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ON EMBEDDING CURVES IN SURFACES

W. BAIGUZ

ABSTRACT. We define here a closed surface to be such a continuum, every point of
which has a neighborhood homeomorphic to the Euclidean plane. In the following
one proves that for every locally plane Peano continuum X there exists a closed
surface such that X is embedded in that surface. Hence the class of locally plane
Peano continua appears to be much more regular then it was supposed to be ([2]).

1. PRELIMINARIES

By a Moore decomposition of the Euclidean plane we mean any upper semicontinuous
decomposition ¥ of E? such that each element A € ¥ is a continuum and every
neighborhood of A contains a neighborhood of A homeomorphic to the plane EZ.
Then one has a theorem of R. L. Moore [5]:

(1.1) The decomposition space of a Moore decomposition of E*is homeomorphic to E?.

A Peano curve X C E? is said to be an S-curve if the boundary of each component of
E?\ X is a simple closed curve and no two boundaries of different components intersect.
According to this definition the Sierpiniski plane universal curve is an S-curve.

We have then the following result due to G. T. Whyburn [6]:

(1.2) Any two S-curves are homeomorphic.

In the case of the S-curve X the union of boundaries of all components of E?\ X is
called the rational part of X. One then observes that for any simple closed curve S
included in the Sierpinski plane universal curve X, S does not disconnect X iff S is
the boundary of some component of E2\X - i.e. if S is the component of the rational
part of X. Hence by (1.2) this property belongs to each S-curve X:

(1.3) Let S be any simple closed curve included in the S-curve X. Then S does not
disconnect X if and only if S is included in the rational part of X.

The proof of the following fact the reader can be found in [2]:

(1.4) Let X be a locally connected subcontinuum of space M and ¥ a collection of
indices. Assume that each indez 0 € & corresponds an open subset G, of M and a
locally connected continuum F, C M satisfying the following conditions:

- for every € > 0 the inequality diam F, < € holds for almost all indices 0 € T,

-0 # 7 implies G, NGz =0,

The paper is in final form and no version of it will be submitted elsewhere.
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-0# XNBAG, C F, for every index o € L.
Then the set Y = (X\ u Go) U U F, is a locally connected continuum.

o€l €L
In the following one makes an extensive use of the following notational conveniences.
Let X be Peano continuum and A, B C X, then:
¢ d denotes a metric of X. For nonempty sets A, B one defines d as follows:
d(A,B) =inf{d(a,b):a € A,b€ B};
e B(A,r)={z:d({z},A) <r} for A+#0;
e ClA, Int A, Bd A denote the closure, the interior and the boundary of A in the
space X respectively;
o The disk is identified here with the topological image of the square [0,1]%;

o Let D be homeomorphic to the [0,1]°. Then D and D denote correspondingly
the interior and the boundary of the bounded manifold D, while if D is a point,

then D=0 and D= D;

2. BRICK PARTITIONS

A metric space X with a metric d is said to be uniformly locally connected iff for
every € > 0 there exists § > 0, such that: if d(z,y) < ¢, then z and y are contained
in a connected open set of diameter less than e.

In the case of the complete connected metric space this is equivalent to the existence
of an arc from z to y of diameter less than ¢.

In the following we assume X to be a locally connected continuum.
A partition of X is a finite collection F of closed subsets of X such that F covers X,
for each F' € F, Int F is connected and dense in F', and for any pair of elements F, F,
of F: F; # F; and Int Fy N Int F; = 0.

For F being a partition of X and G C X one use the notation

o StarrG=U{F €eF:GNF #0}.
A partition F of X is said to be of order n iff the intersection of any n + 1 elements
of F is empty.
A partition F of X is said to be a brick partition iff every element of F has uniformly
locally connected interior and the interior of union of any pair of elements of F is
uniformly locally connected.
A partition F is said to refine a partition H it VF e FIHe H: F C H.
Let F and H be partitions of X. A partition F is said to be an amalgam of a partition
‘H iff every element of F is an union of subcollection of H (F is a partition and
therefore each element of F is connected).

Observe that

(2.1) Any amalgam of brick partition of Peano continuum Xis the brick partition of
X.

Proof. Let F be the brick partition of X, G be any amalgam of F and G € G.
Then G = YA for some A C F. Consider ¢ > 0. Then for every pair A,B € A
there is 64,5 > 0 such that for any points z,y € Int(AU B) if d(z,y) < 4, then

¢ and y are contained in a connected open set of diameter less than 5. Let § =
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min{04,5; A, B € A} and let z,y € Int G be such that d(z,y) < min{%,%}. Then
r € Ay and y € A, for some A;, A, € A. According to locally connecteness of X there

are connected open neighborhoods U, 3 z, U, 3 y of diameter less than min{%,%
and both U, U, are included in IntG. Let 2’ € U,, y' € U, be points such that
¢ € Int A;, ¥ € Int Ay. Then

/ : . )
d(2',y) < d (2, 2)+d (2,y)+d (2,¥) < diam Uztd (2, y)+diam Uy <33 =6 < 8a. 8, -

Therefore there is a connected open set U C Int (A, U A,) C Int G of diameter less
than £ such that z',y" are contained in U.

Thus z,y are elements of connected open set U, UU U U, C IntG and

diam (U, UU UU,) < diam (U,) + diam (U) + diam (U,) < 3% =c.
This means that Int G is uniformly locally connected and hence G is the brick par-
tition. )

Since any amalgam of order n partition F is of order n partition and according to
(2.1) one obtains:

(2.2) Any amalgam of order n brick partition of X is of order n brick partition of X.

A sequence {.7:,}::’; of partitions of X is said to be a decreasing sequence of partitions
iflf F; refines F;_, for all > 1 and lim meshF; = 0.

1—=+00

In [1] R. H. Bing proved an important brick partitioning theorem:
(2.3) Every Peano continuum admits a decreasing sequence of brick partitions.

In [3] a stronger version of the Bing’s brick partitioning theorem is proved for the
case of one-dimensional Peano continuum:

(2.4) Any one-dimensional Peano continuum admits a decreasing sequence of order
two brick partitions with zero-dimensional boundaries.

A partition F of Peano continuum X we call a net partition with nodes N (F) and
threads T (F) if F is of order two brick partition such that:

— F = N(F)UT (F) and for any different Fy, F, being both elements of N (F) or
both elements of T (F) holds Fy N F, = {,

— for any T being element of T'(F) there exist two different elements N;, N; of
N (F) such that StarzT = NyUT U N,.

Every of order two brick partitions of one-dimensional Peano continuum X is related
to the net partition of this continuum, more precisely:

(2.5) Let F be of order two brick partition of one-dimensional Peano continuum X.
Then there exists a net partition G of X such that the number of nodes of G is equal
to the number of elements F and for every A € F there is a node G € N (G) such that
GClntA.

Proof. Since {AN B: A, B € F,A# B} is a finite family of mutually disjoint closed
subsets of X, then there exists § > 0 such that:
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(1) for each different elements A, B, C of F, if ANB, ANC are nonempty sets then
d(ANB,ANC) >3 and

(2) for each A being an element of F there exists a point £4 € A such that d (x4, Bd A)
>4,

Let now A be any element of 7. A\ B (Bd A, %) contains only finite number of
components, which are not included in B (Bd A, é). Let H,, Hs, ..., H, be an order all of
these components into a sequence. Int A is connected and uniformly locally connected
since A is element of brick partition F. Therefore there exists arcs Ly, Lo, ..., L,
in Int A such that L; connect the point 4 and the component H;. Let §, be any

positive number such that §4 < min {(5,d (Bd A, CJ L;)} (here d is not a metric, it
i=1

denotes the infimum of distance between pairs of points) and let M4 be a component

of A\ B(BdA,éd4) such that 24 € M4. Then

(3) MaD A\B(BdA4,J6).

Let now 6, = min {84 : A € F}. Let {F;}:2, be a decreasing sequence of order two
brick partitions of X obtained from (2.4). Consider n such that mesh F, < %l Then
for A € F we have:

Starr, My C B (MA, %) .

Therefore  Stars, MANB (BdA,%) C B(M4,%)nB(BdA, %)
and furthermore B (MA, %) NB (Bd A, %’-) =), since

51S5A and MA(‘IB(BdA,(SA):@.

Thus
(4) Starz, MaNB(BdA, %) =0.
Now we can define families of sets N (G) and T'(G) as follows:

(5) let T (G) be a set of those components of the set U{H € F,, : H € UStars, M, :
A € F} which intersect J{BdA: A€ F} and

(6) let N (G) be aset of components of X\Int (UT (G)) =U{H € F.: H L UT(G)}.
Then by (2.2) G = N(G)UT(G) is an order two brick partition and by (5), (6) the
families N (G) and T (G) are disjoint.

According to (4), (3) each element of N (G) is included in the interior of some element
of F. But each A € F is connected and therefore by (5) if C is a component of
A\ Int(UT (G)), then C contains M. Therefore each A € F contains only one
element of N (G).

Let now T' € T(G). Let us observe then that

T c U{HeF.: HZ{Stars,Mr: F € F}} =

U{#eF HnJ{Mr:FeF}=0}cC

U{H e Fa: HAU{F\B(BAF,8): F € F} =0} =
U{HeF:HcB(U{BAF:FeF},8)} cB(U{BIF:FeF},4).

N
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From this inclusion and according to (1) every element of T'(G) connects exactly two
elements of N (G) since every element of F contains only one element of N (G).

Finally if any two different Gy, G, are both elements of N (G) or both elements of
T (G) then Gy NG, = 0, since N (G) and T (G) was defined as sets of components. O

From (2.4) and (2.5) it follows that

(2.6) For every one-dimensional Peano continuum X and € > 0 there exists a net
partition F of X such that meshF < ¢.

3. EMBEDDING OF LOCALLY CONNECTED CONTINUA IN SURFACES

In 1966 K. Borsuk presented a construction of locally plane and locally connected
curve which was supposed to be not embedded in any surface [2]. The Borsuk’s example
relied on a missconviction that the curve under construction stays to be locally plane
after each step of the construction. However this is not the case. As a result the
opposite might be true.

In this paper one proves that the curve which is simultaneously locally plane, locally
connected and not embeddable in a surface does not exist, i.e. one proves:

(3.1) Theorem. For each locally plane Peano curve X there exists a closed surface
such that X is embeddable in this surface.

By the theorem (3.1) one arrives at the following stronger statement i.e.:

(3.2) Theorem. For each locally plane Peano continuum X there exists a closed
surface, such that X is embedded in this surface.

Proof of Theorem (3.2). Let X be a locally plane Peano continuum. Due to the
theorem (3.1) we can assume that dim X = 2. Let X’ be the set of all points z € X
such that z has a neighborhood homeomorphic to the Euclidean plane. Consider a
family D = {D; : j = 1,2,...} of mutually disjoint closed disks in X’ with diameter

approaching to zero, such that X \ U ﬁ,- is 1-dimensional.

Thus oDl, 10)2, ... is the family of open subsets of X andb,, 152, ... is the family of locally
connected continua satisfying conditions of (1.4). Therefore

Y=Xx\{J D; isaPeanocurve.

Consequently, according to the theorem (3.1), there exists a closed surface M and a
homeomorphic embedding ¢ : Y — M.

In the next step we shall modify surface M in order to obtain a homeomorphic
embedding of X into the new surface.
Consider disk D from family D. D has an open neighborhood U in X homeomorphic
to the Euclidean plane. Let 3~ be the decomposition of U such that every disk D; C U
from family D is an element of 3" and all other elements of 3 are individual points.
Then ¥ is the Moore decomposition and according to (1.1) the decomposition space
U/s~ is homeomorphic to U.

Therefore every bj has arbitrary small closed neighborhood in Y being an S-curve
and is included in rational part of this S-curve.
For each simple closed curve C in M one has either (a) or (b):
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(a) C has arbitrary small neighborhood in M homeomorphic to the annulus,
(b) C has arbitrary small neighborhood in M homeomorphic to the Mobius band.

Assume that the case (b) occurs for the simple closed curve ¢ (b]) Let U be a

sufficiently small neighborhood of ¢ (b,) in M such that U can be represented as
Cartesian product [—1,1] x (=1,1) with adequately identified {—1} x (=1,1) with
{1} x (-1,1) and ¢ (bJ> represented as [—1,1] x {0}. Let A be a sufficiently small

closed neighborhood of ¢ b,) in ¢ (Y) such that A is an S-curve included in U. A

can be decomposed to a closed chain of S-curves Ay, Ay, ..., A, such that A; N Ay is
an arc, only end-points of A; are included in rational part of and one of its end-point

is element of ¢ <b1) (see picture below).

Then ¢ (b]> does not included in the rational part of A and hence case (b) is
impossible.

Let A; C M for each j be homeomorphic to the annulus such in a way that ( b,)
is included in the boundary of A; and ¢ (Y)NA; =¢ (1.)1) Observe than, that only

finite number of ¢ (b]) does not disconnect M, since diameter of [.)j approaches

to zero and there exists ¢ > 0 such that any simple closed curve in M of diameter less
than ¢ disconnects M.

Let M be a component of M\ {Int Aj (b;) does not disconnect M}. Then M is

a bounded surche.]\;[ can be homeomorphically embedded into a closed surface N
obtained from M by adding disks to boundaries of M - let 4 be this embedding. In
this way we obtain a homeomorphic embedding ¥y = yo ¢ : Y — N such that every

simple closed curve ( bJ> disconnects N.
As ¥ (Y) is contained in the closure of only one component of N\ (bj), we may

choose Fj; F; C N as the closure of N\¢ (b,) component of such that F; N (Y) =

v (Ds)-
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The diameter of 3 (bJ) is approaching to zero, therefore only finite number of F; are
not disks. We can replace these Fj by disks thus obtaining a closed surface N and a
homeomorphic embedding % : ¥ — N such that each simple closed curve ¥ (b,)

disconnects N into two components. At the same time, the closure of component D;
of N\ (D;) - disioined with () - s the disk.
Finally we can extend 4 into homeomorphic embedding ¥ : X — N such that
|, =4 and ¥ (D;) = F; for each j. This proves the theorem (3.2).

Now let X be Peano continuum included in the Euclidean plane E2. One then
proves the following two lemmas:
(3.3) Lemma. Let L C X be a point or an arc which irreducibly - with respect to
subcontinua - disconnects X between points z,y € X'. Then there exists a component

U of E*\X and a simple closed curve S such that S\L C U, SNX = L and the points
z,y belong to different components of E*\S.

Proof. Let U, U, be the components of X\L containing z,y respectively. Let G, be
a component of E?\ (U, U L) containing U,. If L is an arc - the ended points of L are

elements of Cl1U, N C1U, since L irreducibly disconnects X. Therefore z, is included
in the boundary Bdg: G, of G, in the Euclidean plane and hence L C Bdg: G, and

A; = Bdg2 G\ z is connected. Then A, U L disconnects E? such that G, is included
in one of components of E?\ (A, U L) and U, is included in the closure of the other of
components of E2?\ (AU L).

Observe that A, is included in the boundary of one of components of E2\ X, which in
turn is included in G, (since U, is the component of X\L). Denote this component
as G.

In the boundary of G it can be founded (exactly one) a component V 2 of X\L
such that for B = Clx V N Clg2 G holds: LC B and B disconnects Gy such that U, is

included in the closure of one of components of G,\B and A, is included in the closure
of the other one (see the picture below).

Now:

— when L is an arc we can find an arc L' C Clg2 G such that I:’=1.; and for which
B and A, are included in closures of different components of G\L'. Hence the
simple closed curve S = L U L' fulfills the conditions of the above lemma;
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— when L is a point we can find a simple closed curve S C Clg: G such that L C S
and S\L C G for which B and A, are included in closures of different components
of G\S and hence this simple closed curve satisfies the conditions of lemma (3.3);

It completes the proof of lemma (3.3).

(3.4) Lemma. Let L C X be a continuum - a point or an arc, such that L irreducibly
- with respect to subcontinua - disconnects X between points z,y € X. Let S be a
simple closed curve in E? such that SN X = L and z,y are elements of different
components of E*\S. Let U, U, be components of X\L containing z,y respectively.
Let G be the union of components of X\L except for U, contained in component
E*\S, which in turn contains the point x. Let § - be any positive number and let
¢: U, ULUU, — E? be a homeomorphic embedding.

Then there exists a homeomorphic embedding v : U, U G U L — E? and the disk
D C E? such that:

L. d"U,uL = ‘PIU,uL )

2. DAY(U,UGUL) =% (L) and ¥ (L) CD ,

3. DU (G) C B (L),9) .
Proof. Since L irreducibly disconnects X between points z,y € X, then ¢ (L) ir-
reducibly disconnects ¢ (U, U LUU,) between ¢ (z) and ¢ (y). Therefore and due
to lemma (3.3) there exists a simple closed curve S’ in E? such that both §' N
p(U, ULUU,) = ¢(L) and ¢ (U;),¢ (U,) are included in different components of
E*\S’. We can now find a disk D in the closure of component of E?\S’ containing
@ (Uy), such that

DCB(w(L),g),DﬂsO(UIULPw(L) and o(L)Ch .

Let {Gi};_,, where a < 400, be an appropriately ordered sequence of all subsets of G
such that each G; is an union of all components of G included in only one component
of E*\ (U, U S) and let {U;};_, be those components, i.e. G; C U;; (then {G;}i_, is
the sequence of mutually disjoint sets).
Let B; be a subcontinuum of S such that é.‘C ClG; ¢ B; C Clg2U; 3. Then ]};
N Bj= 0 for i # j - since G;, G; are included in different components of E%\ (U, U S)
and moreover 103,- NClLU, =0.
Let now A; be a locally connected continuum in U; U B; such that A;\B; is connected
and G; U A;\B; is connected too®. Let z; be any point of G; U A;. B; irreducibly -
with respect to subcontinua - disconnects continuum U, U S U G; U A; between points
z; and z. Then according to the lemma 3.3, let S; be such a simple closed curve in
(E’\ (U, USUG;UA;))U B; that $;n (U, USUG;U A;) = B; and the points z;,z
belong to different components of E?\S;. Evidently S; is included in U; U B;. Let D;
denote the disk such that b;: S; and G; U A; C D;.

Then we can define inductively a sequence {¢;};_, of homeomorphic embeddings
such that:

3B; is a point or an arc.
4A; can be constructed as an union of arcs.
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() ¢i: Uz USU U (G;UA;) — E?,
1=1

(b) ‘r’*’oluxul, = ‘Pluqu and @i i =@
U:usu | J(G;u4,)

=1

2
(¢) @i (G; U 4;) is included in E*\D
(d) ¢:(G:UA) CB(pi(B), &) for0<i<a.
Let now ¢o : U, US — E? be a homeomorphic embedding such that ol , =
‘PIUIuL and 1o () =b-
Then ¢ fulfills conditions (a)-(d).

Assume now that ¢; for some ¢ < « is defined. B;;; is a point or an arc.
Suppose B;y; consists just of one point and denote this point as z.

Then {z} locally disconnects U, U S U 0 (G;U 4;) and therefore ¢; ({z}) locally
j=1

disconnects ¢; (Ur usu 0 (G; U Aj)).
=1

This implies that there exists a component K of E?\ (D U ¢; (Ux usSu L:J (G; U Aj)))
i=1

such that ¢; (2) is an element of a closure of K in EZ.
Let K be a disk such that

. , , . )
@i (Bit1) CKit1C Kiy1 C KU g; (Biy1) and K1 CB (cp, (Bit1), Q’T)

and let hiy @ Dip1 — Kiy1 be a homeomorphism such that h;1q (Bit1) = ¢i (Biy1).
Then
i+1
Yir1 = ;U hi+1|G.-+1UA;+1UBg+1 U, USU U (G;UA4j) — E?
i=1 .
is a homeomorphic embedding and evidently conditions (a)-(d) are fulfilled.
Now suppose B;y; is an arc. f},-ﬂ NBd(G\Gi+1) = 0 (this is possible due to 13’,

N Lo?sz 0, r # s and BdG, C B,). Then we have Lo?,-“ NCLU, = . This implies that
there exists a component of E?\ (D Ui (Uz uSu 0 (G; U Aﬁ)) and a disk A4y
i=1

(with [z’.“ included in this component) such that
¢i (Bit1) CKit1C Kiy1 € KU ;(Biy1) and K41 C B (‘Pi(Bi-H),%) Let hiyy :
D41 — K41 be a homeomorphism such that A;y1 (Big1) = @i (Bit1)-
i+1

Then @iy = ;U hi+1|G.-+,uA.-+1uB.v+x U, US Ujl;J1 (G; U A;) — E? is a homeomor-
phic embedding and conditions (a)-(d) are satisfied. In this way our construction of
sequence {@;};, is accomplished. _

Observe now that if @ = +o0 then diamp; (G; U 4;) 2%%° 0 since diam ¢; (B;) *2X5°
0 and due to (d). One concludes from the above that

$=Jpi: UzUSUG — E?

1=0
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is a homeomorphic embedding. (In the case of a < 4+00; ¥ = ,.)

Finally let ¢ : U;UGUL — E?, ) =. Then ¢ is a homeomorphic embedding such
that

L Yly,or = $oly,ur = @lu,ur s

2.0Ny¢ (U, UGUL) =1 (L)since DN (U, UL) = (L) and ¢; (G;) is included
in E2\D. Moreover ¥ (L) = ¢ (L) ch.

3. DU (G) C B(¥(L),d) since D C B(¢(L),d) and for each G;

$(G:) = 9:(G:) C B (go,w,»),%) B (D, ;) B (mmé)

CB(r(L),9).

4. A PROOF OF THE THEOREM (3.1)

Let X be a locally plane and locally connected curve. Let € > 0 be a real number
such that each subset of X diameter less than ¢ is plane. According to (2.6) let G be
a net partition of X with nodes N (G) and threads T () such that meshG < £. Then
for every node K Starg Starg K is plane.

Let us order all elements of N (G) into a sequence K, K3, ..., Kk and all elements of
T (G) into a sequence Ty, T, ..., T Let ¢; : Starg Starg K; — E% for i = 1,2, ...,k be
a homeomorphic embedding into the Euclidean plane.

Now - using G and embeddings ¢; — we shall construct:

a) closed and connected sets Xj, X3, ..., X which cover X,

b) homeomorphic embeddings ¥; : X; — E?,
¢) £ ={Ly,Ls,..., L} - the family of arcs and points such that L; C Int T} and
d) the family D of 2 -t disks in E?

with the following properties:

for each 7 such that 1 <1 <k:
(P1) X;NU{X;:1<j <k, j#i} =U{Le,: Tu, CStarg K;} ; Vi: 1 <i < Ky
(P2) if Ty, Tuy, s Ta,y,) is denotation of all elements of 7'(G) which are included in
Starg K; then there exist mutually disjoint disks D,,, D,,, ..., D, , from family D such
that

Sr(s)

(1) (i) .
¥, (X,-\ U LGJ) CEX\|J Dy; and ¢y (La‘,) CD,,
7=1 1=1
for 1=1,2,..,k, 7=1,2,...,7(7).

For 1 < j < t there exist indices a,b such that 1 < a,b < k and StargT; =
T; U K, U K, since G is the net partition and then T} disconnects Starg T; between
K, and K.

Let P be a net partition obtained from (2.5) for the brick partition G and let P,
be a node in P which is included in the interior of T;. Then P; disconnects Starg T}
between K, and A}.
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Let now R be a brick partition with sufficiently small elements (given from decreasing
sequence of partitions of X by (2.3)) such that for every index j Stargz P; C IntT;.
Since Starr P; disconnects Starg T; between K, and K, we can choose a chain with
elements from {F € R : F C Starg P;} which disconnects Starg T; between K, and
K. (Since T; is one-dimensional, we can find a chain which is not closed, 1.e. the first
and the last elements of the chain are mutually disjoint). Then we can choose such an
arc in this chain which disconnects Starg T; between K, and K,. This arc contains a
continuum L; which irreducibly disconnects Starg T; between K, and K. Evidently L;
is an arc or a point (L; is to be equal to X,NX;NT} soon) and L; C Starg P; C IntT

U L; disconnects X such that each K; belongs to different component of X'\ U L;.

Let Y denote the component of Starg (K;) \U{L; : T; C Starg K;} containing Is and
let y; be any point of Y; for ¢ = 1,2,.

Now, for i = 1,2, ...,k we can deﬁne successively a set X;, a homeomorphic embed-
ding ¥; : X; — E? and the family D of disks.
Let then Ti,, T, ..., Tu,, be an order of all elements of T (G) such that each T,; C
Starg A for a given i. Let Ky for each T, denotes such element of N (G) that
Starg T,, = K, UT,, U K; (sets Ki,,, K}, may be the same for different T}, ., 7, ). Let

am?

(4.1) 5= min{d(&p;(Laj),ap;(U{To":;Sngr(i),n;éj})):lgjgr(i)} '

Now for succeeding 7 = 1,2,...,7(¢) and only in case when 1 < b; we shall define sets
Xia,s X, .0, We define also the homeomorphic embedding i, : Xia, — E? and the
disk D; ., with the following properties:

(P1) Tu)\La, = Tu, 0 (¥: U Y, ) UX;0,UX, o and sets i, Yi,, Xia,, Xb, o, are mutually
disjoint,

(p2) Dia, Uthia, (Xia;) € B (¢i (Ls,) ,6),

(p3) Dig, N (w ((Y N Starg Ta,) U La,) U i, ( .a,)) = @i (La,) and ¢; <La,) cDh,
(p4) the map ‘PiIY,nStargTa,uLaj Ui, ¢ (Y.' N Starg TaJ) ULy, UXiy, — E?isa

homeomorphic embedding.
In order to proceed we shall investigate the two cases as follows:

(i) if i < bj, then let S, be the simple closed curve in E? obtained according to the
lemma (3.3):

— for the case of a plane Peanian curve ¢; (Starg T,,]),
— for the case of points ¢; (y;),w; (ybl) and

— for the case of an arc or a point ¢; (Laj).

Let Pia,, P, ., be the unions of components of ¢; ((Starg Ta)) \ (L,ZJ uY;u Yb,)),

which are included in component of E?\S,; containing points ; (v:), @i (ybj) - re-
spectively.

Let Xiq, = o7t (P,-Iaj), Xy, = ! (Pb].,a]). Then the condition (p1) is fulfilled.



94 W. BAIGUZ

One may now use the lemma (3.4) for the case of:
— a continuum ¢; (Starg T, J) ,

— @ (Laj) disconnecting ¢; (Starg Taj> between points ¢; (v;) , ¢ (yb)),
— a simple closed curve S’aJ R

— components ¢; (Y; N Starg Taj), @i (ij N Starg T,,J.) of Ez\Sal and the union of
components @; (X,',al),

— a number § given by (4.1) and

— a homeomorphic embedding being identity on ¢; ((Y, U YbJ) N (Starg Ta]> U La,)-

Tn this way we obtain both the homeomorphic embedding
P pi ((Y N Star T,,,.) U Xiq, U L,,,) — E?
and the disk D C E? such that;
(42.1) 91, (vinstarg T, JoLa,) = 1l ((vinstarg 72, Yuta, )
(4.2.2) D0 (i ((Yi N Starg T, ) U Xig; U Ly, )) = 9 (i (La,)) and
¢ (i (Ls,)) <D,
(4.2.3) DU (i (Xia,)) € B (¢ (i (La,)) ,6)-

Let ¢ia, = o @ily,, and Dy, = D. Then the condition (p2) follows from (4.2.3),

while the condition (p3)Jfollows from (4.2.1) and (4.2.2). The condition (p4) is obtained
due

po 59i|(}’.n5targ Ta,)UXisa;ULla, ~ 9"1'|(Y.~mSmrgT,,J.)ul,aJ Uthia, -

(i) if b; < 7, then Xj,;, X}, o, are defined and the condition (pl) is satisfied. Moreover
the simple closed curve S,; in E? is defined too (see (i)). Then we have:

— ¥, (Starg TaJ) is locally connected continuum in E?,

— @, (L,,J) is a point or an arc, which disconnects sy, (Starg TaJ) between
points v, (yi), s, (yb,),

— S, is a simple closed curve such that S,; Ny, (Starg Taj) = s, (L,,J) and
points ¢y (i), ¥s, (y(,’) are included in different components of E*\S, ,

— o, (Y,- N Starg Tuj), @, (Y;,J N Starg TaJ) are components of
P, (Starg T,,J) \ s, (L,,J) containing points ¢y, (3:), @b, (yb,> - respectively,

— @, (X,-,aj) is an union of components of ¢y, (Starg T,,J.) \es; (La)) except for
¥, (Y} N Starg Ta,) contained in the component of E?\S, , which contains

the point ¢4, (3:),
— ¢ is positive number,

-1 |
‘.101 (pb: ‘pbj‘(Y,'nStarg Tn] )U'pb’ (La’ )U\Obj (ybi NStarg TaJ
in the Euclidean plane.

) is homeomorphic embedding
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Therefore, according to the lemma (3.4), there exist a homeomorphic embedding
¥ gy, ((YinStarg T0,) U Xig, U L)) — E?
and a disk D C E? such that:

— - -1
(4.3.1) d’!w]((Y,nStarcTaJ)uLﬂJ) =@;0 P, w.((Y}nStargTaJ)ULaj)’

(4.3.2) D (i, (YN Starg T, ) U Xig, U Lo,) ) = ¢ (3, (Le,)) and
¢ (s, (Ls,)) D,
(4.3.3) DU (91, (Xia,)) € B (¥ (s, (La,)) »6)-
Let now ¢, = % 0 %Jlx.,,, and D;,, = D. Then one obtains the condition (p2)

from (4.8.3), while the condition (p3) is met due to (4.3.1) and (4.3.2).
The condition (p4) follows from the equation

— 0 b
po #b, (Y-‘nStarcTaj)UX.',a]ULaJ - (pil(}’.'nStargTa])uLaJ U Vi, -
. ) W W
Finally let Xi = Y;U U Lo; U U Xig; and 95 = @i vy U U %ig;, ie.
j=1 j=1 Yiu U LoJ i=1
=1
il o =wil w9 andforl <j<r() '*')5‘/\’.',‘,] = i,

viuly La, viulJ La,
=1 j=1

[t is easy now to show — using (p2) and (p4) - that is the homeomorphic embedding
into E2.

The condition (P1) follows from (pl) and the condition (P2) - follows from (p2),
(p3).

Let r (i) - for each ¢ such that 1 < i < k - denote number of elements of T (G)
which are included in Starg K; and let T3, Tia, ..., Ti ) be the sequence of all these
elements. Let L;; be an element of the family £ such that L;; C T;; and let D;; be
a disk from the family D such that ¥; (L;;) cD for 1 <1<k 1<j<r(1). Then
for each pair of indices (4,7) such that 1 <7 < k, 1 < j < r(i) there exists exactly
one pair (¢, 7) such that i # ¢’ and T} ; = Ty jr. Let us use (k1, k2) to define this very
equivalence of indices i.e.

(Kl (11]) y K2 (1'1])) = (il'lj’) .
Then both L;; = Ly, (i ,j)x,(i,j) and the homeomorphism
|¢'i(L-.,) 2%i (Lig) — ¥y (Liy)

can be extended into homeomorphism of simple closed curves

-1

Tipr(irg) = Pra(i) © i

Gimi(ig) *Dii = Dixy (i) malind) -
Finally let M; be a bounded surface homeomorphic to 2-dimensional sphere with

(i) o
7 (i) boundaries and let v; : E*\ U Di;— M; be a homeomorphic embedding for
j=1
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: k
1 =1,2,...,k. Let M be the closed surface obtained from |J M; by identification of
=1

boundaries ; ([‘)”) with ¥, ¢i.5) (bm(i,j).nz(i,j)) via homeomorphism

V1 (i) © Tim (i) © %-_IL., (5,) ™ (D;,;) ) (Dm(f,j)m(i,j)> -

From the properties (P1), (P2) it then follows that there exists a homeomorphic
embedding of X into M. O

5. FINAL REMARKS
In view of the theorems proved in this paper one may conclude that

The class of locally plane Peano continua appears to be much more reqular then
it was supposed to be.

As the result the only continua for which a homeomorphic embedding into a topo-
logical surface does not exist are those continua, which are not locally plane or which
are not locally connected.

Finally, locally plane Peano continua which appeared to be regular (due to the
theorems (3.1) and (3.2)) deserve to be investigated further in detail with the well
established topological surfaces methods at hand.
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