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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 66 (2001) pp. 29-57 

COHERENCE CONSTRAINTS FOR OPERADS, CATEGORIES AND 
ALGEBRAS 

MARTIN MARKL AND STEVE SHNIDER 

ABSTRACT. Coherence phenomena appear in two different situations. In the context 
of category theory the term 'coherence constraints' refers to a set of diagrams whose 
commutativity implies the commutativity of a larger class of diagrams. In the context 
of algebra coherence constrains are a minimal set of generators for the second syzygy, 
that is, a set of equations which generate the full set of identities among the defining 
relations of an algebraic theory. 

A typical example of the first type is Mac Lane's coherence theorem for monoidal 
categories [9, Theorem 3.1], an example of the second type is the result of [2] saying 
that pentagon identity for the 'associator' $ of a quasi-Hopf algebra implies the 
validity of a set of identities with higher instances of $ . 

We show that both types of coherence are governed by a homological invariant of 
the operad for the underlying algebraic structure. We call this invariant the (space 
of) coherence constraints. In many cases these constraints can be explicitly described, 
thus giving rise to various coherence results, both classical and new. 

1. INTRODUCT ION 

We remind the reader of some definitions and results of [9]. A category with a 
multiplication is a category C together with a covariant bifunctor D : C x C —> C. An 
associativity isomorphism for (C, D) is then a natural transformation 

(1) c : D ( l x D ) —•» D(D x 1) 

(11 denotes the identity functor) such that each a(A,B,C) : AD(J9DC) -» (AC\B)uC 
has a two-sided inverse in C, for A,B,C € C\ here we denote, as usual, D(l x 
D)(A,H, C) by AD(HDO), etc. Having such an associativity isomorphism, we can 
consider diagrams whose vertices are iterates of D and edges expansions of instances 
of a. The category C is called coherent if all these diagrams commute. The easiest 
of these diagrams is the pentagon (see Figure 1). There is no a priori reason for the 
commutativity of any of these diagrams, but the celebrated Mac Lane's coherence 
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D(D x a) 

a o ( l 2 x D ^ ^ V ^ a o (D x l 2 ) 

D ( l x D ) ( l 2 x D ) •( ^ S i D ( D x l ) ( D x ť 

D o ( l x c ) \ / D o ( f l x l ) 

ao(lxDxl1) 
» *>< 

D(l x D)(l X D x l ) D(D X 1)(1 x D x 1) 

FIGURE 1. The Pentagon 

theorem [9, Theorem 3.1] says that the commutativity of one diagram, the pentagon, 
implies the commutativity of all these diagrams. 

Consider the case of a k-vector space U which is a module over a unital associative, 
not necessary coassociative bialgebra V = (V, *,A,1). We adopt the Drinfel'd con­
vention and consider the associativity a - 1 represented by the action of an invertible 
element $ = £i<l>i,-®*2,t®#3,t G V®3. Let * : U 0 U -> U be a bilinear product 
which is '^-associative,' 

(2) $(a * (b * c)) = ((a * b) * c), for a,b,c € U, 

where $(a * (b * c)) is an abbreviation for ]V($ia * ($2b * $3c)). Assuming ([/, *) is a 
V-module algebra, [10, Chapter 10], that is 

v • (a * 6) = V(x) • a * f (2) • 6, for v € V, a, b, c G U, 

(we will follow usual conventions and delete the summation sign and summation indices 
use the Sweedler abbreviated notation with V(i) 0 vp) standing for A(v) = ]T- v^i 0 
v(2)i)- One derives easily from (2) that 

(3) (((a * b) * c) * d) = P($)(((a * 6) * c) * d), 

where P($) := ($ 0 l ) " 1 ^ 0 A 0 l ) (* ) - l ( l 0 ^ ( l 0 A)($)(A 0 !)($) . 
If we do not assume that P($) = 1, then (3) is a new relation imposed on the space 

of bracketed 4-fold products other than the association relation to other bracketings. 
The condition P($) = 1 is, of course, the same as 

(4) (1 0 $ ) ( ! 0 A 0 !)(<-?)($ 01 ) = (I2 0 A)($)(A 0 12)($), 

the famous pentagon condition on $ introduced by Drinfel'd [2], although not from 
this point of view. It is called so because its five factors correspond to the five sides of 
the pentagon for the natural monoidal structure on the category of modules over the 
algebra (V,-). 

We may consider ^-products of order 5 and higher and look for similar equations 
in <$. Because of Mac Lane's theorem, all these equations follow from the pentagon 
condition (4). 

We presented two situations where the coherence appears - one in category theory 
where it was formulated in terms of commutative diagrams, and another in algebra, 
where it was expressed in the language of algebraic equations. Both examples above 
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were related to a certain associativity - of the transformation • in (1) and of the 
product * in (2). Also the description of the 'coherence constraint' pointed in both 
cases to the shape of the pentagon. In this case the algebraic result was derived 
from the category theory We also want to show how to derive categorial results from 
algebra. 

For an operad V, we introduce, in Definition 1, the space Cp of coherence constraints 
of V. It is a certain homological invariant of V that can be informally described as 
a second syzygy, spanned by 'the relations among the defining relations' where the 
'defining relations' generate the ideal defining an operad as a quotient of a free operad. 
These coherence constraints can be read off from the bigraded model of V (Corollary 5) 
and can be easily described for so called Koszul operads (Theorem 7). 

Wre show that both types of coherence boil down to coherence constraints of the 
governing operad. For the categorial coherence, it is Theorem 15 which says, roughly 
speaking, that the commutativity of diagrams corresponding to Cp implies the com-
mutativity of all diagrams. 

The algebraic situation is more subtle. The coherence of a 'quantization' is given in 
terms of linear equations and it intuitively means that any solution of a linear equation 
in the original system deforms to a solution of the quantized one. 

This is formalized by introducing the 'V-relative' version Vy of the operad V: the 
coherence then means that Vy is a 'flat extension' of V (Definition 6), that is, the 
defining relations of the quantized structure have the same rank as the original struc­
ture. The characterization of this kind of coherence in terms of coherence constraints 
of V is given in Theorem 21. 

We illustrate our methods by giving a new proof of Mac Lane's coherence (V = Ass, 
the operad for associative algebras), which is just two lines once we know that Ass is 
Koszul (see Example 16). 

Example 17 is related to the linear logic and Example 18 presents a categorial version 
of Loday's bigebras. 

On the quantum side we discuss Drinfel'd's quasi-Hopf algebras (Example 24, V = 
Ass), generalized Lie algebras analogous to the construction given by Gurevich (Ex­
ample 25, V = Lie) and a certain form of strictly homotopy associative algebras 
(Example 27). 

As an useful tool, we introduce in Section 4 a series of bipartite graphs, encoding 
the coherence relations. In many cases these relations can be described by a simple 
graph which we call the Tel-A-graph (Tel-A= Tel Aviv, the place where the discovery 
was made). While, for V = Ass this Tel-A-graph is the pentagon, for V = Lie it is 
the Peterson graph (Figure 3), and for the operad governing algebras of Example 27 
a kind of the Mobius strip! 
Acknowledgment. The authors would like to express their gratitude to Jim Stasheff 
for reading the manuscript and many useful remarks and comments. 

2. OPERADS AND COHERENCE CONSTRAINTS 

The notion of an operad and of an algebra over an operad is classical and well 
known (see [15], or more recent sources [4, 3, 13]). We thus recall only briefly the 
definitions and notation. We will need also some results on homology and presentations 
of operads; this part of the paper relies on [13]. 
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Operads make sense in any strict symmetric monoidal category M = (M, D). The 
most important example for the purposes of this paper is the category gr-Vectk of 
graded k-vector spaces, where k is a field of characteristic zero, with monoidal structure 
given by the standard graded tensor product over k. In Sections 4 and 5 we consider 
also the category Sets of sets, with monoidal structure given by the cartesian product, 
and the category Ab-Grp of abelian groups with tensor product over Z. 

More precisely an operad is a sequence V = {V(n)\n > 1} of objects of M such 
that: 

(i) Each V(n) is equipped with a (right) action of the symmetric group En on n 
elements, n > 1. 

(ii) For any mi , . . . , m/ > 1 we have the composition maps 

7 = 7m, .....m, : V(l)nV(mx)n • • • nV(mt) —> V(mx + • • • + mt). 

These data have to satisfy the usual axioms including the existence of a unit 1 6 
V(l), for which we refer to [15]. We sometimes write /^(i/i,• • • , i//), ii(v\H • • • Hvi) 
or 7(/i; V\, • • • , v\) instead of 7(/iQz/iG • • • Hv[) (notice that in all three above exam­
ples (gr-Vectk,®), (Ab-Grp,®) and (Sets, x) of the monoidal category (MyU) the 
'product of elements' fj,ni/\D • • • Dz/j makes sense). 

A collection is a sequence E = {E(n)\ n > 2} of elements of M such that each 
E(n) is equipped with an action of the symmetric group En. The obvious forgetful 
functor For : Oper -> Coll from the category of operads to the category of collections 
has a left adjoint T : Coll -> Oper and we call T(E) the free operad on the collection 
E. 

Remark 1. The notions above, as well as all the results which follow, have obvious 
non-Y, (also called nonsymmetric) analogs which we obtain by forgetting everything 
related to the symmetric group action. We thus have non-E operads, non-E collections, 
etc. The reason for considering these objects is that the non-E versions are much 
simpler and there are many examples which live in a non-E world, the most prominent 
being the associative algebra case. We will move freely between E and non-E worlds 
clarifying when necessary the context in which we are working. 

In the rest of this section, an operad is an operad in the category gr-Vectk of graded 
k-vector spaces. 

A module over an operad V is an abelian group object in the slice category Oper/P. 
The axioms were explicitly given for modules over a so-called pseudo-operad in [13], 
in the standard case the axioms are quite analogous. Namely a module over V is a 
collection M = {M(n)\ n > 1} together with a map 

m : 0 {V(l)®V(mx)®- • •®M(mi)®V(ml)}®{M(l)®V(mx)®- - ^V(m{)} —> 
\<i<l 

—•> Af (mi + 1- m4) 

given for any mi , . . . ,m. > 1. This map is supposed to satisfy obvious axioms given 
by the linearization of the axioms of operads. Just as for the operadic composition 
map, we sometimes write a(b\)... , fy), a(b\ ® • • • ® 6/) instead of m(a ® b\ ® • • • ® fy). 

We will give some examples of P-modules which we will need in the sequel. The 
operad V itself is a P-module. If a : V -> S is an operad map, then a induces a 
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P-module structure on S. Finally, if X C V is an ideal in V (see [13]), then X is 
naturally a "P-module. 

The forgetful functor For : P-Mod -> Coll from the category of P-modules to the 
category of collections has a left adjoint V(-) : Coll -•> P-Mod, and we call the 
P-module V(E) the free V-module on the collection E. 

For the time being, we suppose that our operads always have V(l) = k. Let V* C V 
be the ideal defined by V+(l) := 0 and V+(n) := V(n) for n > 2. 

For a 'P-module (M, ra) we define the decomposables of M to be the collection 
D(AI) = D-p(M) generated by elements either of the form ra(r;pi,... ,p<), where 
r G AI, p i , . . . ,pi G P and at least one of Pi,... >pi G P belongs to V+, or of the 
form m(p;pi,.. . , r , . . . ,pj), where again r E M, p ,p i , . . . ,p/ E V and at least one of 
P,Pi> • • • >P. £ P belongs to 77+. Define the indecomposables of M as the collection 
Q(Af) = Qv(M) := M/DV(M). 

Each operad can be represented as V = T(E)/(R), where I? and I? are collections 
and (1?) is the operadic ideal generated by It; we write V = (_?; I?). Because 'P(l) = k, 
we can always suppose that the presentation is minimal [13]. This means, by definition, 
that E = Qp(V+) and that the collection It is isomorphic to the indecomposables of 
the kernel of the canonical map T(E) -±V,R~ Qj:{E){Ker(jF(E) -> V)}. 

Following Quillen's paradigm, we consider the higher derived functors of the functor 
of indecomposables, see [16]. 

Let V = (E;R). Let J := F(E)(R) be the free F(E)-mod\ile on R and let TT : 
J -» (It) be the obvious natural epimorphism of ^(F)-modules. For x _ f(E)(R)(l), 
y G F(E)(R) and a-i,... , a/, G ^(i?) the element 

d :=x(au... ,a5_i,7r(u),a5+i,... ,a<) - n(x)(au . . . ,a 5_i ,u ,a s + i , . . . ,ai) e J 

belongs to Ker(7r), for any 1 < s < I. Similarly, for b G T (E)(1) ̂  au... , a/ G F(E) 
and x,y G F(E)(R), the element 

O" 1=6(0!,... ,a5_i,7r(a:),a5+i,... , a t _ i , y , a m , . . . , a / ) -

-b (a i , . . . ,a«_i,a;,os+i,... ,at_i,7r(u),a t+i,... ,aj) G J 

belongs to Ker(7r), for any 1 < s < t < I. In the spirit of the definition of the cotangent 
cohomology we call the ^"(I?)-module generated by elements of the above two types 
the module of obvious relations and denote it by O = Op. To understand better the 
meaning of this module we recommend looking at the definition of the module UQ on 
page 44 of [7] in the classical commutative algebra situation or to the definition in 2.2 
of [11]. 

Definition 1. The collection of coherence relations of the operad V is the F(E)~ 
module V — Vp := Ker(7r: J —•> (R))/0. The collection of coherence constraints of 
the operad V is the collection of indecomposables of the .^(E)-rnodule D, C = Cp := 
QT{E)(V). 

Example 2. Let £ be an independent symbol and let E be the non-E collection 
defined by 

E(n) - i Span^' for n =: 2, and 

^ ' ' \ 0, otherwise. 
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Let r := f (l,f) - f (£, 1) e F(E)(3) and let R be the (non-E) collection generated by 
r, i.e. 

(П) := | 
„/ v i Span(r), for n = 3, and 

^ ' ' ' 0 , otherwise. 

Associative algebras are then the algebras over the non-E operad Ass := (E\ R). 
There are five rooted planar binary trees having four leaves so dimk(^'(E)(4)) = 5. 

Moreover, there are five rooted planar trees with one bivalent and one trivalent vertex 
and four leaves so d\m^(J:(E)(R))(4) = 5. Choose as basis elements for T (E)(4) the 
trees represented in the standard wray by the following bracketings 

a := ((12)3)4, b := (12)(34), c := 1(2(34)), 

d:=l((23)4), e := ( l (23 ) )4€^ (^ ) (4 ) . 

Choose also the basis 

l : = r ( £ , l , l ) , 2 : = r ( l , l , £ ) , 3 : = £ ( l , r ) , 4 : = r ( l , £ , l ) , 5 := f(r, 1) e F(E)(R), 

for T(E)(R)(4). The map n : F(E)(R)(4) -> (it) (4) has the following matrix descrip­
tion: 

a b c d e 
тr(l) - 1 1 0 0 0 
тr(2) 0 - 1 1 0 0 
тr(З) 0 0 1 - 1 0 
тr(4) 0 0 0 1 - 1 
тr(б) - 1 0 0 0 +1 

One sees immediately that dim(Ker(7r))(4) = 1, and that the kernel is spanned by the 
element p G J(4) = F(E)(R)(4) defined by 

(5) p:=f(r,l)-r(e,l,l) + r(l,e,l)-r(l,l,0 + «l,r). 
The five terms in p correspond to the edges of the pentagon considered as the Stasheff 
associahedron K± with five vertices labeled by the five binary trees with four leaves 
or, equivalent^, by the five possible bracketings of four elements. We may prove, by a 
step-by-step repeating the arguments of the proof of [9, Theorem 3.1], that p generates 
the collection of coherence constraints C, as was in fact done in the last section of [11], 
but we derive this statement using a more sophisticated approach, which we now 
describe. 

3. COHERENCE AND THE HOMOLOGY OF OPERADS 

In this section we work with operads in the monoidal category gr-Vect^ of graded 
vector spaces. Let us recall some notions and results of [13, Section 3]. 

Let S be an operad. By a differential on S we mean a degree —1 map d : S —> 
S of collections having the expected Leibniz property with respect to the operadic 
composition and satisfying d2 = 0. A differential on the free operad F(E) is uniquely 
determined by its restriction to the space of generators E. 

Suppose we have a collection Z which decomposes as Z = Z° (B Z1 © • • • (meaning, 
of course, that for each n > 2 we have a En-invariant decomposition Z(n) = Z°(n) © 
Zl(n)®-" of the graded vector space Z(n) = © Zj(n) into the direct sum of graded 
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vector spaces Zk(n) = ($Zk(n), k > 0). This induces on T(Z) a grading, T(Z) = 
®k>QT(Z)k. We call this grading the TJ-grading (from Tate-Jozefiak) here; the 
reason will became obvious below. 

In the situation above, the free operad T(Z) is bigraded, T(Z) = @T(Z)k, where 
k refers to the TJ-grading introduced above and j indicates the 'inner' grading given 
by the grading of Z = 0 Zj. 

Suppose that d is an (inner) degree - 1 differential on T(Z) such that 

(6) d(Zk) c T(Z)k~\ for all k > 1 

(meaning, of course, that d(Zk)(n) C T(Z)k~x(n) for all n > 2), i.e. that d is ho­
mogeneous degree - 1 with respect to the TJ-grading. Then the homology operad 
n(T(Z),d) is bigraded, 

U(T(Z),d) = ($Uk
j(T(Z),d), 

the upper grading being induced by the TJ-grading and the lower one by the inner 
grading. In [13] the first author proved the following theorem. 

Theorem 3. Let V be an operad (H or non-T>, with trivial differential). Then there 
exists a collection Z = Z° © Zl © • • •, a differential d on T(Z) satisfying (6) and a 
map p : (T(Z),d) —> (V, 0) of differential operads such that the following conditions 
are satisfied: 

(i) d is minimal in the sense that d(Z) consists of decomposable elements of the 
operad T(Z), 

(ii) p\z>i = 0 and p induces an isomorphism H°(p) : yr{°(.F(zT),c() = V, and 
(iii) ri^(T(Z),d) = 0. 

We call the object p : (T(Z),d) —> (V,0) the bigraded model of the operad V. This 
object is an analog of the bigraded model of a commutative graded algebra constructed 
in [6, Section 3]. 

Recall that the suspension of a graded vector space V = 0 V* is the graded vector 
space t V defined by (t V)i — Vi-i- The following proposition is obvious from the 
construction of the bigraded model described in [13], 

Proposition 4. Let V be an operad and let V = {E] R) be a minimal presentation. 
Let (T(Z),d) be a bigraded model ofV. Then there are the following isomorphisms of 
collections: 

(7) Z° £- E, Zl = t P , Z2 =t 2C 

The most important for our purpose is the third equation of (7). We formulate the 
following corollary. 

Corollary 5. The collection C? of coherence constraints of an operadV is isomorphic 
to the double desuspension l2Z2 of the collection of TJ-degree two indecomposables of 
the bigraded model ofV. 

We say that an operad V is quadratic if it has a presentation V = (E\ R) such that 
E(n) = 0 for n / 2 and R(n) = 0 for n ^ 3. Each quadratic operad has its quadratic 
dual V1 [4], which is another operad constructed very explicitly from the presentation 
of V. V. Ginzburg and M.M. Kapranov introduced in [4] an extremely important 
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notion of the Koszulness of an operad. It is a certain homological property analogous 
to the Koszulness of commutative algebras; operads sharing thisNproperty are called 
Koszul operads. The following proposition appeared in [13] as Proposition 2.6. 

Proposition 6. Let V be a quadratic operad and suppose that V is Koszul Denote 
by V' its quadratic dual Then there is, for each n > 1. the following isomorphism of 
T,n-modules: 

ZЧn) = / °' i sgr 
n^i + 2 

s g n ® t ( n " 2 ) ? ! ( n ) , n = i + 2, 

where sgn denotes the one-dimensional signum representation. For non-Y> operads, 
Zl(n) is given by the same formula but without the signum representation. 

Combining Proposition 6 with Corollary 5 we get the following proposition. 

Theorem 7. For a Koszul quadratic operad V, there a Y>i-equivariant isomorphism 

C^ = C P ( 4 ) ^ s g n ® P ! ( 4 ) . 

In particular, the only coherence constraints are in degree 4-

Let us formulate a proposition counting the dimension of the space of coherence 
constraints. We need the generating function gv(x) of an operad P, which is the 
formal power series 

(8) ^ф^íв^. 
П>1 

As it follows from [4], if V is Koszul, then 

9v(-gvl(-x)) = x. 

The same formula holds also for a non-E V if we drop the n! (= the order of £n) 
from (8). The formula above enables one to express, for a Koszul operad V, the 
dimension dim(P!(4)) via dim(7>(2)), dim(P(3)) and dim(P(4)): 

Proposition 8. Suppose that V is a non-E Koszul operad. Then 

dim(Cp) = dim(P(4)) + 5dim(P(2))[dim(7>(2))2 - dim(P(3))]. 

IfV is symmetric, then 

dim(C^) = dim(P(4)) + 5dim(P(2))[3dim(P(2))2 - 2dim(P(3))]. 

Example 9. Let c," be an independent variable and E the symmetric collection denned 
by 

(n) := | E(n) - I S p a n ( ^ ' f o r n = 2 ' a n d 

^ ' ' ' 0 , otherwise, 

with the sign representation of £2 on F(2). Let Bn be the free nonassociative an-
ticommutative algebra on the set {1 , . . . ,n} and let Bn denote the subset of Bn 

spanned by monomials in which each element of {1 , . . . ,n} appears exactly once. 
Then T(E)(n) = B'n for any n > 1, where T(E) is now the free symmetric operad on 
the collection E. 
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Let t := [1[23]] + [2[31]] + [3[12]] 6 F(E)(3) and I? be the symmetric collection 
generated by t. Then Lie := (E\R) is the operad governing Lie algebras. This 
operad is quadratic Koszul [4, page 229] and Lie' = Comm, therefore, by Theorem 7, 
C = Comm(4), which is the one dimensional trivial representation of E4. Thus there 
is only one coherence constraint, as in the associative algebra case. Let us describe 
this constraint explicitly 

A description of the map ir : F(E) (R) (4) —> (It) (4) is given by the matrix of 
Figure 2. 

a b c d e f g h i j k 1 m n o 
тr(l) +1 -1 0 0 0 0 0 0 0 0 0 +1 0 0 0 
ҡ(2) 0 +1 -1 0 0 0 +1 0 0 0 0 0 0 0 0 
ҡ(3) 0 0 -1 +1 0 + 1 0 0 0 0 0 0 0 0 0 
ҡ(4) 0 0 0 + 1 -1 0 0 0 0 0 0 0 0 0 +1 
ҡ(5) -1 0 0 0 +1 0 

0 
0 
0 

0 
0 

0 

-1 

0 
0 

0 
0 

0 
0 

+1 
+1 

0 

-1 

0 
ҡ(6) 0 0 0 0 0 

0 
0 

0 
0 

0 
0 

0 

-1 

0 
0 

0 
0 

0 
0 

+1 
+1 

0 

-1 0 
ҡ(7) 0 0 0 0 0 -1 0 0 0 +1 0 0 0 +1 0 
ҡ(8) 0 0 0 0 0 0 -1 +1 -1 0 0 0 0 0 0 
JГ(9) 0 0 0 0 0 0 0 0 0 -1 +1 +1 0 0 0 

7Г(10) 0 0 0 0 0 0 0 -1 0 0 +1 0 0 0 -1 

The basis elements are chosen as: 

= [[[12]3]4] b 

= [1[3[24]]] g 

= [3[2[14]]] 1 

4 

7 

10 

= [[12][34]] c := [1[2[34]]] d := [1[[23]4]] e := [[1[23]]4] 

= [2[1[34]]] h:=[2[3[14]]] i := [2[4[13]]] j := [3[1[24]]] 

= [3[[12]4]] m:=[4[2[13]]] n := [[13][24]] o := [[14][23]] 

and: 

-t(C,l, l) 2 : = - i ( l , 1,0 3 : = - C ( l , 0 

= -C(l,0'-234i 6:=-t(C,l,l)-:ri324 

= -C(l,0--2i34 9 : = - C ( l , 0 - - a M 

= - t(l,l,C)'Tl342 5 

= - i ( l , l , C ) - T I S M 8 

= ~t(C, !> 1) • rl342 

FIGURE 2. The matrix of the map n : F(E)(R)(4) -> (.R)(4). The 
symbol Tili2i3i4 denotes the permutation which sends (1234) to [i^izU)-
The upper left 5x5-submatrix coincides, up to sign, with the correspond­
ing matrix for the associative algebra operad. 

Let I € f(E)(R)(4) be the element defined as 

t := *(C, 1,1) + i ( l , l , C ) - C ( l , 0 + ^ l . O - T 1 3 4 2 + C(l,0-T234i 

-i(C 1,1)- T1324 - t(l, 1, C) • 7\324 + C(l, l) • T2134 

-C(l,0-r2314 + t(C,l,l)-T1342, 

or, in the notation of Figure 2, 

£ = - 1 - 2 + 3 - 4 - 5 + 6 + 7 - 8 + 9 - 1 0 . 
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It is easy to check that £ G Ker(7r). By Theorem 7, £ is the only coherence constraint 
for Lie algebras. 

4. A GRAPHIC DESCRIPTION OF COHERENCE RELATIONS 

A nice feature of the associative operad is that the coherence relations can be rep­
resented by commutative diagrams, the closed edge-paths in the one skeleton of the 
Stasheff associahedra [17]. In this section we show how to describe the coherence re­
lations for any quadratic operad by bipartite graphs, and in certain cases by ordinary 
graphs. 

Associated to any presentation of a quadratic operad V = (E; R) there is a series 
of bipartite graphs, T = {T(n)}n>4. Recall that J denoted the free Jr(F)-module on 
H, 7T : J -» (R) was the canonical epimorphism and V := Ker(7r)/(9, see Section 2. 
Let n > 4. Fix a basis (vi,. . . }vt) (resp. ( n , . . . ,rs)) of T(E)(n) (resp. of J(n) = 
T(E)(R)(n)). Then define a bipartite graph with vertices partitioned into the two sets 
V(n) := {vu... , vb} and V(n) := {riy... , r5}. The vertices V{ G V(n) and r$ G V(n) 
are joined by an edge if and only if v\ occurs with a non-zero coefficient in n(r3). 

There is a simple graph encoding the same data whenever for one of the sets V(n) 
or V(n) there are precisely two edges incident to each of the vertices in that set. For 
example, if V(n) has this property, we create a new graph by concatenating the two 
edges incident to a vertex of V(n), delete the vertex and create a single edge connecting 
two vertices in V(n) and give the new edge the same label as the deleted vertex. The 
new graph has edges labeled by the elements of V(n) and vertices labeled by the 
elements of V(n). In this case each edge is labeled by a basis element in !F(E)(R)(n) 
relating the two elements of the basis of T(E)(n) which label the endpoints. In this 
case we say that the defining relations are graphlike and call the corresponding graph 
G(T(n)) the Tel-A-graph (the idea arose from discussions in Tel Aviv). 

Note that the bipartite graph T(n) does not encode all the data from the presen­
tation of V = (E\ R) of an operad since it only shows which terms vt appear in 7r(r3) 
with nonzero coefficient, not the actual values of the coefficients. On the other hand if 
we can choose the bases {v{} for all the T(E)(n) such that the coefficients are all ±1 
then all the data of the presentation can be encoded into the graph T(n) by orienting 
the edges. The edge connecting the vertex V{ G V(n) and the relation r3 G V(n) will 
be oriented in the direction of V( if the coefficient of V{ in the relation r3 is +1 and 
away from V{ if the coefficient in - 1 . If T(n) is graphlike and oriented, that does 
not guarantee that the Tel-A-graph has a consistent orientation. What is required is 
that there exist an orientation such that each vertex with two incident edges in the 
bipartite graph has one incoming edge and one outgoing edge. In this case whenever 
such a vertex is deleted, the new edge created has a natural orientation. 

We will see that the existence of an oriented Tel-A-graph formalizes the property of 
an operad being defined by axioms expressed by commutative diagrams. For instance, 
the operad Ass has an oriented Tel-A-graph G(T(n)) given by the one skeleton of the 
Stasheff associahedron Kn) with orientation as shown, for n = 4, in Figure 1. 

A dual situation arises when there are exactly two edges incident to any vertex in 
V(n), that is, the basis elements V{ appear in exactly two defining relations. In this case 
the same procedure of concatenating edges, deleting vertices, and giving the new edge 
the label of the deleted vertex creates a graph with edges labeled by V(n) and vertices 
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labeled by V'(n). In this case we say that the defining relations are dual graphlike and 
call the associated graph G'(T(n)) the dual Tel-A-graph. The defining relations for the 
operad Lie and n = 4 are dual graphlike, as shown in the next example. The existence 
of an orientation for the dual Tel-A-graph means that it is possible to find a basis for 
T(E)(n) and for J(n) — T(E)(R)(n) such that any basis element for F(E)(n) which 
appears in one of the relations J(n) appears in two relations once with a coefficient 
+ 1 and once with a coefficient —1. 

4 d 3 

FiGURE 3. The Lie-hedron. 

Example 10. For the Lie algebra operad Lie introduced in Example 9 there is a dual 
Tel-A-graph constructed from the bipartite graph T(4) with vertices (V(4), V'(4)) as 
given in Figure 2. The resulting graph is the famous Peterson graph, see Figure 3. 

Let us describe T(3). Let 

Vi := [1[23]], v2 := [2[31]], v3 := [3[12]], and r = i := vx + v2 + v2 . 

Then V(3) := {vi,v2i v3} and V'(3) := {r}. The bipartite graph T(3) has one trivalent 
vertex r and three univalent vertices V{i 

v\ 

v3 v2 

so it is neither graphlike, nor dual graphlike. In fact, n = 4 is the only value for which 
T(n) is (dual) graphlike. 

There is a particular class of operads whose defining relations are always graph-like. 
Such operads V £ gr-Vectk have a presentation V = (E\ R) in which we have chosen 
a basis B(n) for E(n) and a basis K(n) for the relations R(n) such that 7r(r;) =p% — qi 
for each r{ e K(n). For this class we can establish the relation between operad theory 
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and categorical coherence mentioned in the introduction. The following formulation 
arose from discussions between the first author and Tom Fox. 

If C is an operad in the monoidal category Sets of sets, we can form the collection 

V = Spank(£) = {Spank(£)(n)}n>i, 

where Spank(£)(n) := Spank(£(n)) is the k-vector space spanned by C(n). This col­
lection has an obvious k-Vect-operad structure induced by the Sets-operad structure 
of C. If in addition each C(n) is graded, then the k-vector space spanned by C(n) 
has a gr-Vectk-operad structure. The preferred basis for each V(n) is given by the 
elements of C(n). In short, an operad has a presentation with defining relations of the 
type n(ri) = Pi — qi if and only if it is a k-linearization of an operad defined over the 
category of sets. 

The operad C can presented as C = Fs/ ~> for .Fs a free Sets-operad and ~ an 
equivalence relation given by a list of couples p* ~ qi for pi,qi E Fs(B)(n). Each 
identification corresponds to a commutative diagram for the maps describing the cor­
responding P-algebra. 

To make the exposition easier, in speaking about operads defined by commutative 
diagrams, we shall restrict to non-E operads. The formal definition is 

Definition 2. Let V be a gr-Vectk operad. We say that V is defined by commutative 
diagrams if there exists a Sets-operad C and an isomorphism 

(9) Spank(£) = V 

of gr-Vectk-operads. 

Categorical coherence means the commutativity of a family of diagrams. Being de­
fined by commutative diagrams is a crucial property of an operad which allows us to 
establish a relation between the theory of operads and the theory of categorical struc­
tures. The following proposition follows immediately from the previous discussion. 

Proposition 11. If V is an operad defined by commutative diagrams, then for any 
n > 3, the bipartite graphs 7p(n) are graphlike, and the corresponding Tel-A-graphs 
are oriented. 

The next proposition relates the Tel-A-graph G and the space V of coherence relations. 

Proposition 12. Let V = Spank(£) be an operad defined by commutative diagrams, 
where C is the corresponding Sets-operad presented by a collection of generators B 
and a collection of relations K € Fs(B). Let G(n) = G(T(n)) for n > 3 be the 
corresponding oriented Tel-A-graphs. We interpret the graph G(n) as a 1-dimensional 
simplicial complex. To each closed oriented path 7 € G(n) we can associate the a 
coherence relation. This correspondence defines a natural isomorphism of k-vector 
spaces: 

(10) H^GlriM^Vin). 

Proof. Let V(n) = {vx,... ,vb} = Fs(B)(n) and V'(n) = {r l 5 . . . , r s } . For each 
! < j < 5, we have ir(rj) = vaj — vbj for some 1 < aj,bj < b. We can orient the 
graph G(n) so that d(rj) = va. - vbj, where d is the boundary operator for the one 
dimensional oriented simplicial complex G(n) and then X)ai ri £ Ker(9) = Ker(?r) if 
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and only if Ylatri expresses a coherence relation. Moreover Ker(<9) = Hi(G(n),k) 
since there are no boundaries in dimension 1. D 

The diagrams whose commutativity is required for coherence correspond to elements 
of the of the edge-path fundamental group of G(n), and therefore are more closely 
related to H!(G(n), Z) than to Hi(G(n), k). Therefore it is natural to consider integral 
homology The fact that there are no 1-cycles which are boundaries in G(n) implies 
that there is no torsion in Hi(G(n),Z), so 

ffi(G(n),k)Sff1(G(n),Z)®zk. 

We also define an integral form for the operad £. 

Definition 3. Given the Sets operad £ = Fs(B)/ ~ with ~ consisting of a list of 
couples pn>i ~ p'ni for pn,i>Pnti € Fs(B)(n), we define an operad £ z := (E%;RZ) in 
the symmetric monoidal category Ab-Grp of abelian groups. This operad is generated 
by the collection of free abelian groups Ez(n) := ZB^ and the collection of relations 

The collection of coherence relations VCz of the operad £z is the .^(FzJ-niodule 
defined completely analogously to Vv in Definition 1 and the coherence constraints 
CCz is the corresponding collection of indecomposables. The following proposition 
describes the obvious relation between coherence data for V = Spank(£) and Cz-

Proposition 13. Let V be an operad defined by commutative diagrams, with associ­
ated sets operad £ = (B; K) such that there is an isomorphism (9). Then 

Vv =* VCz ®z k, Cv =" CCl ®z k, 

and 

(11) Hx(Gv(n),Z)^VCz. 

Before ending this section we make a final remark about operads with defining 
relations which are dual graphlike as in the Lie-hedron. Recall that in the dual Tel-A-
graph the vertices correspond to relations and the edges correspond to basis elements 
appearing in the relation. In this case the coherence relations do not correspond to 
the space of 1-cycles, but to certain 0-chains. If it is possible to orient the dual Tel-
A-graph G'(T(n)), then the sum of all the vertices in a connected component defines 
a coherence constraint since it represents a linear combination of relations such that 
each basis element (edge) appears once with a plus sign and once with a negative sign. 
It is easy to see from the matrix in Figure 2 that by changing the sign of four of the 
relations, defining i' = —i for i € {3,6,7,9}, we get a matrix with each column having 
two nonzero entries, one +1 one — 1, which allows us to orient the Lie-hedron. Then 
the coherence relation 

-t := 1 + 2 + 3' + 4 + 5 + 6' 4- 7' + 8 + 9' + 10 

is a just a sum over the vertices. The fact that the Lie-hedron is connected implies 
that the space of coherence constraints in n = 4 is one dimensional. We shall discuss 
this issue further in Example 25. 

The following two useful formulas (one for the non-E, one for the symmetric case) 
compute the size of the sets V(4) and V(4) for a quadratic operad V = (E\ R). The 
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formulas are immediate consequences of the description of the free operad and free 
operad module in terms of trees. 

(12) dim(V(4)) = 5dim(£)3, dim(V'(4)) = 5dim(F)dim(fi) (the non-E case) 

(13)dim(V(4)) = 15dim(F)3, dim(V,(4)) = 10dim(F)dim(it) (the symmetric case) 

Summing up the above results, we see for a Koszul operad V the following nice formula 
which relates the topological properties of the graph G(4) and the algebraic properties 
of the operad V: 

dim(Cp) = dimfP!(4)) = dim(Hi(G(4))). 

5. RELATION TO MAC LANE COHERENCE 

In this section we show how our theory gives coherence theorems a la Mac Lane. We 
will deal with operads given by commutative diagrams, in the sense of Definition 2. 
For these operads, the defining relations are always graphlike (Proposition 11) with 
G(n) the corresponding Tel-A-graph in degree n. 

Let V be an operad defined by commutative diagrams, and assume that the iso­
morphism (9) has been fixed once and for all, as well as the presentation £ = (B\ K). 
Assume we have oriented the Tel-A-graphs G(n) as in the proof of Proposition 12 so 
that 7r(r) = d(r). Define the functions n,£ : V'(n) -> V(n) by 7r(r) = n(r) - £(r) for 
any edge r of G(n). 

Definition 4. A (5 , K)-structure on a category C consists of: 

(i) An assignment of an n-polyfunctor $(b) for each element 6 G B(n) and thus, by 
functorial extension, an n-multifunctor $(p) for every element p e Ts(B)(n). 

(ii) An assignment of a natural isomorphism a(r) between $(f (r)) and <f>(n(r)) for 
each r e K and thus, by functorial extension, for every element r € Fs(B)(K). 

The (H, K)-structure is coherent if and only if whenever there is a composition 
of the natural transformations a(r) and their inverses connecting a given pair of 
multi-functors $(p) and $(q), then all possible compositions connecting these two 
multi-functors give the same natural transformation. This is equivalent to saying that 
whenever there is a composition of the a(r)'s and their inverses which connects the 
multi-functor $(p) to itself, the composition is the identity transformation. 

Instead of a (£,K)-structure we will often speak simply about a P-structure, 
V - Spank(£). The (B,K)-notation, on the other hand, underlines the fact that 
the structure of Definition 4 is very explicitly related to the prezentation (B\ K) of C. 

Each closed path 7 6 G(n) determines a diagram D(y) with arrows corresponding to 
natural isomorphisms of functors. By definition, the (B, K)-structure on the category 
C is coherent if and only if all these diagrams are commutative. 

Proposition 14. Let n > 3 and let {71,.. . , jd} be a sequence of closed paths of the 
graph G(n) forming a basis o/Hi(G(n),Z). Then the diagram of natural isomorphisms 
D(j) is commutative for any closed path 7 of G(n) if and only if it is commutative for 
any 7 <E {71,-•• >7d}-

Proof. Since the graph is an one-dimensional simplicial complex, the fundamental 
group is isomorphic to the free group on a set of closed paths. The set of generators 
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also forms a homology basis. Conversely, each set of closed paths that forms a basis 
for the cohomology generates the fundamental group. 

Thus in order to guarantee commutativity of all diagrams D(7) it is enough to check 
that the diagrams D(ji), 1 < i < a7, are commutative. • 

As a corollary we formulate the following 'classical' coherence theorem which in­
volves the coherence constraints Ccz of the operad £_ in the category Ab-Grp. 

Theorem 15. A necessary and sufficient condition for the coherence of a (B,K)-
structure on the category C is that the diagrams D(^) are commutative for a set B of 
closed paths 7 such that the images {p(^(l))\ 7 E B} form a basis for Ccz-

Thus, in the case of a Koszul operad there are dim(P](4))-diagrams whose commu­
tativity is necessary and sufficient for coherence. 

Proof. The commutativity of all diagrams D(j), 7 € 5, is clearly necessary for the 
coherence. WTe need to prove that it is sufficient. 

By Proposition 14, the condition for coherence is the commutativity of the diagrams 
D(7) for a basis of /7i(G(n),Z). By assumption the diagrams with p(n(j)) forming 
a basis for Cr,z are commutative. By (11) of Proposition 13, these together with the 
'obvious relations' give a Z-basis for Hi(G(rz),Z). 

Thus, to finish the proof of the first part of the theorem, it is enough to show that 
each 'obvious relation' corresponds to a commutative diagram. The first type of the 
'obvious relation' 

x(bu... ,6s_i,7r(u),6s+1)... ,6/) - 7r(x)(bu... ,6 s_!,y,6 s + 1 , . . . ,6/) = 0 

is, for 6 l 5 . . . , 6s_i, 6S+1,... , 6/ € ^(B), x} y € .Fs(.B){K}, represented by the simple 
closed path u (recall TT(X) = rj(x) — £(x), 7r(y) = r/(y) — £(y)): 

x(61,...,65_1,f(y),6j+1, ,6/) 

£{x)(bu...Jba-Ut(y),b3+u...,bl) ^ r l(x)(61 , . . . ,6 s_1 ,^(y),6 s + 1 , . . . ,60 

£(:r)(61,...,6s_1,y,6s+1,...,6z) ф)(61,...Л_1,yЛ+1,...,6/) 

f(a;)(61,...,6s_1,r/(y),6s+1,...,6i) *- r?(x)(61,...,6s_1,r?(y),6s+1,...,6i) 

x(61,...,6s_1,r7(y),6s+1,...,6/) 
for which D(u) is commutative by naturality. Also the second 'obvious' relation 

6(61 ?... ,6 s_1,7r(j),6 s + 1,... ,6<_i,y,6m,.. . ,6*)-

-6(6 1 ? . . . ,6 s _ l 5 x,6 s + 1 , . . . ,6t_1,7r(y),6f+i,... ,6/) = 0 

can be represented by a simple closed path u such that D(u) is commutative in an 
obvious similar way, again by the naturality 

The second part of the theorem follows from the description of the coherence con­
straints Cp given in Theorem 7. D 

Example 16. (continuation of Example 2) The non-E operad Ass for associative 
algebras is quadratic Koszul and Ass = Ass', therefore C^^ = Ass(4) = Span(p), 
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where p must be the element of (5) - there is no other choice! We get from (12) 
that dim(V(4)) = dim(V'(4)) = 5, and G(4) is the pentagon. An .Ass-structure on a 
category C is the same as a multiplication on C with an associativity isomorphism as it 
was discussed in the introduction. The coherence of (C, D, a) in the sense of the above 
definitions coincides with Mac Lane's definition, and Theorem 15 gives Mac Lane's 
celebrated coherence result. 

Example 17. Consider the algebraic structure consisting of a vector space V and 
two bilinear maps o, • : V ® V -> V which satisfy 

a o (b o c) = (a o b) o c, a o (b • c) = (a o b) • c, 

a • (b o c) =*(a • b) o c, a • (b • c) = (a • b) • c. 

These algebras were introduced in [13] and called nonsymmetric Poisson algebras. 
The corresponding operad K is Koszul, quadratic self-dual (see again [13]) and it 
has a quadratic presentation K — (E; R) with dim(F) = 2 and dim(It) = 4. We 
easily calculate that dim(/C(4)) = 8, thus, by Theorem 7, dim(Cjc) = dim(/C!(4)) = 
dim(/C(4)) = 8, with a basis consisting of eight pentagons shown in Figure 4. 

(1 *! 2) *2 (3 *4 4) 

l * i (2* 2 (3*з 4)) ( ( l * i 2 ) * 2 3 ) * 3 4 

l * i ( ( 2 * 2 3 ) * 3 4 ) ( l * i ( 2 * 2 3 ) ) * 3 4 

FIGURE 4. The graph G(4) for nonsymmetric Poisson algebras. The 
triple (*i,*2, *3) runs through all eight possible combinations (o, o, o), 
(•.°.°), (°>*>°), (°>°>#)> (°>#>»), (•)°,

#)) (•.•,°) and (•,•,•). 

A K-structure on C consists of two covariant bifunctors Di, D2 : C x C -» C and four 
natural transformations 

an : Di( l x Di) -> Di(Di x 1), au : D x ( l x D2) -> D2(Di x 1), 

o2i : D 2 ( l x Di) -> Di(D2 X 1), a2 2 : D 2 ( l x D2) -> D 2(D 2 X U). 

This structure is a variant of a weakly distributive category [1, Definition 1.1]. These 
categories are important for linear logic; we intend to discuss the applications of our 
theory to this direction in another paper. By Theorem 15, such a K-structure is 
coherent if and only if the eight pentagonal diagrams corresponding to those in Figure 4 
commute. 

Example 18. Let us discuss the following bizarre objects introduced by Loday in [8]. 
The importance of this example is that some coherence constraints will not be the 
pentagons. 
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By a digebra we mean a vector space V together with two bilinear operations o and 
• which satisfy the following axioms: 

X o (y o z) = (x o y) o z = X o (y • z)) 

(x • y) o z = x • (y o z), 

(x o y) • z = x • (y • z) = (x • u) • z . 

Let D be the corresponding non-E operad. It has a quadratic presentation V = (E\ It) 
with dim(F) = 2 and dim(It) = 5, and formula (13) gives that dim(V(4)) = 40 and 
dim(V(4)) = 50. 

As it was proven in [8], the operad V is Koszul. It is easy to compute that 
dim(P(n)) = n, and Proposition 8 says that e\\m(Qv) — 14. The graph G(4) is 
complicated (it has 40 vertices and 50 edges), but we know, by Proposition 14, that 
there exist 14 closed cycles in G(4) which generate the coherence constraints. These 
cycles are shown on Figure 5. 

6. OPERADS AND THEIR ALGEBRAS IN A CATEGORY OF MODULES 

Recall [15] that a ^-algebra structure on a (graded) k-vector space U is an operad 
map A : V -> End(U) from the operad V to the endomorphism operad End(U) 
of U, where all structures are considered in the category Vectk or gr-Vectk with 
multiplication given by the (graded) tensor product over k, 0 := 0 k . If U is a left 
V-module over a k-algebra V, then End(U)(n) has a natural left V- right V^-module 
structure. This allows us to consider generalized P-algebras satisfying axioms that may 
involve coefficients from V and its tensor powers. In this section we study the way in 
which the structure of the operad V imposes conditions on V which are necessary for 
there to be a reasonable concept of generalized 'P-algebras. 

An example of this type was given in the introduction, where we considered $-
associative algebras and derived the pentagon identity on the associator for the bial-
gebra V. 

Fix a unital, associative, local k-algebra V, with augmentation e : V —> k (i.e., each 
v £ V with e(v) ^ 0 is invertible) and an operad V = (E\ R). In order to take tensor 
products of V-modules we must assume that, for each n with E(n) 7*- 0, we are given 
a k-linear algebra homomorphism (a 'diagonal') An : V —> V®n such that 

(14) (e®n) An(v) = e(v), for each v e V, 

where we identify, in the left hand side of (14), k with (££)£ k. When V is quadratic, then 
A = A 2 : V - > V ® V and (V,«, A, 1, e) is an ordinary augmented unital associative, 
non necessarily coassociative, bialgebra. 

For V — (E: R) and n > 1 we have the basic exact sequence of k-vector spaces, 
which defines V as a quotient of the free operad generated by E, 

(15) 0 —•> Ker(7r)(n) —> F(E)(R)(n) ----> F{E){n) —•> V(n) —> 0 . 

This identifies V(n) to Coker(7r)(n). We now define an analog of this sequence which 
brings V into play and allows us to consider generalized coherence conditions. Let us 
discuss the non-E case first. 

We already observed in Section 4 that elements of T(E)(n) are represented by a 
sum of planar rooted trees with vertices labeled by elements of E. Such a labeled 
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(l*l2)*2(3*44) 

l*i(2*2(3*34)) мf > ((l*i2)*23)*34 

1*!((2*23)*34) (l*i(2*23))*34 
lo(2o(3*4)) (lo2)o(3*4) l#(2o(3«4)) (l#2)o(3*4) 

lo(2o(Зo4)) (1O2)O(ЗO4) 1Ф(2O(ЗO4)) (Ь2)o(3o4) 

(1O2)#(ЗO4) ((1O2)#3)O4 (lo2)»(3#4) ((lo2)«3)#4 

(l#2)*(Зo4) ( ( 1 # 2 ) * 3 ) O 4 (Ь2)*(3#4) ((Ь2)*3)*4 

lo(2o(Зo4)) lo((2oЗ)o4) (1O(2OЗ))O4 ((1#2>3)#4 (Ь(2#3))#4 1#((2«3)»4) 

lo(2*(Зo4)) lo((2«3)o4) (lo(2*3))o4 ((l*2)oЗ)*4 (Ь(2oЗ))#4 l«((2oЗ)#4) 

lo(2o(3#4)) lo(2*(3*4)) lo((2#3)#4) ((lo2)#3)#4 ((lo2)oЗ)#4 (lo(2oЗ))#4 

lo(2o(Зo4)) lo((2oЗ)o4) lo((2oЗ)«4) ((1#2)*3>4 (1#(2*3))«4 (lo(2#3))#4 

lo((2oЗ)o4) lo(2o(Зo4)) lo(2*(Зo4)) (U(2»3))»4 ((1#2)#3)«4 ((l»2)oЗ)*4 

lo((2o3)*4) lo((2*3)#4) lo((2#3)o4) (lo(2#3))«4 (lo(2o3))»4 (l#(2o3))«4 

FIGURE 5. The graph G(4) for digebras. It consists of four pen­
tagons (the triple (*i, *2, *3) runs through (o, o, o), (•, o, o), (•, •, o) and 
(•, •, •)), four squares and six hexagons. 
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tree t determines uniquely a bracketing b = bt of n indeterminates or, equivalently, 
an iterated comultiplication denoted An,b. Form the V-relative free operad TV(E) as 
follows: 

(16) FV(E) = 0 . T v ( F ) ( n ) , with Tv(E)(n) := T(E)(n) 0 k V®" . 
n>l 

Each Tv(E)(n) has an obvious right V®n-module structure. We give it a left V-module 
structure by defining 

(17) ^;•(t0^7) = i0An^(^;)^7, u = ux 0 . . . 0 un G V®71. 

Given t 0 u G !Fv(E)(n), where u = ^i 0 . . . 0 un, the 'operadic' composition of this 
element with the tensor product of n elements U 0 V{ G Jrv(E)(ai)J i = 1,.. .n, is 
defined as 

(18) l((t®u); («i0vi)0- • -0(*n0tfn)) := 
:= r(i!0- • -0*n)0Aai '6ii (u^Vi®.. .®AanM»(un)vn , 

where t(ti 0 • • • 0 tn) is the composition in T(E). Heuristically, we can say that the 
composition moves the interior coefficients V{ across the tree U using the comultiplica­
tion Aa,,6t». Clearly this defines on .Fy(K) the structure of a non-E operad. In degree 
n it is a free right V®n-module on the k-linear space T(E)(n). 

In the symmetric case we define the right action of the symmetric group on TV(E) 
by 

[t 0 (Ui 0 • • • 0 Un)]a = tCF® (tXo-(l) 0 • • ' 0 U«r(n)) , 

for t 0 u € Tv(E)(n) and O G En. 
To guarantee the consistency of this action with the left V-module structure (17) 

we define the comultiplication for the tree ta by 

(19) AnM°(v):=a-l(An>bt(v)). 

Assume now that Rv = {Rv{n)}n>i is a subcollection of Tv(E) such that each 
Rv(n) is left V- right V®n-submodule. In the symmetric case we moreover require 
that Rv(n) is Enclosed. 

Then we form the operadic ideal (Rv) C FV(E) and define the V-relative operad 
Vv by 

(20) Vv:=Fv(E)/(Rv). 

Observe that each Vv(n) is a left V- right V^n-module. 
To formulate the concept of an operad algebra from this point of view we use the 

usual endomorphism operad with End(U)(n) = Homk(U®n, U) considered as a left V-
and right l/0n-module in the standard way: 

(v • a)(ui 0 • • • 0 un) = v (a(ui 0 • • • 0 un), 

(a • (v\ 0 • • • 0 vn)) (ui 0 • • • 0 un) = a(vi • ux 0 • • • 0 vn - un), 

for a G End(U)(n), ui 0 . . . 0 u„ G U0n, v G V and vi 0 . . . 0 vn G V0n. A TV-
algebra structure on the V-module U is given by a 'V-relative} operad map, i.e. a 
family of left V- right V0n-module maps (equivariant, in the E-case) 

A(n) : Vv(n) —> End(U)(n), n > 1, 
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that are compatible with the operadic compositions. 

Example 19. Suppose that U has a k-linear multiplication * : U ® U -r U and 
assume that (£/, *) is a V-module algebra, that is, 

v(a * b) = V(i) (a) * V(2)6, for v G V, o, b G U, 

where, as before, i^) <g) V(2) stands for £ \ V(-)i 0 n(2)i = A(v) and A is not neces­
sarily coassociative. We want to consider associativity in the category of V-modules. 
Suppose that U is a left V = (V, ̂ -module and replace a * (b * c) = (a * b) * c by 

(21) <S>(a*(6*c)) = ((a*b)*c) 

where <£ G V®3 is an invertible element and $(a * (b * c)) :— £ ] ($ i a * ($2& * $3c)), if 
$ = £ $ i ® $ 2 ® $3-

These algebras are algebras over the V-relative operad Ass$ denned as follows. In 
the notation introduced in Example 2, let Rv = RASS,$ be a right V®3-submodule of 
Tv (E)(3) generated by 

fAn* = (1(23)) • $ - ((12)3) G FV(E){3). 

Then Ass$ := TV(E)/(RASS&) is the V-relative operad describing algebras that sat­
isfy (21). 

The augmentation map e : V —•> k induces, for each n, an augmentation (denoted 
by the same symbol) e : V0n —•> k. The right tensoring with k over V®n thus makes 
sense and it defines a right-exact functor from the category of right V®n-modules to 
the category of k-vector spaces. We denote this functor by e(-). We also have, for 
any right V®n-module M, a canonical k-linear epimorphism CM • M -> e(M) given by 
€hi(m) : = m ®y®n 1 G e(M). 

Lemma 20. For each n > 1, there is a canonical isomorphism 

e{Tv{E){n))^T{E){n). 

The canonical map €FV(E) '— {^Tv(E)(n) • Fv(E)(n) —> F(E)(n)}n>i is a homomor-
phism ofk-operads. 

Proof. The first statement of the lemma is obvious. The second part immediately 
follows from definition (18) of the operadic structure on Tv(E) and compatibility (14) 
of e and A's. • 

Let us introduce the central notion of this section. 

Definition 5. Assume that each Rv(n) is a left V-submodule of Tv(E)(n)} is En­
closed and is free as a right V®n-module. Let Vv = FV(E)/(RV) be as in (20) and 
define R := e(Rv) C F(E). Then we call the V-relative operad Vv a V-relativization 
or V-quantization of the k-operad V := T(E)/(R). Let {Tn,..., fn

{n)} C Tv(E)(n) be 
a V®n-basis of Rv(n), n > 3. We require further that (Tn,..., Tn

(n)), with rn := e(fn), 
1 < i < s(n), are independent over k and thus form a basis for R(n) = e(Rv(n)). 

Define the map 7ry : FV(E)(R) -> TV(E) of .^(-E)-modules by 7ry(Tt) := fu 

\ <i < s. WTe have the following V-relative analog of (15): 

(22) 0 —» K e r M ( n ) —> Tv(E)(R)(n) ^ Tv(E)(n) —> Vv(n) —> 0. 
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Now apply the functor e(-) on this sequence. Since clearly e(Tv(E)(R)(n)) = 
Jr(E){R)(n), e(Tv(E)(n)) = T(E)(n) and e(-) is right exact, we obtain the exact 
sequence 

T(E)(R)(n) - ^ F(E)(n) —> e(Vv) —• 0 

where 7r(r̂ ) = r̂ , 1 < i < s. This implies the existence of the canonical k-isomorphism 
t(Vv(n)) = V(n). The universal property of the kernel gives the canonical map 

(23) p : €(Ker(7rv)(n)) -> Ker(?r(n)). 

Let F : X -> Y be a map of two V0n-modules and let / : e(X) -> e(Y) be a map 
of k-vector spaces. We say that F : X -» Y is a map over f \i eF — fe. 

Definition 6. Let TV be a V-quantization of an operad V. We say that Vv is coherent 
if Vv(n) is, for each degree n, isomorphic to V(n) 0 V®" as a right V^-module over 
the canonical isomorphism e(Vv) = V(n). 

Coherence in this sense measures the regularity of the behavior of the operadic ideal 
generated by Ry in TV(E). 

Recall (Definition 1) that the collection of coherence constraints C of the operad V 
is defined as the indecomposables of the quotient Ker(7r)/C1> where O is the module 
of 'obvious relations' of the operad V. Let p be the projection Ker(7r)-»C. The main 
statement of this section reads: 

Theorem 21. The V-quantization Vv ofV is coherent if and only if the composition 

(24) S := e(Ker(7ry)) - A Ker(Tr) 4> C 

is an epimorphism. 

Proof. The inclusion k —•> V, a «-> a • 1, induces an embedding F(E) <-> TV(E) 
which is clearly a map of operads. This induces on TV(E)(R), and thus also on 
Ker(7iy), an Jr(F')-module structure. It is easy to conclude from Lemma 20 that 
e(Ker(7ry)) is also a natural .^(F)-module and that the map p : €(Ker(7ry)) —> Ker(7r) 
is an J7(F)-homomorphism. 

Claim 22. The map E : e(KeT(-KV)) - > C o / (24) is an epimorphism if and only if the 
canonical map p : e(Ker(7Tv)) —> Ker(7r) is onto. 

Proof of the claim. If p is onto, then clearly 5 must be an epimorphism, too. To 
prove the opposite implication, observe that a map / : X —r Y of .^(FJ-modules 
is an epimorphism if and only if the composite of / with the canonical projection 
}r^*Q?{E)(yr) to the space of indecomposables is onto. This means that if E is an 
epimorphism, then the composition €(Ker(7r^)) -^ Ker(7r) —> Ker(7r)/0 is an epi­
morphism, too. As it is easy to verify, the map p is always an epimorphism on the 
space of obvious relations, O C Im(D), this means that the map p is onto. The claim 
is proved. 

Summing up our observations, we have, for each n > 1, the sequence (22) of right 
V®n-modules 

0 —» Ker(?Tv)(n) —• Tv(E)(R)(n) A Tv(E)(n) —» Vv(n) —* 0 



5 0 M. MARKL - S. SHNIDER 

and a sequence of k-modules 

0 —> Ker(7r)(n) —> F(E)(R)(n) - A F(E)(n) —•> P(n) —+ 0. 

We also know that e(fv(E)(R)(n)) = J:(E)(R)(n)) e(Tv(E)(n)) =" F(E)(n) and that 
eiiy = 7T€. To finish the proof of Theorem 21, it is, by Claim 22, enough to show that, 
for each n > 1, 

Vv(n) = P(n) ® V®n over the canonical isomorphism e(Vv(n)) = V(n) if and 
(25) 

only if the canonical map p : e(Ker(7rv(n))) -> Ker(7r(n)) is an epimorphism. 

This will clearly follow from the following lemma, in which we put W := V®n. 

Lemma 23. Suppose we have an exact sequence 

(26) 0 — + S - 1 > C - 1 + B - ± > A — > Q 

of k-modules, and an exact sequence 

(27) 0 —» S'^U C -A B' A A1 —> 0 

o/ h#h£ W-modules. Suppose that the modules C and B' are W-free, e(C) = C, 
e(B7) = H, and ii/ia^ under these identifications, TT = e^') . 

T/ie canonical map p : e(S') —)• 5 is always a monomorphism and the following two 
conditions are equivalent: 

(i) lhe map p : e(S') —•> 5 is an epimorphism, 
(ii) A' = A ® IV oner £/ie canonical isomorphism e(A') = A. 

Proof of the lemma. To prove that the map p is a monomorphism, observe that, 
since C is a free VV-module, the induced map e(S') —•> e(C) is monk. Because p is the 
composition of this map with the identification e(C) = C, it must be a monomorphism 
as well 

For the rest of the proof we may clearly assume there is a k-vector space D such 
that (26) is of the form 

with n(r) = (0,r), 7r(d, r) = (J, 0) and r(d,a) = a. Then (27) is necessarily of the 
form 

0—>SiJUD®W®S®W-^+D®W®A®W^Ai —> 0 

with 7r' represented by the matrix 

< » > ( . : ) • 

where a: G Homw(D®PV,_D®PV), y G Homiy(S®KV,D®VV), 2 G Homw(L>®H/,A®lV) 
and w G Hom^(S ® IV, A ® IV). The assumption e(n') = n translates to 

(In ® e)x = I D ® e, (Ir; ® e)y = 0, (1^ ® c)z = 0 and (1^ ® e)w = 0 

and completeness of W implies that the map x is invertible. 
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In order to finish the proof, it is clearly enough to show that either (i) or (ii) is 
equivalent to the existence of isomorphisms <f> and i\) of right IV-modules such that the 
following diagram commutes: 

D®W®S®W -0®^ D ® i V © A ® i V 

(29) <j>t f ^t 

D®W®S®W » D®W®A®W 

The existence of <j> and ip and the commutativity of (29) clearly implies (i) and (ii) so 
it is enough to prove the converse. Assuming either (i) or (ii) we need to prove that 
there exist 0, ip satisfying the equation 

(30) ip~x o(7r®lw)o(t) = Tr'. 

Let us suppose (i), that the map p is an epimorphism. Put 

4>:=(l / ) and tf := ( ^ / ) . 

The map ip is clearly invertible and 

A®W I V o U I \ U JiS<8)VV 

/ * y \ 
\ z zx~ly ) ' 

To prove that this composition gives it' we need to show that w = zx~ly. Let 
{s\y • • • 15n} be a k-basis for S. By the surjectivity of p, we know that for each st there 
exists a corresponding s^ G 5', such that p(e(sj)) = «V Since 5' C D ® IV 0 5 ® IV, 
we can represent, for 1 < i < n, s- as rj = d[ -f £-_<-,-<n

 sj ® wij w i t n ^u ^ ^ an<^ 
d • E D ® IV. Then p(e(s-)) = st- implies e(iUy) = <5ij, and the completeness of W 
assures that the matrix (w^) is invertible. Thus S' contains elements of the form 
s'{ = d'l + s, ® 1. For s' <E S' there exist ^ such that s' - £ sftvi € 5' fl (Z) ® IV). The 
invertibility of the map £ implies that 5' n (D ® IV) = 0, so the elements {5-}i<i<n 

span 5' as a IV-module. They are clearly linearly independent over W so they form a 
basis. The definition of S' as the kernel of 7r' gives the matrix equation 

<»> (.:)(c)-(S)-
where u. € HomVr/(5 ® IV, D ® IV) is defined by u(st- ® 1) = d". It follows from (31) 
that 

xu + y = 0, and zii + iv — 0 . 

Solving the first equation, u = -x _ 1y, and substituting in the second we obtain 
w = zx~ly. 

Suppose now (ii). This means that there exists a IV-isomorphism £ : A' —> A ® W 
such that (IU ® e)f = e. Consider the composition f o r ' : D ® IV 0 A ® W -> A ® IV 
represented by the matrix (r, s), r : £> ® W -> X ® W and s : A ® I V - * A ® I V . By 
the assumption on f, (1^ ® c)s = 1^ ® e. So s is invertible and we can replace £ by 
s_1 o f =: {. The matrix representing the composition £ o r is (f, IU®jy). 
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Now r' o 717 = 0, so f o T' O IT' = 0 and representing TT' as in (28) we conclude that 

(r,lA9W)(X
z * ) = ( 0 , 0 ) . 

Then 

/ 1D®W o \ ( x y \ =,(x y\ = ( 1D®W ° \ ( x y \ 

V r *A®W ) \ Z W ) V 0 0 / V ° ° A ° W i ' J 

and we may in (29) take 

*:=(; / ) and ̂  := f ^ / V 
\0 1RQW J \ r 1A(S)W J 

The lemma, and thus also Theorem 21, is proved. • 

Example 24. Let us investigate the coherence of the operad A ss$ which we intro­
duced in Example 19. Clearly, RAss^ is a free right V®3-module. Definition (17) of 
the left V-action gives 

vrAu. = ( 1 ( 2 3 ) ) . ( 1 ® A ) A ( « ) - * - ( ( 1 2 ) 3 ) . ( A ® 1 ) A ( T ; ) 

- f A „ . • (A ® l)A(v) - (1(23))[$ • (A ® l)A(v) - (1 ® A)A(v)$]. 

We see that RASS* IS left V-closed if, for each v € V, 

(1 ® A)A(v) • $ = $ • (A ® l)A(*v). 

We already know that the coherence constraints C of the operad Ass = e(Ass$) 
form an one dimensional k-vector space C = C(4) with the generator corresponding 
to the pentagon. Theorem 21 in this case says that the operad Ass$ is coherent if an 
only if the map p : e(Ker(7L4W#)(4)) -*• Ker(7ri4^)(4) is onto. Since, by Lemma 23, the 
map p is a monomorphism, the later is true if and only if €(Ker(7rJ4SS<t))(4)) -̂ 0. 

The 'quantized' map KASS* • Tv(E)(RAssJb)(4) —•> (RAsS(ff)(4) is described by the 
following matrix with entries in W = Vm (notation of Example 2): 

(32) 

Consider the kernel of this map. It follows from a very special form of the matrix 
for TTASS4,(4) that irAsSi, (1 • x0 4- 2 • X\ -\ h 5 • X4) = 0 can be expanded to the following 
system of equations for x0 , . . . , £4 £ W: 

ctiX-i = x^+i for i e Z5 , 

with a0 = (A ® 12)($), ai = (1 ® 9)'1{12 ® A)($)> a2 = (1 ® A ® l ) ^ ' 1 ) , 
az = ($ ® 1)_1 and a4 = - 1 . We see that 

Ker(7rj4ssJ(4) =• {x e W\ (aA • • -aQ)x = x} . 

a b c d e 
KASSФ(1) - 1 (Д®12)(Ф) 0 0 0 
кAsSф(2) 0 - 1 (12®Д)(Ф) 0 0 
T Г Л S S Ф ( З ) 0 0 (1®Ф) - 1 0 
^Л55ф(4) 0 0 0 (1®Д®1)Ф - 1 
7ГЛssФ(5) - 1 0 0 0 (Ф®1) 
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Clearly e(Kei(7rAsSilf)(A)) ^ 0 if and only if there exists x E W such that e(x) y- 0 
and (0:4 • • • aQ)x = x. By the completeness of PV, such x is invertible and (a4 • • • OJ0) 
must equal 1, which is the standard pentagon identity for $: 

(33) (1 ® <*>)(! ® A ® !)($)($ ® 1) = (I 2 ® A)(<S>)(A ® 12)($) . 

We see that the coherence of the V-relative operad Ass$ means that the object 
V = (V •, A, 1, $) is a quasi-bialgebra in the sense of [2]. A natural example of an 
A55$-algebra is the dot-construction of [14]. 

Example 25. Next consider the coherence of the generalized Lie operad. Let E and 
C have the same meaning as in Example 9 and let t € ^(^)(3) be the element C(C® 1), 
corresponding to the bracketing [[12]3] and s the element C(l ® C) corresponding to 
the bracketing [1[23]]. Define a symmetry condition on C by 

(34) CoT2i®7^ = - C , 

where 

ft:=£fti®ft2€ V®2. 

In other words, Ey := Ty(E)(2) is the free rank one right V®2-module which is the 
quotient of the rank two module with basis {C>C ° ^21} by the submodule with basis 
{C o F21 ® # + C}- From identity (17) we have 

v • (C o T21 ® n) = C o T2i ® Aop(v)n 

and 

-v. <; = - c ® A(v) = c o T2I ® nA(v). 

Therefore the condition that Ty(E)(2) is a free right V02-module implies 

(35) Aop(v) = nA(v)n~l. 

Iterating (34), the free module condition implies Drinfel'd's triangularity condition on 
K: 

(36) n2l-n = i. 

Operadic composition of equation (34) with 1 ® C implies the identity 

(37) t o T23I ® (1 ® &)n = - 5 . 

The (n, $)-relative version of the Lie operad is defined by the basic tertiary relation 

(38) rLien^ := t ® 1 - s ® $ + s o 7213 ® ^213^, 

which is our formalism for the 'quantum Jacobi identity' 

(39) [[x, y], z] = $[*, [y, z]] - <S>7l21[y, [ar, z]]. 

Let Ruen,* b e t n e r i S n t V^-module generated by fWew>#. Requiring €(?!«*,•) = rLie 

(the Jacobi identity) means that 

(40) c($) = 1 and c(ft) = 1. 
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Again from the identity (17) we have 

V • TLieK,* = V • (̂  ® 1 - 5 ® ̂  + 5 o F213 ® $213ft) 

= t ® ( A ® l ) A ( v ) - s ® ( l ® A ) ( A ( i ; ) ) $ 
+s o T213 ® T213 ((1 ® A)A(v)) <S>2n1l. 

Together with the condition itV(3) be a free right V03-module this implies 

(41) ( l®A)(A(v))* = $(A ® .U)A(v) and 

(42) T213(1®A)(A(L<))<^21) = $213?^(A®1)®A(L<). 

Equation (42) follows from equation (41) and equation (35). 
Next we investigate the symmetry condition (37). It is most convenient to study 

these relations in the form of the quantum Jacobi identity (39). 

[[*, y\,z\ = [*ia, [$2j/, <M] - [*ift2y, [^2/^ix, <M1 
= -[$!x, [n2$zz} n^2y}\ - [*i^y, [§2RlX, *3*]] 

(43) = -[^n2y, [^n^ *zz\] - [[($-1)i^ix, ($-l)2n2$zzi (Q-'hn^y] 

-[^ln2(^~1)2n2^z} [$2/^1($-1)1$1^, $3(*"1)3^i<>22/]• 

= -$ft2i[y, [x, z]] - ^-1^3 2$i32[k, z\,y\ - *ft2i*^3ft3i$23i[z, [*, y]]. 

From the symmetry relation (34) we conclude: 

(*tt2i - (1 ® A)n21$23\ll13<S>2n)[y, [x, z\\-

- ( ( 1 ® A)U2l - S ^ i ^ t t s i ^ i M * , [x,y\\ = 0 . 

In order that (T(E)v/Rv) (3) be a free V®3-module of rank 2 we must have the 
identity: 

(44) (A ® X)(K) = $312^13^32^23$ • 

This is the first Drinfel'd hexagon identity see [2, 3.9a, 3.9b]. The second hexagon 
identity 

(45) (1 ® A)(R) = ^ f t i ^ f t ! , * - 1 . 

follows from the first one by the triangularity %2\ — 71^ . 
Next we want to determine the conditions which guarantee the coherence of the 

operad Lie-R^ :— Jry(E)/(Rnen^) in the sense of Definition 6. 
We saw in Example 9 that the coherence constraints for Lie = e(Lien^) form the 

one-dimensional trivial representation of S4, it is thus enough to investigate when 
e(Ker(7rL^J(4)) is nontrivial. 

After determining the appropriate coefficients in V®4 given by extending the rela­
tion (38) to brackets with four terms, we obtain a '^-matrix' representing the map 

KLie{Tl,*) : ^v(E){RLie(n^))(^) -> (ItLte,3>) C Tv(E)(A) . 

We will not write the full ^-matrix here since it is to big to fit on a page (it is obtained 
by decorating the entries of the matrix in Figure 2); for our purposes it is enough to 



a b c d e 
TГLieя.фU) 1 - ( Д ® ť ) ( Ф ) 0 0 0 

KLienA2) 0 1 -(1 2 ®Д)(Ф) 0 0 
ҠLгenA3) 0 0 -(1®Ф) 1 0 

KLгenA4) 0 0 0 - ( 1 ® Д®1)(Ф) 1 
KLгen>Ф(5) 1 0 0 0 -(Ф®1) 
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observe that the upper left 5 x 5 submatrix of this ^-matrix is: 

(46) 

Observe that this matrix coincides, up to the sign reversal, with the matrix (32). 
The next step is to describe Ker(7T£te^^)(4) as a V®4-module. It is clear from the 

form of the matrix that, as in Example 9, the system of equations for Ker(nLie7l^)(4) 
has the form 

ajXi{j) =Xi>Uh 1 <j< 15, 

where j is the index for a column, i.e. an edge of the graph, and i(j),i'(j) are the two 
vertices adjacent to that edge, i.e., the two rows with non-zero entries in that column. 
The consistency conditions have the form 

fli%i — %i 

where $ is a product of the cVs going around a closed path with initial and terminal 
vertex i, which implies the pentagon identity (33) as in the previous example. Thus 
we must have both the pentagon and hexagon identities, and coherence of the operad 
Lien,$ implies Mac Lane coherence. The converse is clear since the coefficients of a row 
in the matrix for itLien,* represent natural transformations between the three bracket-
ings appearing in a Jacobi relation, and Mac Lane coherence implies the uniqueness 
of the natural transformation connecting any two bracketings. 

More precisely let Txy be the element of V04 representing the natural transformation 
from a bracketing x to a bracketing y. If we fix one bracketing, such as a in the table 
in Figure 2, multiplying each row of ftLien,* by a suitable factor we get a new matrix 
with the two non-zero entries in column i given by ±Tai. Thus there is the same kind 
of dependency among the rows as in the classical case. 

Theorem 26. The operad Lieji^ is coherent if and only if (V, •, A, $,7£) is a trian­
gular quasi-Hopf algebra in the sense of [2]. 

Example 27. Let us consider algebras consisting of a graded vector space U* and 
a trilinear degree - 1 product { - , - , - } : Uf3 —> U* satisfying, for all homogeneous 
a, b, c, d, e e £/*, 

(47) {{a, b, c}, d, e} + (-l) | a |{a, {b, c, d}, e } ( - l ) ' a ^ l + {a, b, {c,d, e}} = 0. 

The above means that (I/,, {—, —, —}) is an A(oo)-algebra [17] with all structure oper­
ations fjn trivial except /i3 = {—,—,—}. Let A be the non-S operad describing these 
algebras. It is not quadratic, but it is homogeneous in the sense that A = (E\ R) 
with E ~ F(3), the one dimensional space generated by the product {-, - , - } , and 
R C T(E)(b) generated by the left hand side of (47). For these homogeneous operads, 
it still makes sense to introduce their .-duals, and an easy calculation gives 

ln k, for n — 1 (mod 2), while ť(n) = { " ; ^ 0, otherwise, 
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where in k is the one-dimensional graded vector space concentrated in degree -n. It 
can also be shown that A is Koszul in a suitably generalized sense, thus C^ = CA{1) = 
A!{1) is one-dimensional. Therefore the kernel of the map 

*{1):T{E){R){1)^?{E){1) 

is also of dimension one. In fact, dim^(jE)(i?)(7) = 8, dim.F(£)(7) = 12 and TT(7) is 
represented by the matrix 

(48) 

Since (48) has exactly two nontrivial entries in each column, the corresponding TA-
structure is graphlike, with Tel-A-graph the 'Mobius strip:' 

(+1 +1 +1 0 0 0 0 0 0 0 0 °\ 
0 0 0 +1 +1 +1 0 0 0 0 0 0 
0 0 0 0 0 0 +1 +1 +1 0 0 0 
0 +1 0 0 0 0 0 0 0 -1 -1 0 
0 0 +1 0 0 +1 . 0 0 0 0 0 -1 

+1 0 0 +1 0 0 +1 0 0 0 0 0 
0 0 0 0 +1 0 0 +1 0 +1 0 0 

V o 0 0 0 0 0 0 0 +1 0 +1 + 1 / 

(49) (Ě IЭ 
with 8 vertices corresponding to the rows of (48) and 12 edges corresponding to the 
columns of (48). 

Let V = (I7, •, l,e) be a unital augmented algebra and let A = A3 : V -» F®3 be a 
homomorphism. Let us 'quantize' (47) by decorating it by some invertible $, ^ 6 V03 

to 

{{a, 6,c}, d, e} + (-l) | a |*{a, {«>,c, d}, e} + (-l)W+l%{a, 6, {c, a\ e}} = 0. 

It is an easy exercise to prove that the left V-invariance of this axiom implies that 

(1 ® A ® 1)A • $ = $ • (A <g) I 2 )A and ( I 2 <g> A)A • * = * • (A <g> H2) A . 

The coherence of the corresponding V-relative operad AQ^ then means that $ and 
^ satisfy 6 equations corresponding to 6 generators of the fundamental group of (49). 
To get these equations would mean to evaluate the 'decorated' matrix for 7r$^ (7) from 
which these equations can be easily read off. We leave this to the reader. 
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