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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Série II, Suppl. 66 (2001) pp. 117-128 

A REMARK ON NATURAL QUANTUM LAGRANGIANS 
AND NATURAL GENERALIZED SCHRODINGER OPERATORS 

IN GALILEI QUANTUM MECHANICS 

JOSEF JANYSKA 

ABSTRACT. The natural quantum Lagrangians which appear in Galilei general rel-
ativistic quantum mechanics are classified by using methods of natural operators. It 
is proved that all 1st order natural quantum Lagrangians are linear combinations 
(with real coefficients) of the canonical quantum Lagrangian and the product of the 
scalar curvature of the spacetime vertical connection and the Hermitian product. 
The classification of all natural generalized Schrodinger operators is given and it 
is proved that all natural generalized Schrodinger operators can be induced from 
natural quantum Lagrangians. 

INTRODUCTION 

In [9] we have classified natural quantum Lagrangians which appear in the covariant 
quantum mechanics proposed by Jadczyk and Modugno, [5, 6], for curved Galilei 
spacetime. In this classification the metric structure of spacetime was used only with 
zero order. This fact implies that in the generalized Schrodinger equations related 
with quantum Lagrangians there is no term containing the scalar curvature as we can 
find in classical geometric quantization over a curved manifold, [1, 2, 15, 17]. 

In this paper we classify all 1st and 2nd order natural quantum Lagrangians and all 
natural generalized Schrodinger operators in the context of revisited covariant quantum 
mechanics proposed in [4]. Moreover, we use physical dimensions of all objects which in 
fact simplifies the results. We prove that all natural generalized Schrodinger operators 
are linear and can be induced from natural quantum Lagrangians. 

In the paper we deal with geometrical properties of operators only. We do not 
discuss their physical interpretation which can be found in [3, 13, 14] and references 
quoted there. 
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We assume the following fundamental unit spaces, which are positive 1-dimensional 
"semi-vector spaces" over R+: 

(1) the space T of time intervals, 
(2) the space L of lengths, 
(3) the space M of masses. 
A time unit of measurement is defined to be an element uQ G T, or its dual u° G T*. 
Moreover, we assume the Planck constant to be an element h G T* ® L2 ® M. We 

refer to a particle with mass m € M and charge q G T* ® L3/2 ® M1//2. 
In the paper S(Q) denotes the sheaf of local sections of a fibred manifold Q -» J5, 

T(E, U) denotes the sheaf of local U-valued functions on E. 

1 . GRAVITATIONAL AND QUANTUM STRUCTURE OF SPACETIME 

We assume the classical (Galilei) spacetime to be a 4-dimensional orientable mani­
fold Ej the absolute time to be a 1-dimensional oriented affine space T .associated with 
the vector space T® R and the time map to be a surjective map £ : 2? -» T of rank 1. 
Moreover, we assume the fibres of spacetime to be equipped with a "scaled" Riemann-
ian metric g :E -» L2 ® (V*E®E V*E) or inverse metric g :E -» L*2 ® (VE®E VE!). 

Thus, we have the time-form dt : E —» T ® T*E. Given a mass m G M, it is 
convenient to introduce the "normalized" metric G := &g :E-¥ T®(V*E<g>E V*E) or 
its inverse G := ^g :E -» T* ® (VE®EVE). We stress that the normalized metric and 
all objects which will be derived from it incorporate the chosen mass and the Planck 
constant. 

Wre choose an orientation of spacetime. We shall refer to spacetime charts (xx), 
which are adapted to the fibring t and to the chosen orientation of E, and such that x° 
is a Cartesian chart of T associated with a time unit of measurement uQ. The index 0 
will refer to the base space, Latin indices i, j , • • • = 1,2,3 will refer to the fibres, while 
Greek indices A, /x, • • • = 0,1,2,3 will refer both to the base space and the fibres. For 
short, we denote the local bases of vector fields and forms of E induced by a spacetime 
chart by (d\) and (dA). The chart on the tangent space TE induced by a spacetime 
chart (xx) will be denoted by (xx,xx). In general, the check symbol """ will indicate 
vertical restriction. 

We have the coordinate expressions dt = u0 ® dP and G = G^ uo®dl® dj. 
The metric g and the spacetime orientation yield the space-like vertical volume form 

and the dual space-like vertical volume vector 

r\ :E - r L3 ® A3V*E, rl = vlgl dl A d2 A J3 , 

fj: E -» L*3 ® A3VE, fj = -\= fa A d2 A 93 , 
V%l 

where |^| := det(g*j). Then, we obtain well defined spacetime volume form and the 
dual spacetime volume vector 

v := dtArj-.E-t (T ® L3) ® AAT*E, v= y/\g~\ u0 ® d° A dl A d2 A d3, 

v :E -> (T ® L*3) ® A4TE, v = —== u° ® d0 A d} A d2 A d3. 

vlgl 
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The classical phase space is defined to be the first jet space t0 : JE = JXE —•» E 
of sections. A spacetime chart (xx) induces on the pmase space the chart (x°,xl,xl

0). 
We can naturally identify the phase space with the affine subbundle JE C T* ® TE 
characterized by x0 = u0 ® xl. Thus, we obtain the well defined jet contact maps 
A : JE -> T* ® TE and 6 : JE -> T*£ ®j5 VE, with coordinate expressions A = 
uQ®Ao = u0®(d0-rxQ di) and 9 = 6i®di = (d{ - x\ d°) ® <%. 

The gravitational field is defined to be a torsion free linear connection K^ : TE -y 
T*E®TETTE of the bundle TE ->E such that Vcft = 0. Its coordinate expression is 
of the type K* = & ® ( ^ + KV^#*)> with Ky*> = K\\ € ^(B,R). 

The electromagnetic field is a closed scaled 2-form / :E -> (L1/2 ® M1/2) ® A2T*E. 
Given a particle of charge a it is convenient to consider the re-scaled electromagnetic 
field F := if : E -» A2T*E which can be "added", in a covariant way (for details 
see [4], to the gravitational connection K^ yielding a (total) spacetime connection 
K, with coordinate expression Ki

h
j = K>{

h
h KQ

hj = K\hj + \ G0
pFpj, K0

h
0 = 

-^Vo + | G0 Fp0. It turns out to be a time preserving torsion free linear connection 
of the tangent space of spacetime. 

A spacetime connection K is said to be metric if Vg = 0. A spacetime connection 
K is metric if and only if the vertical restriction of K is the Levi-Civita connection x 
given by g and gpiK0

p
j + gpiK0

p
{ = -\d^g{y 

A phase connection is defined to be a torsion free afrine connection r : JE -> 
T*E ®JE TJE of the bundle t0 : JE -> JE7. Its coordinate expression is of the type 
r = & ® (9, + r ^ a?), where iy0 = rMjg + r$4 with iy0° e ^ ( E , E ) . 

We can prove, [10], that there is a natural bijection K i-> T between spacetime 
connections and phase connections characterized in coordinates by T^ = K^l

v. 
A phase connection T on JE and the vertical metric G yield the phase 2-form 

ft := j/[r] A0 : JE -> A2T*JE, whose coordinate expression is 

(i.i) n = G°ij(4-r^)A0\ 
where /v[r] : JE -> T* ®(T*JE®JEVE) is the vertical valued form associated with T and 
the contracted wedge product A is taken with respect to G. In [8] it has been proved 
that the above form is the only non trivial natural 2-form which can be obtained from 
T and G. 

The form ft is non-degenerate, in fact di A fi A ft A ft : JE -* T ® A7T*JE is a 
scaled volume form on JE. Moreover, the phase 2-form ft is assumed to be closed, i.e. 
cosymplectic. This condition is expressed by field equations which relates the metric 
g and the spacetime connection K. One of the field equations is expressed by the fact 
that K is the metric connection, [4]. 

The vertical metric g and the metric spacetime connection define the gravitational 
structure of spacetime. 

We assume, according to [4], the quantum bundle to be a Hermitian line bundle over 
spacetime 

T T : Q - > E , 

i.e., 7r: Q —>E is a Hermitian complex vector bundle with one-dimensional fibres. Let 
us denote by h : Q xEQ —y C ® A3V*E the Hermitian product with values in vertical 
volume forms. Let b : E —y Q be a (local) base of Q such that /i(b, b) = n. Such a local 
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base is said to be normal and the fibred coordinate chart (x0, x\ z), z £ 3T(Q, C®L*3/2), 
induced by a normal base of Q is said to be a normal coordinate chart on Q. In any 
fibred normal coordinate chart /i(\I>, \1/) = ^77 for every section ^ = ipb £ S(Q). 

A linear connection on Q is said to be Hermitian if it preserves the Hermitian fibred 
product h. In a normal fibred coordinate chart Hermitian connections are expressed 
in the form, [4], 

(1-2) H = dx ® (d\ + i*\ 1), HA € -F(E, R), 

where 1 = z ® b is the Liouville vector field on Q. Let us consider a new fibred normal 
coordinate chart (x°,y\z) on Q, then the transformation relations are 

(1.3) x° = ax° + a0, y* = y'fo y), z = e
2l{i^y)z, 

where a, a0 £ R, a > 0. We set a = 1/a. The function fi(x, y) represents a change of 
gauge. The transformation relations for coefficients of a Hermitian connections are 

(1.4) 3 i = ( H j + 2 7 r ^ ) ^ , 

cV 
(1.5) Ho = (H0 4- 27r<90tf)a 4- ( ^ + 2^$)—^ . 

Let us note that the quantum bundle Q can be viewed as an associated gauge-
natural vector bundle, [11], defined on the category VB^)(U (1,C)) of principal 
U(l,C)-bundles over fibred manifolds with 1-dimensional bases and 3-dimensional fi­
bres. The transformation relations (1.4) and (1.5) then define the action of the group 
Wb\}U(1,C) = Gfl13) x TfU(1,C) on the standard fibre of linear connections on Q. 

Here x denotes the semidirect product of groups and Gft 3x is the subgroup in the kth 

order differential group G\ corresponding to fibred diffeomorphisms. 
Let us consider the pullback bundle ^ : Qp := JE xEQ —> JE of the quantum 

bundle 7r : Q —> E, with respect to t\ : JE —> E. Let us recall tha,t a connection 
H : Qt -> T*JE<g>jETQ^ is said to be the universal connection of the system of 
connections £ : JE xEQ —> T*E®ETQ if, for every section o :E -> JE, the associated 
connection £(0) : Q —> T*E <8>E TQ of the system is obtained from H by pullback 
according to the formula £(0) = O*H. 

A connection H: Q^ -» T*JE®jETQ^ is said to be a quantum connection if, [4, 5], 
Ql) H is Hermitian, 
Q2) H is a universal connection, 
Q3) the curvature of H is given by 

RH = i ft <g> 1. 

The condition Q3 implies, that the coefficients HA of a quantum connection are given 
by coefficients of a Poicare-Cartan 1-form 

© = -(\<%44 - Ao)d? + (G0
tj4 + Ai)df 

associated to the phase 2-form ft, where A = A\dx is a potential given by a chosen 
quantum connection. 
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The potential A is not a 1-form. If we express the transformation relations for A\, 
we get from (1.4) and (1.5) that A is a section of a 1-order gauge-natural bundle (called 
potential bundle) defined on the category VB{i$)(U(l,C)). The action of the group 
[V1,1U(1,C) on the standard fibre of the potential bundle is then given by 

(1.6) Ai=(Aj-G%apar
0 + 2irdj)al 

(1.7) do - (A 0 + \Glqa
par

0a
q
sa

s
0 + 2 ^ 0 ) a 

+ (Aj + lirdj) a{, 

where (a,a\,$,$j) are coordinates on the group Wh\^U(l,C) and tilde denotes the 
inverse element. 

A pair (Q, ^) is said to be a quantum structure over spacetime. 
In what follows we assume a quantum structure exists. 

2. QUANTUM LAGRANGIANS 

Let us consider a section \I> G S(Q), its pullback on JE (denoted by the same symbol) 
and a quantum connection H. The covariant differential of \J> with respect to H is a 
fibred morphism over E 

V[*]9:JE->T*E®Q 
E 

and the time-like and the space-like covariant differentials of ^ are 

V * = A J V $ : JE-*T®Q, VW:JE-+VE®Q. 
E 

Then, for any section \£ 6 S(Q), we obtain the following invariant fibred morphisms 
over E 

£(tf) = i<ftA U ( * , »V* ) + ft(tV*,^)J :JJE?->A4T*£, 

£(*) = idt A ((5® fc)(Vtf, V*) : JE->A*T*E, 

and the canonical quantum Lagrangian is a unique (up to a multiplicative factor) linear 
combination of the above morphisms which projects on E, namely 

/W&) - km - £ w 
with coordinate expression 

(2.1) CcanW = | ( i ^ W - ^0 t / i) + iGpqAq(*pdp$ - $dpi>) 

-Gpqdp4>dq4> + W(2A0 - Gp
0
qApAq)) v°, 

where v° = v(u°) = y ^ d 0 A dl A d2 A d3. 
From the point of view of natural geometry, [11, 12], the canonical quantum La­

grangian is a natural operator transforming vertical metrics, sections of the quantum 
bundle and potentials associated with quantum structures into volume forms on E. 
This operator is of order one with respect to sections of the quantum bundle. In [9] we 
have classified all natural quantum Lagrangians of the above type by using Hermitian 
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product with values in complex numbers and the Planck constant h. According to [4], 
we now discuss the classification of natural Lagrangians under different conditions: we 
use the Hermitian product with values in vertical volumes forms, we assume also the 
dependence of natural quantum Lagrangians on spacetime connections (up to finite 
order fc), we use physical dimensions of all objects and assume Lagrangians covariant 
with respect to changes of bases in unit spaces L and T. Moreover, we use constants 
TO, h (via the normalized metric). 

According to the general theory of natural differential operators, [11,12], any natural 
quantum Lagrangian is of the form £ = fv = fQv°, where /o is a real T <g> L*3-valued 
function defined on standard fibres of bundles in question, i.e. the bundle of normalized 
vertical metrics on E, the bundle of 1-jet prolongation of Q, the bundle of potentials 
and k-jet prolongation of the bundle of linear connections on E. Then /0 is invariant 
with respect to the Lie group Wk^lU(lX) - G*-^ x 1 ^ ( 1 , C) acting on these 

standard fibres where the action on the standard fibre of JiQ can be deduced from 
(1.3) and the action on the standard fibre of the potential bundle is given by (1.6) and 
(1.7). The others actions are standard, [11, 12]. I.e. f0 is of the type 

(2-2) fo(GQ, 2 ,ZTZ\,Z\ ,A\ ,Kp u-iKp VyPl,.. .^K^ u,p\...pk) • 

We have 

Lemma 2.1. Any Wk+2,lU(1,C)-equivariant T'C^L*3-valued function (2.2) is a linear 
combination (with real coefficients) of two functions 

(/i)o = GoZiZj + i(zz0 - zz0) 

- iG0
jAj(zzi - zzi) + (G^AiAj - 2A0)zz, 

(f2)o = G0
jRl%jzz, 

where R^X
VK is the formal curvature of K^x

v. 

PROOF. Let us recall that the formal curvature of K^x
v is given by 

(9 Vi P x — K x - K x 4-KxKp-KxKp 

\^'°} 1Lp UK — 1X {J, V,K lvp, K,V * l v p Klxp. V - v p V1X(J, K 

and its formal covariant derivative is given by 

\^A) tip VK,p — ftp VK^p — Kp (flip VK -r n p p.^a VK 

i 7 > - < j p A , jy- a p A 
"T i\p i/it^ aKi -T -tVp K-TL-p. va • 

The formal higher order covariant derivatives can be defined in the same manner. 
Further let us define the 1st order quantum formal covariant derivative of z by 

(2.5) z,x = zx - iA\z. 

The formal curvature of K and its formal covariant derivatives are transformed 
under the action of G\ 3x as tensors and z;\ is transformed by the action of the group 

JV(^3)U(1,C) given by ' 

(2.6) z]0 = e 2 ^ ( z ; X " lzGlgayoayQd), 

(2.7) z^^e^^z^izGlfay^. 
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Now we can use the orbit reduction theorem, [11], and to express /0 in the form 
fQ = gQo F, where F is the mapping given by (2.3) - (2.5) and 

(- ' •° j ^ O ^ Q , £ , £ , £ • > , 2-^, Ity VKiRy, VK,pn • • ' •> Rfi «v/c;pi;...;pjt_1) 

is a ^ '3x1/(1, C)-equivariant T ® 3L*3-valued function. 
From the homogeneous function theorem, [11, 12], applied on a change of base in L 

and a change of gauge we get that gQ has to be in the form 

(2.9) £o = CLQZZ + b$zz.x + c\z.xz + d^z.xzitl , 

where all coefficients are GK ^-invariant and depend on Gl
Q , the formal curvature and 

its formal covariant derivatives. Then, if we consider global solutions only, we get from 
homogeneous function theorem 

ao^aGljRi'kj, b°0 = b, b0 = 0, c[J = c, c0 = 0; 

d0° = o f = 0, d<>0 = 0, <# = dGjf, 

where a,... ,d are constants. 
So we have 

(2.10) go = a GQ
jRik

kjZz + b zz.Q + c z;0z + d G^z.^z.j . 

If we consider the equivariancy of (2.10) with respect to elements (o^,a0) in GK 3) 

we get 

(2.11) b = id, c = —id, and a, d are arbitrary real numbers. 

Substituting (2.5) and (2.11) into (2.10) we get Lemma 2.1. • 

Now we can prove 

Theorem 2.1. All 1st order (with respect to sections of the quantum bundle) natural 
quantum Lagrangians induced by the gravitational and quantum structure of spacetime 
are of the form 

£(*) = a CcanW - b^Rdt A M*» * ) > 

where Ccan{^) is the canonical quantum Lagrangian, R is the scalar curvature of the 
vertical metric connection -x and a, b are real numbers. 

PROOF. Theorem 2.1 is the direct consequence of the above Lemma 2.1. It is easy 
to see that the natural Lagrangian corresponding to the equivariant function (/i)0 

is a constant multiple of the canonical quantum Lagrangian. Moreover., the vertical 
restriction of the Ricci tensor of spacetime connection K coincides with the Ricci 
tensor of the vertical restriction of K which, by the assumption dQ = 0, coincides 
with the vertical connection x generated by g. Then Gl

0Rip
Pj = ^ i t , where R is the 

scalar curvature of x, and we get the Theorem 2.L D 

Remark 2.1. Polynomiality (in sections of the quantum bundle) of natural quantum 
Lagrangians is a consequence of physical dimensions of our objects. Without using 
these dimensions we would obtain much more complicated solutions, [9]. Moreover, 
physical dimensions of objects restrict also the order of derivatives of spacetime con­
nection on the 1st order, i.e. £($) depends only on the curvature and does not depend 
on its covariant derivatives. 
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Remark 2.2. Since the vertical restriction of K is given by the metric g, all natural 
quantum Lagrangians described in Theorem 2.1 depend only on the vertical metric 
and its derivatives up to order two and they do not depend on the horizontal part of 
the spacetime connection K. 

Remark 2.3. Comparing the results of classification in [9] and the classification of 
Theorem 2.1 we see that we have lost one natural Lagrangian in the list of base 
Lagrangians in [9]. Namely it is the vertical differential of the Hermitian product 
contracted by the metric, i.e. (g, (dh(^, * ) , d/i(*, *))). In our new situation, the Her­
mitian product /i(*, *) is a vertical volume form and its vertical differential vanishes. 

Remark 2.4. Let us remark that the constant -6/2 in Theorem 2.1 we have cho­
sen only to obtain later the expression of the Schrodinger equation corresponding to 
classical situation. 

3. EULER-LAGRANGE OPERATOR AND SCHRODINGER EQUATION 

Let us consider a quantum Lagrangian C — i^dP Ad1 Ad? Ad3 and recall that the 
Euler-Lagrange morphism S(C) : J2Q —> V*Q® A4T*E associated with C is given in 
coordinates by 

£(C) = (^ - Dx^f) d* ®d° Ad1 Ad2 Ad3, 

where D\ is the formal derivative with respect to xx. By using the identification of V*Q 
with QxQ* and the isomorphism hP : Q* -» L3 0 Q we can express the Euler-Lagrange 
morphism as 

*S(C) : J2Q -» L3 0 Q 0 A4T*.E. 

Then, for any section * € S(Q), we have the Euler-Lagrange operator "£(£)(#) = 
^S(C) o j 2 * associated with natural quantum Lagrangian of Theorem 2.1 in the form 

1 dp y/W\ 
2 yffi 

•ед(Ф) = 'a(i(M-iArt + \ Џф) 

(3.1) + ̂ Glq(dpdq^ - 2iApdqiP - fydgAp - ApAqij>) 

+ ^V*(^W> - iAhil>)\ - b^Rip b 0 v°. 

We define the Schrodinger operator associated with a natural quantum Lagrangian 
C to be the sheaf morphism 

(3.2) GSch(C) := (vMC)) : S(Q) -> S(T 0 Q ) , 

Let us consider a section (an observer) o :E —> JE <-* T* 0 T E and let us define the 
divergence of o as a T*-valued function given by 

(3.3) L0rj = div(o)r?: E -> T* 0 L3 0 AZV*E 

which, in coordinates adapted to o, has a coordinate expression 
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Further we have the (observed) Laplacian 

A(tf) = (g; V[O**r® K]V[O^]\I>) :E-*Q 

with coordinate expression, in coordinates adapted to O, 

-M*) = {9Pq{dP - iAp)(dq - iAq) + ^ ( d , - iAh))(V) 

= 9pq(dPdqip - 2iApdqip - ii>dqAp - ApAqip) 

+ gvq>%q(dh^-iAhi>))h 

which implies that the Schrodinger operator (3.2) associated with natural quantum 
Lagrangian of Theorem 2.1 can be expressed as 

(*) (3.5) 0Sch(t(*)) = u°® (a(i (No + ^div(o)) + - | -A) - b^Il) 

and the generalized Schrodinger equation can be written in the form 

(3.6) i(V0 + div(o))* = - ^ ( A - f c i ? ) ( * ) , 

where a real constant k = b/a, a ^ 0, is arbitrary and there is no distinguished value 
for k which comes from naturality of the construction. 

0 

Let us note that even if the operators Vo, div(O) and A depend on an observer O, 
the Schrodinger operator (3.5) is observer independent. 

Now we shall classify all natural operators Osch ' S(Q) —• <S(T* ® Q) of the Schro­
dinger type, i.e. we shall classify all second order operators depending on the vertical 
metric field, the spacetime connection and its derivatives of finite order k and the 
field of potentials and its first order derivatives. Such operators are given by covariant 
mapping (over E) 

(3.7) / : J 2 Q - > T * ® Q 

parametrized by the coordinates on the standard fibres of bundles of normalized met­
rics, 1st jet prolongation of the bundle of potentials and kth jet prolongation of the bun­
dle of linear connections onE. Any covariant mapping (3.7) is of the form / = /0w°cg)b, 
where 

(3.8) fo(G0 ,z,z,z\iz\,z\n,z\fl, A\,A\^,K^ v^K^ l/)Pl,...,K^ u,px...pk) 

is an iy(^
,2[/(l,C)-invariant T<g>L*3/2-valued function. 

We have 

Lemma 3.1. Any W^2U(IyC)-invariant T ® I?*/2-valued function (3.8) is of the 
form 

(3.9) /o - a'(2i(z<> - iA0z - ~K0
k
kz) + G^K?^ - iAkz) 

+ G^Zij - 2iA{z3- - iAijz - AiA3z)) + b'GfJRfkjZ, 

where a',bf are complex constants. 
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PROOF. Let us consider the formal curvature, its formal covariant derivative up the 
order (k - 1) and the 1st order quantum formal covariant derivative of z defined by 
(2.3) - (2.5). 

Now let us define the 2nd order quantum formal covariant derivative of z by 

(3.10) z,x,» = (z,x)» - iA»z,x + Kx%z,p . 

From (2.6) we can deduce that z.x.^ is transformed by the action of the Lie group 
Wf;°3)U(l,C). 

Now we can use the orbit reduction theorem and to express /0 in the form /0 = g0oF, 
where F is the mapping given by (2.3) - (2.5), (3.10) and 

(3-11) go{G0
3, z, z, z,x, z,X) z,x,^ z,x,n, K^v, 

r> A p A p A \ 

is a W(
2
1'

0
3)U(l,C)-equivariant T®L*3/2-valued function. 

From the homogeneous function theorem applied on a change of base in L and a 
change of gauge we get that g0 has to be in the form 

(3-12) g0 = a0z + b0z,x + cXfiz,X;i,, 

where all coefficients are G2
a 3)-invariant and depend on Gl

0, K^v, the formal curvature 
and its formal covariant derivatives. Then, if we consider global solutions only, we get 
from homogeneous function theorem 

a0 = ai G^RAj + a2 GiKt%Kp\ 

+ a3 GiKi%Ki\ + a4 G0
JK /gK/p + a5 K0

P
P; 

&8 = &i, bl = b2G
p
0
qKp\ + b3GliKp\; 

r00 _ n r0i _ iO _ n Jj _ nij 
c 0 ~~ u> c 0 ~ c0 ~ u> c 0 ~ c u 0 ) 

where a,-,..., c are constants. 
So we have 

(3.13) g0 == ax GiRi^jz + a2 G^K^K^^ 

+ a3 GiK^K^z + a4 (?iK*qK*pz + a5 K0%z 

+ 6! z,0 + 62 G
p
0
qKp\z,i + 63 G

viKp\z,i + c G0'z;i;i. 

If we consider the equivariancy of (3.13) with respect to the kernel of the group 
homomorphism p\ : G2

13) —> G(\ 3), we get 

a2 — a3 = a4 = b2 — 63 = 0; 

a5 = — ic and ai,6i,c are arbitrary complex numbers. 

Hence (3.13) reduces to 

(3.14) g0 - ax GiRik
kjz + bxz,0 + c(Gi

0
jz,i,j - iK0%z). 

Finally we consider the equivariancy of (3.14) with respect to elements (Sx,a0) in 
C7(1)3) and we get 

(3.15) 6i = 2?'c, and a\, c are arbitrary. 
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Substituting (2.5), (3.10) and (3.15) (where we have put a\ = b', c = a') into (3.14) 
we get Lemma 3.L • 

Theorem 3.1. All 2nd order natural operators of Schrodinger type are of the form 

(3.16) 0Sch(V) =u°® (a(i (V0 + ldiv(o)) + | j - A ) - b^RJ (*), 

where R is the scalar curvature of the vertical metric connection, o is an observer and 
a, 6 are complex numbers. 

PROOF. From the condition dQ, = 0, [4], we have 

Kk _ 1 ijf)n _ doV\9~\ 
Ko k - —z9J<h9ij T=-

2 VM 
which implies that the operator corresponding to (3.9) (for a = 2a', b = —bf/2) is 
(3.16). • 

Remark 3.1. From Theorem 3.1 it follows that any natural operator of Schrodinger 
type is linear (with respect to sections of the quantum bundle) and is associated with a 
natural quantum Lagrangian described by Theorem 2.1. Moreover, the corresponding 
generalized Schrodinger equation is of the type (3.6), where the constant k can be 
complex. 

Remark 3.2. Let us note that by using different methods the canonical quantum 
Lagrangian and the corresponding covariant Schrodinger equation were studied for 
instance in [3, 13, 14]. Our result concerning the canonical quantum Lagrangian and 
the corresponding covariant Schrodinger equation corresponds to [3]. 

4. HIGHER ORDER NATURAL QUANTUM LAGRANGIANS 

In Theorem 2.1 we have classified all 1st order natural quantum Lagrangians. Nat­
urally, there is a question if higher order natural quantum Lagrangians exist. The 
answer is positive, at least in the second order. If we consider the Schrodinger opera­
tor 0Sch(£>can) associated with the canonical quantum Lagrangian Ccany then it is easy 
to see that 

(4.1) 

CsckW = \(dtA h{V, Osch(Ccan(*))) + dt A M 0 5 c * ( £ c « » ( * ) ) , * ) ) 

is the 2nd order natural quantum Lagrangian. Moreover, by using the same method 
as in the proof of Lemma 3.1, we can classify all 2nd order Lagrangians and we get 

Theorem 4.1. All 2nd order (with respect to sections of the quantum bundle) natural 
quantum Lagrangians induced by the gravitational and quantum structure of spacetime 
are of the form 

£(*) = a£con(tf) - b^Rdt A A(tt, *) + c£5cA(*) 

where a, b, c are real numbers. • 
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Now, if we associate the Schrodinger operator with the second order natural quan­
tum Lagrangian Csch we get 

(4.2) 0Sch(£Sch(^)) = 0Sch(£can(V)), 

which implies that the Schrodinger operator associated with 2nd order natural quan­
tum Lagrangians from Theorem 4.1 is 

(4.3) OsM*)) = (a + C)0 5 <A(A»»(*) ) - * 2 ^ W -

i.e. it is the operator from Theorem 3.1. 
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