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TWISTOR OPERATORS ON CONFORMALLY FLAT SPACES 

PETR SOMBERG 

ABSTRACT. We describe explicitly the kernels of higher spin twistor operators on 
standard even dimensional Euclidean space K2i, standard even dimensional sphere 
S2/, and standard even dimensional hyperbolic space H2', using realizations of in­
variant differential operators inside spinor valued differential forms. The kernels are 
finite dimensional vector spaces (of the same cardinality) generated by spinor valued 
polynomials on R21, S2', H2*. 

1. TWISTOR SPINORS ON CONFORMALLY FLAT SPACES - ANALYTIC APPROACH 

In this article, we describe explicitly the kernels of higher spin twistor operators 
on standard even dimensional Euclidean space R2*, standard even dimensional sphere 
52/, and standard even dimensional hyperbolic space HI2', using realizations of invariant 
differential operators inside spinor valued differential forms. Along the way, we rederive 
the results of [2], concerning the analytical derivation of twistor spinors on standard 
Euclidean space Rn, sphere Sn with standard metric of positive constant curvature 
and hyperbolic space Hn with standard metric of negative constant curvature. Our 
aim is to give alternative representational proves to analytical computations presented 
for basic twistor operator in [2], and to extend them in a natural way to the case of 
higher spin twistor operators. The basic idea is to use the results [22], and further 
decompose the kernels of higher spin twistor operators on Sn from K = Spin(n 4-1)-
types on M = Spm(n)-types, and to identify these M = 5pin(n)-modules inside 
the space of spinor valued polynomials on Rn using standard embedding Rn ^> 5 n . 
Invariant differential operators on spinor valued polynomials on Rn then allow us to 
obtain analytic description of higher spin twistor spinors, and to recover, for the basic 
twistor operator, the results [2]. 

An important ingredient is the concept of conformal invariance of higher spin twistor 
operators. As a benefit of conformal invariance, similar results hold true in the case of 
hyperbolic space, which we realize as an open domain in Rn with metric conformally 
related to Euclidean one. 

Despite the property of Dirac operators (and generally elliptic operators), that no 
element of the infinite dimensional space of solutions on Rn can be lifted to the solution 
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on sphere (in other words, the solution can not be extended to the 'point at infinity'), 
the remarkable fact is that every element of the lifted finite dimensional kernel of 
higher spin twistor operators on Rn can be extended on the whole sphere 5 n as an 
element of the kernel of higher spin twistor operators on sphere Sn. The fact that 
all solutions of higher spin twistor equations on Rn extend to the whole Sn can be 
seen from representational-theoretic behavior without writing down explicit analytical 
formulas for solutions. Moreover, a complete and explicit description of spaces of 
solutions on R n , 5 n and Hn can be given. 

Many of the statements, mainly in the introduction, are discussed separately for the 
even and odd cases. However, the main Theorem6.3 holds true only in the even case 
n -= 21. The tools we use do not suffice to determine analogous statements in odd 
dimensions. 

Let us recall the results presented in [2], describing the kernel of basic twistor op­
erator on n-dimensional conformally flat spaces - Euclidean space Rn, sphere Sn and 
hyperbolic space Hn, via analytical methods. All definitions and results of this section 
can be found in [2], section 1.4. 

Let {Mn,g) be n-dimensional Riemannian spin manifold with spinor bundle S = 
S+ 8 S~ in even dimensions and S in odd dimensions, and let c denotes the Clifford 
multiplication, c : TM <g> S -> S. Then Ker(c) is a subbundle of TM <~) S, and the 
projection PKer(c) on Ker(c) is given by 

1 n 

(1) PKer(c)(-^ ® s) = X ® s + - ^ e * ® e{X s , 
n '• i 

2 = 1 

where (e1} . , . , en) is a local ON-basis of TM. 

Definition 1.1. Let D denotes the Dirac operator associated to a Spin-structure on 
{M,g). The twistor operator T on (M, #) is the composition of spinor covariant de­
rivative V s and the projection P^TC) 

TEEPKerc°Vs ' V(S) --A T(TM ® S) ^ r(Kerc), 

and its local formula is 
n 1 

(2) Ts = Ylei® (V^ + ~eiD)s • 

Definition 1.2. A section s G T(S) is called a (basic) twistor spinor if s lies in tht. 
kernel of the (basic) twistor operator T. 

Twistor spinors on Rn are polynomials with values in the spinor bundle: 

(3) s(x) = 50 + XSi , 

where s0 G S and s\ G S are constant (global) sections of S. In particular, dimKerT = 
2.?)+1. 

The pullback of standard Euclidean metric g^n on En induced by stereographic 
projection from the north pole of Sn is conformally equivalent to the standard round 
metric on 5 n , and it yields twistor spinors on 7r_1(Rn) «--> Sn uniquely extending to 
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twistor spinors on Sn: 

(4) ' ^ T ^ T W ' 
( 1 + H - r | | 2 ) 2 

where s0 G T(S) and s\ G .T(S) are constant sections of unique spinor bundle on Sn . 
The last example we shall also deal with is the case of n-dimensional hyperbolic space 
Hn, realized as an open unit ball in Rn, with the metric gn* conformally equivalent 
to the flat Euclidean metric on Rn: 

(5) ^ ^ ( l - H x l l - ) - * " -

The general form of twistor spinor on Hn is 

(6) s(x)= * + * ' - , . 
( l - | | x | P ) l ' 

where SQ G T(S) and s\ G T(S) are constant sections of unique spinor bundle on Hn 

(note that similarly to the cases of Rn and Sn, the hyperbolic space Hn is also simply 
connected). 
Note the unified structure of the general twistor spinors (3), (4) resp. (6) on Rn , Sn 

resp. Hn. In fact, the only difference comes from the 'conformal factor'. 

2. CONFORMAL INVARIANCE OF HIGHER SPIN TWISTOR OPERATORS 

Let (Mn,g) be a Riemannian spin manifold, and let S denotes the Spin(n)-bundle 
with respect to the Spm-structure. Then the following theorem characterizes the 
transformation property of the basic twistor operator under conformal transformation 

g -> g = og 

of the underlying metric g. Let S be the spinor bundle of (Mn
yg). 

Theorem 2.1. Let s G T(S) and s G T(S). Then 

(7) f8 = (a)-i{TUafis)}. 

In particular, s G T(S) is a twistor spinor on (M}g) <<==> (cr)4 5 G T(S) is a twistor 
spinor on (M,g). 

Proof. See [2], section 1.4., Theorem 7. G 
Recall the behavior of the spinor calculus under the conformal change of metric 

g = (jg on spin manifold (M,#), see [2]. There is an identification S -> S of the 
spinor bundle S on (M, g) and the spinor bundle S on (M, </), such that for all K, X G 
TM,X = O"2K, it holds true: 

Xs = {X^}, 

(8) V | = a12{^} + \{Xgrad(a-i2)s} + \xa-^s},\/seSrseS. 

Note, that the identification S —> S in previous equations is always applied on partic­
ular expression in parenthesis. 
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By construction, [16],[20],[26], the higher spin twistor operators Tk are conformally 
invariant differential operators. Due to the normalization of conformal weight of the 
metric to be 2, 

(9) 9->9 = v29, 
we get: 

Lemma 2.2. The transformation law of higher spin twistor operators Tk under con-
formal transformation (9) is 

(10) fks = (o)-HTk((^-bs)}. 

In particular, s is a k-th higher spin twistor spinor on (M,g) <=> (a)k~2s is a k-th 
higher spin twistor spinor on (M,g). For k = 1, we reproduce the formula (7) (note 
that the conformal weight of the metric in [2] is different from our). 

Proof. The explicit form of conformal weights was computed for example in [22]. • 

3. KERNELS OF HIGHER SPIN TWISTOR OPERATORS ON Sn IN TERMS OF M-TYPES 

The spinor bundle S on Riemannian manifold (5n , go) for n > 3 exists and is unique. 
It is M = Spm(n)-bundle associated to the fundamental spinor representation of a 
simply connected twofold covering of SO(n)-bundle of ON-frames. 

In [22], we computed the sets of K = Spin(n 4- l)-types lying in the kernels of 
invariant k-th order (spin) twistor operators on the sphere 5 n , using suitable Bernstein-
Gelfand-Gelfand sequence (see [8],[20],[22]) of P = CO(n,l) x Rn-modules resolving 
G = Spin(n 4-1,1, ]R)-module (^f^v \2, • . . , 21+1)°- For later purposes, we would like 
to carry on the decomposition further from K = Spin(n 4- l)-types on M = Spin(n)-
types. 

Lemma 3.1. In terms of M = Spin(n)-types, the kernels of higher spin twistor op­
erators Tfc on the sphere Sn are 

• in the even case n = 2l: 

©ie|-i.i} © ^ (P + 1) ( - x, - a , • • •, " w - | ; ) M • 

• in the odd case n = 21 4-1: 
2k — 2r> — I 1 1 

(-2) Kerr(|1,..,|,)M,e1,* - ©P=O 2(p + 1) ( f—it - a , • • •, ~2)M • 

Proof. In [22], we determined the kernels of higher spin twistor operators Tk on Sn. 
In the even case, the result is 

rr, h ,2m~ 1 1 1 . 
(13) K e r % i,)*«* " ® - i ( - 2 — ! ' 22 ' • • •' 2 > ' 

and in the odd case (n = 21 4-1) 

(14) KerT(|])...,ii)M,ei)fc~ 

k f / 2 m - l 1 1 , ^ / 2 - n - l 1 1 1 . . 
© m = i i ( — — 1 ' 2 2 ' - - - ' 2 i + , ^ ® 1 2 i ' 2 2 ' - - ' ' 2 r 2 l + i ; j f | -
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We decompose these spaces of K-types further on M-types, using appropriate type of 
branching rules, see [5],[18],[22], for the couple of Lie groups (K = Spin(n + 1), M = 
Spin(n)). 

Concerning the even case n = 2Z, the decomposition of the sum of K-types in the 
kernel of Tk on M-modules results in 

(15) 

k ,2771-1 1 1 . nA 1 1 J , 
©m=i ( - a - x ' 2 2 ' • •'' 2I)K ~ ^ { - L D W ^ 2 2 ' • • •' 2,-i' 2 . ) M 9 

® ( f e - i ) ( 5 ' o - - - 9 »^ We•••62 — — , - , . . . , - 4 A,® 
2i 22 2z—l 2; 2 I 22 2 j- i 2/ 

, 2 k - 1 1 1 j 
© I 9 ' 9 > " - > 9 . » 9 J M J 

2 l 22 2/-1 Zl 

ib-i, , w 2 A - 2 p - l 1 1 j , 
- ® ^ - u ) © U (P + 1) ( j ^ - Y 22. " " 2.-i' 2 > ' * 

Especially, in the case k = 1 we get 
A 1^ A *A A 1 lx 

(16) <2i 2 , ) x ^ ( 2 i 2i>- ® ( 2 i ' " " " ' 2i-i- " 2 1 ^ " 

In the odd case n = 21 + 1, 

(17) 

k f , 2 m - l 1 1 , 2 m - 1 1 1 1 
©m-l U o ' 9 ' * * * ' 9, >K ® ' 9 ' 9 ' ' ' * ' 9 > ~ 9 , ' K I 

2 i 22 2/+1 2 i 22 2. 2.+1 

2fc-3 1 1 
©•••©-(—-—1»22»---'2. )*/® 

2 A - 1 1 1 , к „ и ^ , l W 2 A - 2 p - l 1 1 

1 1 ч Л 1 1 

0 ( - ^ 1 ' 2 2 ' - " 2 , ) M } " < ° 2 ( P + 1 ) ( T — 1 ' 2 2 - - 2 , ) 

and as a special case k = 1 one gets 

м 5 

(18) ( 9 , ' - ' - ' 9 , > e ( 9 , ' - - - ' 9 , ' - o , > 
2 l 2l+l 2.1 2l Zl+i 

/I I N /I K „,1 1 , 
= i ( 5 i , . . . , - ; j ) u © ( - i , . . . , - i ) . W - - 2 ( - - i , . . . , - ) i # , 

i.e. in the kernel of basic twistor operator on 5 2 / + 1 there is the fundamental spinor 
representation of M with double multiplicity • 

4. VARIOUS REALIZATIONS OF REPRESENTATIONS OF M = Spin(n) 

The BGG sequences in the cases of conformal spheres (see [22]) rely on identification 
Sn ~ G/P, where G = 5pzn(n+l, 1,R) is the group of conformal transformations and 
P is its maximal parabolic subgroup. The representation content of P is M x R+ = 
Spin(n) x R+. Let us denote irreducible representation of P by (A, tu), where A is an 
irreducible representation of M = Spin(n) and tv £ C is a conformal weight. The 
following identification is easy to prove: 
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Theorem 4.1. Let G be a Lie group and H its Lie subgroup. Let G/H be the corre­
sponding homogeneous space, and let V(\) be an irreducible representation of H, such 
that its associated vector bundle is V(\) = (G,7r,H, V(A)). Then there is bisection 
between the space of sections T(M, V(A)) ofV(\) and the space of H-equivariant maps 
from G to the representation space V(\) 

(19) C°°(G,V(\))H := 

{/ € C°°(G, V(A)) | f(gh) = \(h-l)f(g),Vg e G V/i G H} 

given by 

4> : / € C ° ° ( C , V ( A ) ) H - ^ S € r ( M , V ( A ) ) , 

(20) <j> : f->s(x) = \p,f(p)},p6n-l(x),\p,f(p)}<EGxHV(\). 

The left regular action of G on C°°(G, V(\))H 

(21) Moo/Kite) = f(g^g2), f e C°°(G, V(\))H ,gug2ec, 

preserves the subspace C°°(G, V(\))H, and hence defines the action on the space 
T(M,V(\)). 

This theorem allows us to decompose the space of sections of associated vector 
bundle Vw(\) over the homogeneous space 5 n ~ G/P on G-modules. Similarly, the 
restrictions of the previous left regular action 7TG on (left regular) representation TTK 

of maximal compact subgroup K = Spin(n-\-\) and further on (left regular) represen­
tation 7Tj\f of its subgroup M C K C G leads to the decomposition of F(G/P, Vw(\)) 
on K-modules resp. M-modules, because both -KK and TTM also preserve the space 
C™(G,VW(\))P-

On the other hand, the support of all sections of associated vector bundles was up 
to now the homogeneous space 5 n . We would like to extend at least some parts of the 
previous procedure to the base space Rn, suitably embedded in Sn. The sphere 5 n 

can be also regarded as a homogeneous space Sn ~ K/M, where K = Spin(n-\-l) and 
M = Spin(n), so that K acts transitively on 5 n with isotropy group M = Spin(n). 
The round metric on Sn corresponds to translations by K of the Killing form on JC — 
spin(n + 1). The isometry group of this metric on 5 n is just the group M = Spin(n). 

Let us choose a distinguished point on 5 n in such a way that, without loss of 
generality, it corresponds in a convenient coordinate system to the north pole N = 
(1,0, . . . , 0) € 5 n C Rn+1 of standard embedding 5 n <-» Rn+1. Because this point N is 
fixed by the action of M = Spin(n) (M is stabilizer of a distinguished point on homoge­
neous space K/M ~ 5n), it follows that Sn\{N} is also fixed by the action of M. It is 
not the case that the subspace 5n\{N} of 5 n is also fixed by the action of K, because K 
acts transitively on K/M ~ 5 n , and so there is always a group element in K connecting 
N G Sn with any other point on Sn. There is analytical diffeomorphism (stereographic 
projection) TT, identifying Rn ~ Rn+1 |Xn+l=0 C Rn+1 with 5 n \ {N}. By definition of 
7T, there is an isometry of Riemannian manifolds (7r~1(Rn),7r*(^Rn)) = (Rn,#Rn). The 
pull-back of the standard metric on Rn to 7r_1(Rn) C 5 n is the conformal multiple 
of standard round metric on 5 n |-r-i(Rn). Moreover, this metric on 7r-1(Rn) c 5 n 

uniquely extends on the whole sphere 5 n with the same conformal coefficient in the 
second trivialization of the sphere. 
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The restriction Sn ~ K/M \ K/M \ {N} ~Sn\ {N} of support of any section of 
r(K/M, V(A)) to T(K/M \ {N}, V(A)) implies inclusion 

(22) T(K/M \ {N}, V(A)) C T(K/M, V(A)). 

By Theorem4.1 applied to the homogeneous space Sn ~ K/M and the groups K and 
M, we get 

(23) T(K/M, V(A)) ~ C°°(K, V(X))M, 

where 

(24) C°°(K,V(X))M := 

{/ e C°°(K, V(A)) I f(km) = A(m"1)/(k), Vk € K Vm G M} 

for representation A of M and associated vector bundle V(A) = K x M V(A). The left 
regular representation -K^ of K, 

(25) ( ^ ( A O / ) ^ ) = f(K%),f G C°°(tf, V(A)), &1;fc2 € it-, 

preserves the subspace C°°(K, V(A))M and hence defines the action on the space 
r(K/A/, V(A)). However, this action does not respects 7r_1(Rn) <-> Sn ~ K/M, but its 
restriction to M (as was explained in the last paragraph) 7r# \M does. We summarize 
this in the following observation: 

Observation 4.2. Let X be a representation of M. Then there is (infinite dimen­
sional) left regular representation of M on the space C°°(K,V(X))M, decomposing it 
on M-modules: 

(26) (TTK \M (m)f)(k) = f(m-lk), / E C°°(K, V(X))M, k € K, m € M. 

The restrictions of all spaces of sections on the subspace K \ {eM} are invariant with 
respect to the left regular representation TTK \M of M = Spin(n), and so one can 
decompose them on irreducible M-modules via (26): 

(TTK \M (m)f \K\{eM})(k) = f \K\{BM} ( m _ 1 k ) , 

/ \K\{eM}e C°°(K \ {eM}, V(A))M , k € K \ {eM} , m e M, 

(27) C°°(K \ {eM}, V(X))M C C 0 0 ^ , V(A))M . 

The Theorem (4.1) gives the bisection 

(28) r(7r-1(Rn), V(X)) ^ C°°(K \ {eM}, V(X))M , 

where now n denotes the analytical diffeomorphism n : Sn \ N —> Rn. 

In the following Lemma we identify two different spaces of representation-valued 
invariant functions on appropriate Lie groups. 

Lemma 4.3. Let as in the scheme above G be a connected noncompact Lie group, 
K its maximal compact subgroup, P the maximal parabolic subgroup of G and M 
the Langlands-Levi factor in the decomposition of P. Let (w, V(X)) be an irreducible 
representation of P, with X being a dominant weight of M. 
Then there is a natural bijection 

(29) C°°(G, VW(X))P -2* C°°(K, V(\))M, 
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given by restriction of support of any element ofC°°(G) VW(X))P to the maximal com­
pact subgroup K. 

Proof. For the proof, see [18]. • 

An immediate consequence of this Lemma is the following Corollary 

Corollary 4.4. The isomorphism of spaces of sections via the Lemma (4-3), 

(30) . Cco(G) VW(X))P ^ C°°(K, V(X))M, 
implies the bijection of K-representation spaces C°°(G,VW(X))P and C°°(K,V(X))M 

as the isomorphism of admissible representations of finite K-types. 

Proof. The spaces C°°(G,yw(X))p resp. C°°(K, V(A))M are suitable invariant sub-
spaces of finite (G. K)-modules resp. K-modules, and hence they are equivalent as 
the spaces of A'-types. • 

5. HIGHER SPIN TWISTOR OPERATORS ON SPINOR 

VALUED POLYNOMIALS 

Let us introduce on standard Rn standard ON-base e i , . . . , en, and let us denote the 
spinor bundle on Rn by S. In the even case n = 2/, S is reducible Spin-module and 
decomposes on irreducible parts S ~ S+©S~, in the odd case S is irreducible. For any 
n, the spinor bundle S on Rn exists, is unique and topologically trivial Spin(n)-bundle. 

Definition 5.1. Let us denote the ring of polynomials on Rn by ^(R"). V(Rn) is 
canonically graded by the homogeneity of the polynomial. An element p € V(Rn) is 
represented by 

*>=£ £ ÛІ £ г *\ 

fc=l ii,...,in:iiH Hn=k 

where the coefficients aj are usually valued in R or C. Spinor-valued polynomial is 
defined to be an element of 

(31) T(V(Rn) ® S±) ~ V(Rn

1 S±), 

where the unified notation S + ~ S~ ~ S is used in odd cases. We shall denote a 
spinor-valued polynomial on Rn by 

YjaiJPi®sJ eV(Rn)^s±

) 

I,J 

for pi a base of the space of polynomials and sj the base of the spinor space. 
By a spinor-valued polynomial on Rn of homogeneity k we shall mean an element 

Y aIJp
k

I®sJeVk(Rn)^S±. 
% i = f c , I 

First of all, let us remind the space of polynomials on Rn alone. The group Spin(n) 
naturally operates on the space of polynomials. 
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Definition 5.2. Let P(R n
> S ± ) be the space of spinor valued polynomials on Rn, and 

let p be the fundamental spinor representation of Spin(n). Then the action of Spin(n) 
OnT^lT.S*) is defined by 

(32) (*ŤPk){x) := p{g)Vk{g-lxg), g 6 Spin(n). 

There is canonical action of the polynomial part ^(lR") on the spinor space S*. It 
is homomorphism of Spin(n)-modules, and for k = 1, this action descends to Clifford 
multiplication, 

n /<?. fi± _л S T (33) c : R1 

Using the representation n^ defined in (32), the decomposition of spinor valued poly­
nomials on irreducible Spin(n)-modules is well known, and it can be described by 
following picture: 

• odd case n = 2l 4-1, S 

k-0 k = l k = 2 k-3 

• • • • 
(i.....i) (*.....!) <i i) (l.-.-.i) 

(!.* i) (i.ł.....è) (î.è..-..ł) 

(|.è.....è) (§.i.....è) 

V2> 2 » ' ' ' ' 2> 

even case n = 2/, S 
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( i . . - - . J . ± i ) ( i i,=FjXl i . ± l ) (*,•••,i.T|) 

( i 1 i 4 - i \ ( 1 1 i T Í \ (1 1 i + 1 . 
V 2 > 2 ' - - - ' 2 ' : r 2 ! V 2 ' 2 ' - - - ' 2 ' + 2^ l , 2 ' 5 ' - - ' > 2 ' : t 5 ! 

• ł . т ł ) 

(7 I i • i i 

A given vertical slope corresponds to the decomposition of polynomials of fixed 
homogeneity on irreducible pieces. Using unified notation for spinor bundle S+, we 
shall denote the irreducible Spin(n)-submodule ( ^ , \,..., \, ±\) of Vk(Rn) ® S ± by 
E±p. The decomposition of k-th homogeneity component is 

k = 2m + 1, V2m+i(Rn) 0 S + ~ £?£* 0 • • • 0 £*'° , 

(34) Jfc = 2m, P2m(Kn) ® s± ~ Fi'fc e • • • e F£0. 

Definition 5.3. The space Ek>k = Vk(Rn) H S± C P*(Rn) 0 S±, which is the kernel 
of Dirac operator D (see (36)) restricted to the k-th homogeneity component, is called 
the space of primitive spinor valued polynomials on Rn: 

(35) KerD ~ Ek* . 

There are a next few invariant differential operators acting on V(Rn) ® S*, which 
deserve a special attention. Note, that every general definition of an operator acting 
on the space V(Rn) ® S* is accompanied by its special case, used for example on the 
picture in Lemma (5.5). 

i 
Definition 5.4. The restriction of action of Dirac operator D± on irreducible Spin(n) 
module E± is defined by 

(36) Dl : EkJ—->F*-M. 

Its basic realization for k = 1, i = 0 is 

Dl : S ^ S * 

(37) D| : F±'°—+F0,0 . 

The restriction of action of k-th order higher spin twistor opercitor Tk on irre­
ducible Spin(n)-module E^ is defined by 

(38) T^k : E^—>4+*'i+\ 
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and its special case of basic twistor operator TT, 1 restricted on E3^0 is 

1 L 
2 > "F 0 ) Spin(n) > 

(39) 

resp. 

(40) 

ŁT,1 

Tъi 

T J т , i 

T 

i L 
• ' 9 ' " F o ^ P i n ( n ) ( - -

l 2 ' 2 ' 
4 + l д , 

ri 1 1. 
Vrt' ' " ' ' O' " F r ) ' ' ^ 7 1 ^ 7 1 ^ 

( - -
4'2' 

1 L 
• 9 ' ~F0Jspm(n) j 

4° м + м . 
Finally, the restriction of the action of Laplace op>erator on irreducible Spin(n)-
module E^1 is defined by 

(41) A, 

with special case 

ľ?kyi i тľifc—2,t 

(, 
1 L 

i 9» "Fл/^pmín) (i.. i i . 
0 J T ^ ]Spin(n) • 

There is a fundamental relationship among invariant differential operators. 

Lemma 5.5. Let the base manifold be the standard Euclidean space En . The higher 
spin twistor operators T±^T±k and the Laplace operators A± on Rn fulfill the basic 
identity 

(42) A ± T ± > f c =T ± , f c A ± . 

This means, that inside the cone of irreducible Spin(n)-modules with horizontal op­
erators A± and 'downright' higher spin twistor operators T±^, T±k, there is a whole 
set of commutation relatioiis produced by restriction of (42) to a suitable diagrams 
('diamonds') inside the cone. 
On the picture, we have chosen the basic twistor operators T±,T± of first order, with 
the 'diamond' situated in the most upper left part of the cone of irreducible Spin(n)-
modules. 
The pictures for higher spin twistor operators of general order k > 1 and the 'diamond' 
situated in a general position inside the cone are quite analogous. 
The last mentioned example has the following diagrammatic demonstration: 

k=Q 

• 
A± k = 1 

• 
k = 2 

• 
k = 3 

« 
ÏO,0 \ 

± \ 

\ T ± 

ET 

A± 

7?2'0 \ E± \ 

\ n 
4° 

\ T ± 

• • • 
E^ 41 E± 

E« 



190 P. SOMBERG 

In other words, the diagram is commutative. 

Proof. Let (xu . . . , xn) be the standard coordinates on Rn with standard Euclidean 
metric. The operators T±)fc, T±tk and A± on standard Rn, written in global coordinates, 
are of the form 

T± = Y1B±^\ 
1*1 ð a f i * i ' 

\k\
 v-*i*. 

A± = ]ГC±,|2| 
|2| 9 X I 2 I ' 

9 dk 

(43) foj^ S ^...3^'E*'^' 
where k denotes the order of operator (and also the symbol of multi index summation), 
and the matrices A± resp. J5± are endomorphisms of spinor bundle S±. The conformal 
group on Rn is generated by special orthogonal group SO(n)t the set of n translations 
T^ and dilatation (scaling) D. Most suitable for our purposes is its realization given 
for example in [23] - the conformal group of Sn is realized by Vahlen matrices (Clifford 
algebra valued 2 x 2-matrices). In fact, the generators OO(Rn) C OO(5n), conserving 
by their action Rn (Rn <-> 5n), are just the standard ones (5O(n),TR«,D). 
Because of trivial connection on Rn, the conformal invariance of all operators means 
that 

PR», 3±|jk] - 0, [TR«,T±tk] = 0, [TRn, A±l*] = 0, 

which implies (T^n i t = <%) 

(44) A±t\k\(x + a) = A±t\k\(x), 

B±,\k\(x + a) = B±t\k\(x), 

C±)lki(x) = Idy\faeRn

1 

i.e. -4±,|*|, B±t\k\y C±t\k\ are the constant endomorphisms of spinor bundle S* on Rn, and 
C±t\k\(x) are the identity endomorphisms of S* (note that A± act between isomorphic 
Spin(n)-modules). 
Because the endomorphisms represented by ^±^1 resp. B±t\k\ are ^-independent and 
commute with the identity endomorphisrn,, they also commute with A± and wre are 
done. O 

A direct consequence of commutativity of the previous diagrams is a useful corollary. 

Corollary 5.6. Let us consider a suitable commutative diagram of higher spin twistor 
operator T±yk, whose corners (in anti-clockwise direction) are the Spin(n)-modules 

(45) £ £ , K;~2'j, tf±+*-2',+*, E£k*+k. 

Let s € E±3 be in the kernel ofT±k. Then it holds true the implication 

(46) 7±,*s = 0 ==> T±,fcA±s = 0 . 
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Proof. The proof follows from commutation relations (42). • 

Lemma 5.7. The kernel of the first order twistor operator T±ii, acting on S± ® Rn. 
are the first two upper left irreducible Spin(n) -modules in the cone of Spin{n)-modules, 
isomorphic to 

(47) K G r T i , ! - ^ , . . . , ^ © ^ , . . . . ^ . - ^ - ^ © ^ 0 . 

Proof. We determined M-module content of the kernels of higher spin twistor oper­
ators, see the equation (47). Using the results of fourth section, it remains to prove 
that these modules are realized inside invariant decomposition of W1 0 S* as the first 
two most left modules in the upper horizontal chain of Spm(n)-modules. 

From the work [4] and [5] it follows, that if / is a C°°-solution of twistor equation, 
then / solves a system of elliptic PDE's of 2-nd order, and the theory of elliptic 
PDE's implies, that the solution is a real analytic function. Then every homogeneous 
component in this sum solves the twistor equation. Let us now study the polynomial 
solutions of higher spin twistor operators. 

The situation is pictured on the following figure: 

Ł± 

E* 

Let us number the positions of Spin(n)-modules in the first horizontal (upper) row 
from the left by Aiy i.e. 

(48) AQ = E°±

fi , A, = E1/,... ,Ai = E*1)<±,.... 

Let the irreducible 5pm(n)-modules ( | , . . . , ± | ) be embedded in the space of spinor 
valued polynomials on Rn. This means, that there are finite positive integers k < 
oo, I < oo, and complex numbers 

ai,a 3,...,c*2*+i, Vi a2.+i G C, 
(49) • 0o,p2,...,fa,VH32ieCt 

such that 

(-, . . . ,-) H fodd = Qi/i + a 3 / 3 + • • • + a2Mf2M C Ai 0 -43 0 • • • 0 A2M , 

(50) ( I , . . . , - i ) = feven = /?0/0 + ft/2 + . . . + p2lf2l c A0 0 A2 0 • • • 0 A2l, 

where fa e Ai, Vi. The Laplace operator is invariant differential operator, it acts in a 
given row by decreasing homogeneity degree by 2. Invariance of A means, that there 



1 9 2 / P. SOMBERG 

is an implication 

(51) / e KerT±,i ==-> A / 6 KerT±,i, 

where the restriction of T±?i to appropriate irreducible Spm(n)-modules is understood 
in the last implication. Let us rewrite the kernels of T±j via (50), 

fodd = ^ i / i + Q f 3 X 2 / 1 H +Ot2k±\X2kfu 

(52) feven = /3o/o + /?2x
2/o + - ' + /?2/a:27o5 

where a: = ]TV Xj <2> e* is isomorphism 

(53) Ek/ -> F*+M , Vi, k € N0 . 

Then 

A /odd = »2fc+l/l > 

(54) A'/even = Ot2lfo , 

and (52) implies (/0^ and /ei,eri are the solutions T±5i), that f\ and /o are also solutions 
of basic twistor operator. Now the Spin(n)-invariance of Laplace operator means, that 
the space of solutions of basic twistor operator is carried exactly by irreducible mod­
ules Ai and A0l hence the previous picture with big black dots denoting the kernel of 
basic twistor operator is correct. • 
In the case of higher spin twistor operator T±)*, the kernel has the following descrip­
tion. 

Lemma 5.8. Let r denotes the numbering of rows in the cone of Spin(n)-modules of 
spinor valued polynomials on En, such that the upper horizontal one has the number 
r = 1. The kernel of the k-th order twistor operator T±^ on Rn consists in the even 
case n — 2l of 

m y 1 / , w 2 f c - 2 p - l 1 1 j x 

(55) KerT±,fc~ ©i€{-i,i} ©JlJ (P + l) ( .7 'o - • " o , ' o > ' 

It corresponds in the cone of Spin(n)-modules of spinor valued polynomials on Rn in 
the r-th row to the first 2(k - r + 1) irreducible Spin(n)-modules, r € { 1 , . . . , k). 

Proof. The proof uses basically the same arguments as the ones in the proof (5.7), 
so we shall omit it. We only add a pictorial description of the kernel of T± )fc: 



TWIST0R OPERATORS ON CONFORMALLY FLAT SPACES 193 

2* + l 
... r = l 

r = 2 

,.. r = 3 

D 
We can deduce from the previous Lemma analytical description of twistor spinors 

and their higher spin analogs lying in the kernel of T±yk-

Theorem 5.9. Let us denote the projection on irreducible Spin(n)-submodule 
( ^ 1 , £ , . . . ,£ , ± | ) of Vk(R

n) ® S ± by Ek
s% Let E£± denotes the projection on the 

irreducible Spin(n)-submodule corresponding to primitive spinor valued polynomials on 

(56) £)(4f±(^(Kn)®S±)) = 0. 

Then the general form of higher spin twistor spinor on (Rn) with standard Euclidean 
metric is 

fc-l 2k-2i-\ 

(57) K e r : T ± , * ~ £ ( £ ^)4f±(7>(K") ® S±). 
i=0 j=0 

In particular, the case k = \ of basic twistor operator T± y \ corresponds to the general 
form of twistor spinors on W1: 

I 

(58) KerT±jl ~ (^xj)E^±(V0(R
n) ® S±) = s0 + x 5 l , 

i=o 

tu/iere s0.5i £ S± a r e constant spinors (with respect to standard flat connection) on 

Proof. The proof follows immediately from the previous Lemma (5.8) and the fact 
that, having the primitive spinor valued polynomial p 0 5 on 3Rn, 

(59) D(p®s) = 0, 
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all the other higher spin twistor spinors can be obtained as multiplication of appro­
priate primitive spinor valued polynomial p ® 5 by appropriate power of invariant 
differential operator x. 
For k = 1, the space F°'° of primitive spinor valued polynomials on Rn consists of 
constant sections of spinor bundle on Rn, hence the general form of twistor spinor on 
Rn is KerT-t,! c_- s0 + xsi, with s 0, s\ constant spinor fields on Rn. D 

6. T H E CHOICE OF CONFORMAL REPRESENTANTS OF HIGHER SPIN TWISTOR 

SPINORS 

Let us denote by V(Xyw) a P = CO(n) x Rn-module with highest weight (A,tu), 
and let G = Spin(n + 1,1,R) denotes the group of conformal transformation of Sn. 
Wre shall be interested in the change of kernels of higher spin twistor operators on 
Rn *-> G/P ~ Sn by conformal transformations of sections of homogeneous associated 
bundles G xp V(X,w). 

It is well known, see [23],[10] and references therein, that the group of conformal 
transformations of W1 can be realized by group of 2 x 2 matrices with entries in Clifford 
algebra Cn (Vahlen matrices) satisfying certain conditions. We shall be interested in 
the tangent mapping to this group action. 

Lemma 6.1. Let g G G be an element of the group of Vahlen matrices, acting on 
(Rn,o.^n) by conformal transformations, 

<f>: x -> (ax + b)(cx -f d)'1, x G Rn , a, 6, c, d G Cn U 0. 

Then the conformal factor of the metric g is 

1 

I (cxTd) |z 

Proof. The proof is standard exercise in Clifford algebras, so we shall omit it. • 
For our purposes, it is sufficient to consider two special cases, treated in (4), (5),(6): 

(60) gRn -> t t A gRn , c, d Є Cn U 0. 

• the realization of hyperbolic space Hn as an open domain in Rn with metric of 
constant negative curvature conformally related to Euclidean one, 

(61) ffRn-45tf» = ( 1 _ | M | 2 ) 2 < 7 R " . 

• the realization of Rn <-> Sn with metric of constant positive curvature conformally 
equivalent with Euclidean metric on Rn, 

4 
(62) gun -> gs« = ^ gRn , 

uniquely extendible to Sn (i.e. to a one missing point) with all the stated prop­
erties conserved. 

Considering the spaces of sections with suitable equivariance properties with respect 
to conformal transformations, any section with respect to Euclidean metric on Rn 

bijectively corresponds to a section with respect to a conformally related metric, the 
multiple being a suitable power of conformal factor. Conformal transformations of 
interest will be the ones in (61) and (62). 
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We must pay also attention to the normalization of conformal weights. In [2], there is 
used the conformal weight of the metric to be 1, 

(63) g -> g = ag, 

so that the basic twistor operator transforms with conformal weight \. In our normal­
ization, the metric has conformal weight 2, the basic twistor operator has conformal 
weight \, and the higher spin twistor operator of k-th order has conformal weight 
(k-\). 

We shall summarize these facts in an important Corollary of the Lemma6.i. 

Corollary 6.2. Let s be a section of a vector bundle over (Rn,#Rn) with conformal 
weight k, such that the metric tensor g^n has conformal weight 2. Then the conformal 
transformation 

(64) g->g = a2g, 

corresponds to the action of conformal group on section s 

(65) s -> s = a~ks. 

The higher spin twistor operators T±^ of k-th order act on sections of conformal 
weights (k- \), in such a way that the explicit cases (61) resp. (62) correspond to 

• in the hyperbolic case g^n —> gHn: 

(66) s ^ s = S(_i__)*-.; 

• in the spherical case g^n —> gSn: 

(67) S^S = S (IT|R|F ) M-
Especially, the case of (k = I) basic twistor operator T±t\ corresponds to 

• in the hyperbolic case g^n —> g^n: 

(68) 5 -> s = aq.^na)*; 

• in the spherical case g^n —> gSn: 

(69) s ^ s = s(_i__)i. 

Proof. The proof consists of counting of degree of conformal factor. Using conformal 
transformations (61) resp. (62), a section s of conformal weight w transforms 

(70) s^'s=\^hrs^{whfrs-
• 

The following Theorem determines the kernels of higher spin twistor operators in a 
uniform manner. 
Theorem 6.3. Let n = 21. Let us denote by E3^ the space of spinor valued polynomi­
als of degree j which are solutions of the Dirac equation (so called spherical monogenics 
of degree j). The kernels of higher spin twistor operators T^, k > 1, k € N7 are given 
by 
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• in the flat case g^n: 

Ac—1 2k-2j-l 

(71) KerT t~ {/(x)|/(:-) = £ £ x's/;s> = aft*) € # - h 
j=o /=o 

• m iAe hyperbolic case gnn •' 

(72) Kerr* ~ ^ r , 
(l-IMI')*-*' 

where f(x) has the same form as in the flat case; 
• in the spherical case g$n: 

(73) KerT* ~ / ( x ) 

( l+ | |x | | 2 )* -* 

. where f(x) has the same form as in the flat case. 

Note, that {s 0 , . . . , S2jt-i} is the set of 2k constant sections of unique spinor bundle. 
In the case k = 1, we reproduce the twistor spinors, as discussed in [2]. 

Proof. The proof follows from Theorem5.9 together with Corrolary 6.2. D 
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