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EIGHT EXACTLY SOLVABLE COMPLEX POTENTIALS IN 
BENDER - BOETTCHER QUANTUM MECHANICS 

MILOSLAV ZNOJIL 

ABSTRACT. We review the recent progress in the search for complex solvable po­
tentials which exhibit a VT symmetry and shape invariance and lead to the real 
bound-state energy spectra. 

1. EXACTLY SOLVABLE REAL POTENTIALS 

This text offers a preliminary synthesis of recent, not yet published results on non-
Hermitian Schrodinger bound state problem. Our review concerns the complex exactly 
solvable models but it will parallel very closely the existing classification of the exactly 
solvable real potentials. For definitness, we shall refer to page 296 of the review paper 
[1] which lists the real solvable potentials and characterizes them globally by their 
so called shape invariance. This list decays in two separate families generating the 
Laguerre and Jacobi polynomial wave functions. For convenience, we shall denote 
these families by symbols C and J, respectively. 

In the former family the first subset is to be understood as potentials V(x) acting 
on the whole real axis, x € (-co, oo). In a way quoting paper [1] as our key reference 
this subset can be agreed as containing just the most common harmonic oscillator 
V^H\x) ~ x2 and the exponential Morse interaction V^M\x). We shall denote this 
subset as CX. The second subset CR of the former family consists of the two excep­
tional three-dimensional solvable models, viz., spiked harmonic V^s\r) ~ r2 + g/r2 

and Kratzer-Coulomb V^c\r) ~ e/r 4- g/r2. Both these forces depend on a coupling 
9 > gmin and are defined on the half axis of coordinates r G (0, oo). 

The other family J can be (and has been) conveniently split in the three separate 
subcategories, with two elements each. They are again distinguished by their specific 
ranges of coordinates. In the first subset JX the coordinates cover the whole real 
axis. Following the notation and terminology of ref. [1] we find there the Rosen Morse 
oscillator V^RM\x) and the scarf-shaped potential V^ss\x). Similarly, the respective 
Poschl-Teller and Eckart-Hulthen forces V^PT\x) and V^EH\x) are names of the items 
which form the second subset JR. A particle can also live on a finite interval within 
the framework of the third subset JY. We skip and ignore it completely here, due to 
its less immediate physical interpretation. 

The paper is in final form and no version of it will be submitted elsewhere. 
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2. COMPLEX POTENTIALS WITH VT SYMMETRY 

Within the slightly more general, non-Hermitian quantum mechanics with principles 
outlined by Bender and Boettcher in the recent series of their papers [2, 3] the current 
Hermiticity of a Hamiltonian 

H = H+ 

is tentatively being replaced by the condition 

(1) H = VTHVT. 

Here, V changes the parity and the complex conjugation operator T transforms i to 
-i and, in this way, mimics the time reversal. On a purely empirical basis the latter 
condition otVT symmetry often leads to the fully real and discrete spectrum. At the 
same time, it finds interesting interpretations in several phenomenological models [4]. 
As a consequence, the new formal framework of the so called VT symmetric quantum 
mechanics offers suddenly a number of open mathematical questions. 

One of the earliest studies of the VT symmetric potentials by Caliceti et al [5] paid 
an exclusive attention to the cubic anharmonic oscillator. For the (sufficiently small) 
purely imaginary anharmonicities it delivered the first rigorous proof of the (at that 
time, quite puzzling) reality of the separate energies. The proof has been based on the 
Borel resummation of the Rayleigh-Schrodinger perturbation series. Its relevance has 
been appreciated in the subsequent numerical studies of the same particular system 
[6], 

Another paper on a VT symmetric model by Buslaev and Grecchi [7] delivered a 
non-perturbative proof of the reality of the energies for a quartic polynomial force 
V'. This proof has been based on a mind-boggling Fourier-transformation-mediated 
connection which implied a spectral equivalence between the complex V and its purely 
real image V. Renewed interest in similar interactions re-appeared in the literature 
only very recently [8]. 

The third, decisive encouragement for a more systematic interest in the VT sym­
metric systems has been found, by Bender and Boettcher, in the complexified one-
dimensional harmonic oscillator itself [2]. Obviously, the difficult question of conse­
quences of the condition (1) can be, in principle, most easily studied within the most 
transparent domain of the exactly solvable interactions. In this sense, the present 
paper just reviews the effort based on such a type of inspiration. 

3. COMPLEXIFIED FAMILY £ WITH VT SYMMETRY 

3.1 CX 

VT symmetrized models V^H\x) and V^M\x) have been described in refs. [2] and [9], 
respectively The former force can be written in the fully general form 

(2) ~и*-^ľ-ï 
with u > 0 and with any real /?. This potential is shape invariant and in this sense it 
coincides, up to the replacement of symbols 6 -> i/5, with the shifted oscillator listed as 
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the first item in Table 4.1 of ref. [1]. The change of b leaves the spectrum unchanged. 
Wave functions become complexified by the same trivial substitution 6 = i/3. 

The bound state problem with the latter force 

V{M)(x) = -o;2exp(4ix) - D exp(2ix) 

is apparently much more complicated. Firstly, in quite an unusual manner, it is defined 
on the down-bent complex curve containing one free parameter e > 0, 

\0) U = \X = V — IU | | V t \—7T/Z, 7T/Z), U = U\V) = ITI\£/ COSUjJ- . 

In terms of the two quantum numbers q = ±1 and m = 0 , 1 , . . . the sequence of the 
related energies reads 

< i ) = ( 2 m + l т D / 2 a , ) 2 

and is discussed in more detail in ref. [9]. 
A re-establishment of correspondence of eq. (2) to the usual real Morse force is 

instructive in showing that and how the new discrete spectrum is significantly richer. 
The comparison only requires a re-definition of couplings (say, B = iu and A = 
i(l - D/2UJ) in the notation of ref. [1]) and a convenient re-scaling of the coordinate, 
2ix -» -ax. Then, the transition to the formulae of ref. [1] is easy, admitted only 
for the energies with the positive "quasi-parity" q = +1 and within a restricted range 
of the principal quantum number, m < A/a. 

Beyond this correspondence, some of the other specific features of the new spectrum 
(e.g., an unavoided crossing of its levels) have not yet been interpreted satisfactorily 
One of the possible lines of a new progress could be sought in the very similar single-
exponential VT symmetric model of refs. [10] which proves solvable non-polynomially, 
in terms of the Bessel special functions. 

3.2 CR 

Basic facts about the Laguerre-solvable and VT symmetrized spiked harmonic model 

V{s)(r) = r 2 + 4> r = x-ie, x € 1R, e>0 
rz 

can be found in the letter [11]. The presence of a spike ^ g is shown there to induce 
just a fairly smooth change of the energy spectrum, 

^ ( W ) = 4 m + 2 - 2 ^ a ' qa = ± ^ + g + t{t + l), m,* = 0,l, 

Its levels depend on the angular momentum £ and are, therefore, numbered by the 
triplet of integers. 

One has to replace £ by £-\- (D-3) /2 in the general dimension D ^ 3. Also, following 
exercise 17 on p. 442 in the Newton's book [12] the straightforward transition to 
V{c)(r) in the pertaining Schrodinger equation 

(4) 
ê L(L + 1) .<? 

j^+ 2 ' + • -drг rl r 
•ф(r) = Eiþ(r) 
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can be performed easily [13]. In the VT symmetric case the purely imaginary charge 
must be used. This gives the positive spectrum 

EI(C) ™ _ n 1 

^ • " ^ " [2m + l - f l (2L + l ) F "" ' ' ' ' ' 

with the same interpretation of the angular-momentum-like L = L(£yDyg) and with 
the same variability of £ = 0 , 1 — and of the related centrifugal term in eq. (4). 

4. COMPLEXIFIED FAMILY J WITH P T SYMMETRY 

4.1 JX 

In our present notation the VT symmetrized scarf-shaped model reads 

V{ss),x\ __ - l 2 - A2 - /x A + i (2A + /i) /3 sinh^x 

cosh2 \i x 

and has a /?—independent spectrum [14, 15] 

E = -(i4 -"/-m)2, n < -4//x. 

Its equivalence to the real case with i/3 -> B resembles the above-mentioned harmonic 
oscillator example. 

Transition to the second complexified shape invariant interaction of the Rosen-Morse 
type, 

r-r/?MW ^ A(A + l) rt. sinnx _ 
V{RM)(x) = v

 l 9
 } + 2*7 ——-, r€R 

cosh a: cosh a; 
must be performed more carefully [15]. This asymptotically purely imaginary potential 
gives the more complicated spectrum 

E{RM) = _(_4 _ ^ n ) 2 + y2j(A _ ^ n ) 2 ) n < A 

One can really get puzzled by the latter innocent-looking, smooth and asymptotically 
vanishing potential. Its closer inspection recovers that it supports a ground state in 
the weak-coupling regime. The energy of this state can be arbitrarily large. Thus, for 
7 = 0(5) and A = 0(52) in \V^RM)(x)\ < S2 we still have EQ = 0(1/5). This paradox 
offers one of the reasons why each separate solvable model with VT symmetry deserves 
particular attention and detailed analysis. 

4.2 JR% Eckart-Hulthen case 

Moving to the last two shape invariant real interactions V{EH\r) and V(PT)(r) 
of ref. [1] we notice that both these forces are, generically, strongly singular in the 
origin. This is their key difference from the previous two oscillators. In the first VT 
symmetrized singular model V^EH)(r) let us contemplate a purely imaginary part with 
variable strength B = i /?, 

^ * > ( r ) = i ^ _ 2 i ^ , A>l/2. 
sinh r sinhr 

This circumvents the conventional requirement B > A2 [1]. In a replica of the smooth 
regularization trick of refs. [7] or [11] we also have to introduce an analytic continuation 
of the semiaxis of r to the whole line modified only by a small, local deformation of 
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this integration path r = r(t), t € M near the origin. In combination with the above 
complex rotation of one of the couplings this guarantees the overall VT symmetry of 
the whole complexification. 

In the light of the detailed analysis of the EH problem as available in the preprint 
[16] the normalizable wave functions remain proportional to Jacobi polynomials and 
for all the non-negative integers n < nmax < A - 1 also the energies preserve their 
familiar form 

(5) EiBH^-(A-n-l)2+{A_^_i)2, n = 0,l,...,nmax. 

Still, one encounters many unusual features in this new real spectrum. A deeper 
inspection reveals the paradox that an increase of the repulsion A —•> A + 5 lowers the 
energy, etc. 

4.3 J It, Poschl-Teller case 

In our last class of singular forces 

cosh r sinn r 
let us preserve the real couplings a > 0, ft > 0 and employ just the minimal VT 
symmetrization r(t) = t - ie with any e € (0,TT/2). A significant novelty of this 
model lies in its behaviour at short distances. To the first order in the small e > 0 the 
estimate 

1 sinh2(x + ie) 1 n. coshx ^, 9, 
6) -T-T27 -T = / • .2 — r r - r ; = -7-73- + 2ie-—j- + 0(e2) 

sinn (x - is) (sinh x + sin e)2 sinh x sinh x 
indicates a clear prevalence of the purely imaginary and strongly singular force. This 
is is one of sources of the wealth of its spectrum. Its detailed properties have been 
described in preprint [17]. In the e-independent explicit formula 

E(PT) __ E(?,T) __ _ ( 2 n + i + aa + Tjif < o 

the construction leaves the pair of free signs r/,T = ±1. The maxima of the non-
negative principal integers n = n(<7, r) < n!££_} must be smaller than the quantity 
—(aa + T@+ l)/2 < oo so that the whole spectrum is finite. For the appropriate sizes 
of the couplings it proves composed of (up to) three non-empty parts, 

t r ) < 0 , 0<n<n^>, a + P>h 

(7) Ft'+) < 0, 0 < n < nfcit\ a>f3 + l, 

J 5 ^ - ) < 0 , 0 < n < n ^ x " \ P>a + l. 
An additional physical boundary condition must have been imposed in the real £ -> 0 
limit [18]. This would fix the unique signs a = - 1 and r = +1. In contrast, all 
the complexified potentials with e 4- 0 are regular, |V^F T(:r) | < const < oo. No 
additional constraint is needed and the spectrum is much richer. 

Acknowledgement. Partially supported by the grant Nr. A 1048004 of the Grant 
Agency of the Academy of Sciences of the Czech Republic. 
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