/0‘1?4 (xlsjl...eleEl v T]ik): (1'—65)11571...6/‘ Tlel' . Tlik +Ei(1~€i)$p

€1 Ek
€166 71 - Tk Tkl

The last formula is equivalent to 7; — (1— 6;)7’]' + 65757k 41. By direct evaluation we
obtain that V{R : D¥ — D**! is a homomorphism of Weil algebras and consquentely,
ViM . TEM — T*+'M is a natural transformation. In the same way we obtain
that T'V§M : T*H'M — T*HM is a natural transformation too. Denote by
ki : QJ¥ = QJ*! the projection of quasijet bundles induced by the projection
Tk=ip' : T* — T*=1 [1]. Then the result by Dekrét reads

A quasijet X € QJ¥(M,N )y represents a non-holonomic r-jet if and only if the
following conditions are satisfied

(Tk—ZvollN -1 oXo (Tk—2V011M) =K,2X

(T*=3V3) ™ 0 X o (T=3VM) = (T53VEY) Lo X o (TH3VEM) =y X
(10)

(Voko1) to X o (Vo) = oonn = Voot ) ToX o (Vo) = me X

To deduce the result by our approach, denote by (Vo’;y’N ) QJ"“'(M, N) -
QJ'(M,N) < QJ**+!(M,N) a map defined by X = (Vii")™ o X o Vi for X €
QJi*+1(M, N). Analogously denote by (T'V§*N)*:QJ*++1(M, N) = QJ* (M, N)
< QJHHL(M,N) a map defined by X = (T'VZY)"1 o X o (T'VEM) for X €
QJi+l+1(M’ N)

Proposition 9. Let M,N be manifolds. Then (TF=i=1VJMNy* . QJ*(M,N) —
QJ*=1(M, N) is a natural transformation fori=1,....,k—1landj=1,...,1.

Proof. By Proposition 4, it is sufficient to prove that (T’““"“‘VO’;R'"'R)* :Qk, — QF,
is a homomorphism of Weil algebras equivariant in respect to the action of GX, on
QF,. We prove this for (VX ®)* : Qi1 — Qi! which proves our claim for i = k—1.
We show, that this proof can be easily extended to other cases of i.

Let Y, = Y., .0 be the coordinates on T°R = D} — Di*! = T*+IR and y5 =
Ys,...5,4, the coordinates on TR = D!, Further, let a;’ll"_'_;zk be the coordinates
on QTH'R = Q4! and zJ be the coordinates on T'R™ = (D)™ < (D)™ =
T**!R™. Then the formula (9) implies

(11) Yo=(1-ei41)((1- Ej)ys + Ejy5+5i+1)
and the map (VIR R)* satisfies

R i L' teir i i
(12) Ye=(1—-eip1)((1—g5)al i) .. ok +egmjal, i 70Tl alh)
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for y'+---+9* = ¢, degy! < --- < degy*. Evaluating the coefficients by $i‘1 . .acf"‘,,,

. . 1 k
we obtain the coordinates A7 ;7 on @}, expressed by a,1 ',k as follows

(13) Au ik —(1—%‘4—1)-“( 71+1)((1_27])a¢1 ,Z +’Y 7+El+l 7)

Let a = a‘1 o (") . 7;:(’1") € Qi b = bj: f:'ré{‘)...'ré,j') € Q‘,,Tl and A =

(VR"R)+(a), B (V’R R)*(b). Further, let C = AB and D = (VIR ®)*(ab).
1 h k

Then we have Cf: ,f" =Y p Afl fh 11 1,_n» Where D is the set of all decomposi-

tions of {a! ,..'.,a"} into {#, ..., 8"} with the complementary {y!,...,7*""} and
the corresponding bottom indices. By (13) we have

h

n u. —Z[l ﬂﬂ.] +1) Z ]1 Jh ;afl ﬁ, +eiyr...0" )]
: —h S '7 -y +e|+1...'y""'
(14) [(1—7i+1) (1- ’Y,_H (- )bl1 lk » bh N )]
=1

On the other hand

-h

k
1
(15) D =(1-aly)...(1-ab (1= ey ST db By

l BB teirr. Byt Ak l ﬁ Bt A ey
ﬂjz Qjy...dn bh lk h +7J' Gjy...5n bll de—n
D .
It is easy to see that CZ =" = Dg 1‘:" which follows that (VZR ®)*: Qi — Q,

is a homomorphism. The fact that (T*=~1VZR"®)* . QF — QF, is a homomor-
phism follows from (10), (12) and (13) remaining unchanged if we replace (Vo",-Rm’R)‘
by (T'VZR"®)*. The equivariancy of (T*~#=1VJR"R)* with respect to the action
of G, on Q%, follows from the fact that T*=i=1VJR™ . pF~1 5 DF is a natural
transformation. This completes the proof. [ '

We state the following assertion, the proof of which is omitted since it is almost
the same as that of Proposition 9, only technically easier.

Proposition 10. The quasijet projection x; : QJ**1 — QJ* induced by the I-th
vector bundle structure T*+1=!pt . TR+l 5 Tk is 4 natural transformation.

We shall need the coordinate expressions of homomorphisms n,.H Qe o
S QF, — QL. Let a € Q5 and A = k;1(a). Further, let a = al (") _5',,")

11.. lh
and A = Aj: ffréf‘). .Té,ﬂ). “Then it holds

h

1
(16) A;Yl ;,7. (1- '7il+1) (1= 'Y?+1)a¢71.'.'.-i‘,’.
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If we compare (16) with (13), we have

il...ih 11... 4

h

1 h 1 . h | S S h

(17) a;ylt"y' - (1 _} :7;)a7 LY + ’Y}a'.y ..."y +eip1...Y
l:l

for all multiindices v!,...,¥" of order k + 1 satisfying v C Fy4y, i+ 1 € o for
l=1,...,h, degy! < --- < degy".

By Proposition 6, a (m, r)-quasivelocity represents a non-holonomic (m, r)-velocity
if and only if all ], J‘h depend on 4!...v" only up to deg~?,...,deg~y". We prove
the result of Dekrét if we show the equivalence of the last condition with (17).

Fix 4%,...,7" except of | and consider 4 derived from 4 by 'yf 41 =0and F=1.

Further, denote by egey ¢ the multiindex containing the only unit at the (deg 74)-th
1 h T
position. Clearly degy' = deg#¥' and a:’:_'.'_;:" = a;’ll_"','i:" 7" is equivalent with
1

h
h Y Cgeg 4y

]
(17), setting j = deg~v'. The condition a:’:.'_‘.'i"" T = ey is equivalent

with (17), which is obtained by setting j = deg~' and iterating the last step for all
i+ 1 corresponding to units in the multiindex 4*. This way we obtain the result by
Dekrét.

I thank prof. I. Kolaf for his much useful help, advice and suggestions.
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