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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 69 (2002), pp. 77-88 

EXPLICIT GEODESIC GRAPHS ON SOME H-TYPE GROUPS 

ZDENEK DUSEK 

ABSTRACT . A g.o. space is a homogeneous Riemannian manifold (M = G/H}g) on 
which every geodesic is an orbit of a one-parameter subgroup of the group G. (G 
acts transitively on M as a group of isometries.) Each g.o. space gives rise to certain 
rational maps called "geodesic graphs". We are particularly interested in the case 
when the geodesic graphs are of non-linear character. 

H-type groups provide the examples of these spaces. In this article we study El-
type groups with 2-dimensional and 3-dimensional center and we present geodesic 
graphs with respect to various groups of isometries. 

1. INTRODUCTION 

Let (M,g) be a connected Riemannian manifold, p £ M a fixed point and let G be 
a connected group of isometries which acts transitively on M. Then M can be viewed 
as a homogeneous space (G/H,g), where H is the isotropy subgroup at p. The Lie 
algebra of G, or iI, respectively, will be denoted by g, or f), respectively. 

Definition 1. A homogeneous space (G/H,g) is called a (Riemannian) g.o. space, 
1 if each geodesic of (G/H,g) (with respect to the Riemannian connection) is an orbit 
of a one-parameter subgroup {exp(£Z)}, Z £ g, of the group of isometries G. 

Definition 2. Let (G/H,g) be a Riemannian g.o. space. A. vector X £ g\{0} is 
called a geodesic vector if the curve exp(*X)(p) is a geodesic. 

In a g.o. space we investigate those sets of geodesic vectors which gene-rate all 
geodesies through a fixed point. These sets are called "geodesic graphs". Let us recall 
basic facts about geodesic graphs. (A comprehensive information can be found in [1].) 

On the Lie algebra g of the group G there exists an Ad(H)-invariant decomposition 
(reductive decomposition) g = m + f), where f) is the Lie algebra of the group H and 
m is a vector space m C g. (Such a decomposition is not unique.) On the vector space 
m there is a natural Ad(/7)-invariant scalar product. It comes from the identification 
of m C TeG with the tangent space TPM via the projection n : G i-> M. 

We define equivariant subalgebras qx C f) for X £ m in the following way 

qx = {Aet>\[A,X} = 0} 

and we choose an invariant scalar product on f). 

The paper is in final form and no version of it will be submitted elsewhere. 



78 z. DUSEK 

Definition 3. Let (G/H, g) be a g.o. space and g = m+f) an Ad(H)-invariant decom­
position of the Lie algebra g. The canonical geodesic graph is an Ad(H)-equivariant 
map f : m i-> I) (defined on an open dense subset of m) such that X + £{X) is a 
geodesic vector and ({X) L qx for each X € m\{0}. 

For the existence of the canonical geodesic graph see [4], [2], It is analytic on an 
open dense subset of m. 

Definition 4. Let {G/H,g) be a g.o. space and g = m + f) an Ad(H)-invariant 
decomposition of the Lie algebra g. A general geodesic graph is an Ad(H)-equivariant 
map rj : m H-> f) which is analytic on an open dense subset of m and such that X + rj{X) 
is a geodesic vector for each X £ m\{0}. 

Remark. The subalgebras qx have the following property: If X £ m, A £ r) are the 
vectors such that X + A is a geodesic vector then all geodesic vectors "based on X" 
are of the form X + A + Q, where Q £ q*. If the algebra qx is nontrivial, this gives 
us the possibility to find more geodesic graphs than the canonical one. If the algebras 
qx are trivial, then only canonical geodesic graph exists. 

An essential tool for constructing geodesic graphs is the following 

Proposition 1 (cf. [2], Corollary 2.2). A vector Z £ g\{0} is geodesic if and only if 

(1) <[Z,y]m ,Zm)=0 for all Yem. 

Here the subscript m indicates the projection into m. 

We replace the vector Z by a vector X + ({X) expressed with respect to the bases 
{Xi} of m and {Dj} of f) as 

dimm dimf) 

1=1 j = l 

and for Y we substitute step by step all the elements X,-. 

We obtain a system of linear equations for £-• with coefficients and right-hand sides 
depending on X{. If this system doesn't have the unique solution (dimq* = q > 0 
for generic X £ m) then we add q additional linear equations, which characterize the 
orthogonality £{X) ± qx (see [1] for detailed construction). 

This extended system has the unique solution and by using the Cramer's rule we 
obtain a vector f(X), whose components with respect to the basis of r) are of the 
form £j = Pj/Py where P.- and P are homogeneous polynomials in variables X{ and 
deg(Pi) = deg(P) + 1. 

In the examples already known these polynomials have the common factor and the 
degree of the polynomials can be decreased. We define the degree of a geodesic graph 
as the degree of the denominator after cancelling the common factor out. 

2. H-TYPE GROUPS 

Definition 5. Let n be a 2-step nilpotent Lie algebra with an inner product (,). Let 
I be the center of n and let D be it's orthogonal complement. For each vector Z £ 3 
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define the operator Jz : t> »-> D by the relation 

(2) (JzK ,Y) = (Z,[K , r]) for all X,YGu. 

The algebra n is called a generalized Heisenberg algebra (H-type algebra) if, for each 
Z G 3, the operator Jz satisfies the identity 

(3) Jz
2 = - (Z,Z)id 0 . 

A connected, simply connected Lie group whose Lie algebra is an H-type algebra is 
diffeomorphic to Rn and it is called an H-type group. It is endowed with a left-invariant 
metric. 

H-type algebras are completely classified (see [3]). For each dimension of the center 
3 there is a series of H-type algebras. Each algebra of the series contains the center 
3 and the complement u which decomposes into irreducible 3-modules (the operators 
Jz make 0 a 3-module). Irreducible 3-modules are all equivalent if dim3 ^ 3 (mod 4), 
otherwise there exist two nonequivalent irreducible modules of the same dimension 
(called non-isotypic modules). 

The H-type group is a g.o. space if and only if (see [7] or [3]) 
• dirrye {1,2,3} or 
• dim3 G {5,6,7} and dimto = 8 or 
• dim3 = 7 and dimO G {16,24} and D is decomposed into 8-dimensional modules of 
the same type. 

Each H-type group with dimj = 1 is a naturally reductive space. The geodesic graph 
for naturally reductive spaces is linear - of degree 0. H-type groups with dim3 = 3 
are naturally reductive if and only if the complement D is decomposed into equivalent 
modules. Other H-type groups which are g.o. spaces are not naturally reductive. In 
the following sections we will concentrate on H-type groups with dim3 = 2 or 3. The 
case dim3 = 5 is investigated in [5]. 

2.1 dim3 = 2 

Let n be a vector space of dimension An + 2 equipped with a scalar product and 
let {E\,..., Ein, Z\, Z2} form an orthonormal basis. We define the structure of a Lie 
algebra on n by the following relations. For p = 0 , . . . , n — 1 

[-^4p+l,-^4p+2] = 0 , 

• [-54p+l, -#4p+3] = -̂ 1 > [J-Mp+2, -54p+3] = Z2 , 

[i-Mp+l, .B4P+4] = Z2 , [i?4p+2, £ ^ + 4 ] = —Z\ , [i?4p+3, -E4P+4] = 0 , 

for other k, I = 1 , . . . , An we put [£*, E\] = 0, further [Z\, Z2] = 0, and for k = 1 , . . . , An 
and / = 1,2 we put [Ek, Z{\ = 0. 

The elements Z\ and Z2 span the center 3 of the Lie algebra n and one easily verifies 
the condition (3) for the operators Jz, so this relations define an H-type algebra. Each 
quadruplet x>p = span(.E4p+i,..., ^ + 4 ) for 0 < p < n — 1 is an irreducible 3-module 
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and these modules are equivalent to each other. Summarizing, we have 

n - l 

n = 3 + D=3 + J]t)p . 
P=o 

If n = 1 then we have the Lie algebra of the simplest (6-dimensional) H-type group 
with 2-dimensional center. It was the first example (by A. Kaplan) of a g.o. space 
which is not naturally reductive. Its geodesic graph was described in [2] and this 
section is a generalization to other H-type groups with dimj = 2. 

Let us express the H-type group N corresponding to n as a homogeneous space 
G/H. For p = 0 , . . . ,n — 1, the following operators acting on t) are skew-symmetric 
derivations of the Lie algebra n: 

I^3p+1 = ~-4(4p+l,4p+2) + -4(4p+3,4p+4) > 

£>3p+2 = +-4(4p+i,4p+3) + A(4p+2,4p+4) , 

£^3p+3 = +-4(4p+l,4p+4) — -4(4p+2,4p+3) • 

Here A^i) are the elements of 5o(t>) acting on t> by A(k,i)(Ei) = <$*,-£?/ — SuEk. So each 
subalgebra f)p = span(D3p+i,..., D3P+3) acts effectively only on Dp. 

We put 
n - l n - l 

f) = s p a n p ! , . . . D3n) = 0 f)P = 0 5 U ( 2 ) . 
p=0 p=0 

and consider the decomposition Q = n + f). Obviously, g is a well-defined Lie algebra. 
If we express the H-type group N corresponding to n as a homogeneous space G/H 
then G can be considered as a transitive group of isometries of N. 

Hence we have N = G/H, where H = [SU(2)]n and G = N x H. Here the group 
G is not the full isometry group of N. But the group N is a g.o. space with respect 
to this group. 

Now, we shall construct the canonical geodesic graph £ : n i-> f). We put 

4n 2 3n 

X = Y,*KEk +
 y£,ziZi, £(*) = £ > A-

*=1 /=1 1=1 

We check easily that the subalgebras q* from the Introduction are trivial. From the 
equation (1) we obtain 4n + 2 linear equations for the components £t- (i = 1, . . . ,3n) 
of the vector ((X) depending on the variables Xk and z\ (k = 1 , . . . ,4n and / = 1,2). 

For each quadruplet of these equations corresponding to Y = J54P+i, • • •, £?4p+4 only 
three of them are linearly independent. Hence we omit the fourth equation from each 
quadruplet (corresponding to Y = i?4p+4 for p = 0, . . . ,n - 1). The last two equations 
(corresponding to Y = Z\ and Y = Z2) are trivial. 
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The matrix of this system of equations is equivalent to the block square matrix A 
(of rank 3n) with nonzero 3 x 3 blocks just along the diagonal. These blocks are 

( — XAp+2 XAp+3 XAp+A \ 

x4p+i x4p+4 — x4p+3 for p = 0 , . . . , n — 1. 
x4p+4 — x4p+i x4p+2 / 

The right-hand side vector b (of 3n entries) can be written in block form as b = 
(b0 , . . . ,bn_i)*, where 

( Z4p+32l + X4p+4Z2 \ 

-x4p+4zi -f x4p+3z2 for p = 0 , . . . , n - 1. 

— X4v+\Z\ — x4p+2z2 ) 

Hence we solve the matrix equation Af = b, where f = ( f i , . . . ,£3-1)'- Using the 
Cramer's rule we get explicitly 

p _ —2 {x4p+2X4p+3 + -C4p+4-C4p+i) Zl — 2 {x4p+2X4p+4 ~ X4p+\X4p+z) Z2 
C,3p+1 9 1 9 1 9 1 2 ' 

Z4p+r + ^4p+2 + ^Ap+3 + ^4p+4 
(-g4p+i2 — ^4p+22 + x 4 p + 3

2 — x4p+4
2) z\ + 2 (x4p.f3a:4p-|-4 + a 4p+ix 4p+ 2 ) z* (зp+2 = 

X 4 p + i 2 + X4p+2

2 + X 4 p + 3

2 + £ 4 p + 4 

p __ 2 (x4p+3.r4p.f4 — -g4p+l-g4p+2) Z\ + {x4p+\ — X4p-|-22 — -C4p+32 + 3*4p+42) Z2 
S3p+3 2 1 2 1 2 1 2 ' 

%Ap+\ + ^4p+2 + *Ap+3 + %Ap+A 

for 0 < p < n — 1. 

Thus, there is a canonical geodesic graph of degree 2 for every H-type group with 
dimj = 2. Our choice of the group G doesn't involve other geodesic graphs, because 
we have dimq* = 0 for generic X. 

Now, let us express the group N in the new form G'/H', where G' is the full isometry 
group and look for geodesic graphs with respect to bigger groups of isometries. The 
6-dimensional H-type group was treated in [1]. Here the full isometry group G' is one 
dimension bigger than G. In the decomposition g' = n + V we have f)' = span(f), R). 
R is the operator 

R = 2 £(1.2) + >*(1,2) + -4(3,4). 

(Here -9(i,2) is the operator on 3 acting by B^t2){Z{) = S\iZ2 — S2{Z\.) But the equation 
(1) implies that the component of the operator R in any geodesic graph is zero. In 
this case only canonical geodesic graph exists. 

In the 10-dimensional case (n = 3 + ]Cp=o **P) the algebra f)' in the decomposition 
g' = n + f)' is spanned by 11 skew-symmetric derivations on n. We denote them 
Di,..., D6, Pi,..., P5. The new elements act on n by 

P\ = +-4(1,5) + -4(2,6) + -4(3,7) + -4(4,8) , 

P2 = +A(i,6) - -4(2,5) - -4(3|8) + .4(4 j) , 

I3 = +-4(1,7) +-4(2,8) - -4(3,5) - A(4>6) , 

P4 = +.4(1,8) - -4(2,7) + -4(3,6) - -4(4,5), 
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P5 = 2 5(if2) + -4(1,2) + -4(3,4) + -4(5,6) + -4(7,8) • 

Again, the equation (1) implies that the component of the operator P5 in any geo­
desic graph is zero. We denote 

I)" = span(Di, . . . , D6, Pi,..., P4) = 50(5). 

We are given the new expression for the group N as G"/H", where H" = Spin(5) and 
G" = N x H". In this case we have dimq* = 3 for generic X 6 n. Hence general 
geodesic graphs do exist. Conjecture: there is no geodesic graph of degree 1. 

2.2. dim3 = 3. 

In this case we have a vector space n of dimension 4(n+m)+3 equipped with a scalar 
product and the elements {E\,..., F4n, Fi,..., F4m, Z\,...,Z3) form an orthonormal 
basis. The structure of a Lie algebra on n is defined by the following relations. For 
p = 0 , . . . ,n — 1 

[EAp+l, EAP+2] = Z\ , 

[EAp+1, EAP+3] = Z2 , [F4p+2, EAp+3] = Z3 , 

[E4p+\, EAP+A] = Z3 , [F4p+2, EAP+A] = —Z2 , [F4p+3, E4P+A] = Z\ , 

for q = 0 , . . . , m — 1 

[F4g+l,-F-lg+2] = Z\ , 

[F4g+1, F4g+3] = Z2 , [F4g+2, -̂ -lg+3] = —Z3, 

[F4g+1, Ftg+4] = Z3 , [F4g+2, FAQ+A] = Z2 , [F4g+3, -^+4] = ~Z\ . 

For other i, j = 1, . . . ,4n and k,l = 1, . . . ,4m we put [E{, Ej] = 0, [Fjt, F/] = 0, and 
for i = 1 , . . . , 4n,.; = 1 , . . . , 4m and k, I = 1 , . . . , 3 we put 

[Ei,Zk] = 0, [Fj,Zk] = 0, [.Ei,Fj] = 0, [Zk,Zt]=0. 

We have 3 = span(Zi,.. . , Z3), Dp = span(.Fp+i,..., Fp+4) for 0 < p < n - 1 and 
6g = span(Fg+i, . . . , Fg+4) for 0 < q < m — 1. The action of 3 on t)p (via the operators 
Jz) can be viewed as multiplication of quaternions by imaginary quaternions on the 
left and the action on tig as multiplication on the right. The modules Dp and bq are 
not equivalent. 

We start with the simplest case n = l ,m = 0. It is the seven-dimensional algebra 
n(1>0) = 3 + 0 with 0 = t)o. (The double index at n shows the number of modules 
of each type in the complement of 3.) We will show geodesic graphs with respect to 
various groups of isometries and apply the results to the general case. 

To express N(i,o) = G/H we put f) = Der(n)flso(n) in the decomposition g = n + f). 
We get the following operators on n 

D\ = --4(1,2) + 4(3,4) , DA= 2 P(2,3) + -4(1,2) + -4(3,4) , 

D2 = +-4(1,3) +-4(2,4) , D$ = 2P(i,3) - -4(1,3) +-4(2,4) , 

D3= +-4(i,4) - -4(2,3), D6= 2P(i,2) +A(i,4) + A(2,3). 
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Again, A(kj) are the elements of so(o) acting on 0 by A(kj)(E{) = 5kiEi - 8uEk and 
£?(*,/) are the elements of 50(3) acting on 3 by B(k^(Z{) = 5kiZi - 5uZk. 

We have 

f) = s p a n ( D i , . . . , D6) = 5U(2) 0 i u (2 ) , 

where su(2) means another representation of su(2) on n. The group G corresponding 

to the algebra g is the maximal connected isometry group of N. 

The system of equations obtained from the equation (1) in the same way as in 2 . 1 . 
is equivalent to the matrix equation A£ = b with 

f X2Zi + X3Z2 + X4Z3 \ 

— X\Z\ — X4Z2 + X3Z3 

X4Z\ — X\Z2 — X2Z3 

0 

0 

A = 

/ ~x2 x3 x4 x2 -x3 x4 \ 

Xi x4 -x3 -X\ x4 x3 

x4 -Xi x2 x4 X\ ~X2 

0 0 0 0 2*3 2*2 

\ 0 0 0 2*з 0 -2*i / 

b = 

The solution of this system is not unique (d imq* = 1). We find the generator 
of the algebra qx as the solution of the homogeneous system A • Q(X) = 0 (see 
[1]). The components (Q.)?= 1 of the vector Q(X) may be chosen as corresponding 
maximal subdeterminants with the corresponding signs of the matrix A. But all these 
determinants have the common factor 4 x4z3 and therefore we can cancel out by this 
common factor and get the simpler components 

Q\ = (-x\2 - x2 + x3 + x4) zi—2 (x3x2 + Xix4) *2 + 2 (xxx3 - x4x2) *з, 

Q2 = 2 (x3x2 - x\x4) *i + (xi
2
 - x2 + x3 - x2) *

2
 + 2 (xxx2 + x4x3) z3 , 

Qz-2 (x2x4 + x\x^) *i + 2 (£4.2:3 - x\x2) *2 + (x2 - x2 - x3 + x2) *3 , 

Q4 = - (x2
2 + X!2 + X3

2 + X4
2) *! , 

Qs = (x2
2 + X2 + X3 + X4

2) *2 , 

Q& = - (X2
2 + Xi2 + X3

2 + X4
2) * 3 . 

We extend the matrix A by the row vector Q(K)* and the vector b by the sixth 
component equal to 0. So we have added the condition Q(X) J_ £(X) (the invariant 
scalar product on f) is chosen so that {Di}f_i form an orthonormal basis). The solution 
of the extended matrix equation (obtained by the Cramer's rule) is 

(-X12 - x 2
2 + x3

2 + x4
2) *i - 2 (X\X4 + x3x2) *2 + 2 (x\x3 - x2x4) * 3 

6 = 

6 = 

2 (Xj2 + x2* + x3

2 + x4

2) 

2 (x2x3 - X1X4) zi + (xi2 - x2
2 + x3

2 - x4

2) z2 + 2 (xix2 + X4X3) z3 

2 (X!2 + X2
2 + X3

2 + X4
2) 

2 (x 2 x 4 + X1X3) zx + 2 (x 3 x 4 - x t x 2 ) z-i + (xi 2 - x 2
2 - x 3

2 + x 4
2 ) zz 

2 (Xj2 + x 2
2 + x 3

2 + x 4
2 ) 

e4 = l / 2 2 l , 
6 = -l/2z2, 

Č6 = 1/223. 
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Hence the degree of the canonical geodesic graph in the full isometry group is equal 
to 2. But we may consider the map 

We have Ad(h)qx = c\Ad(h)x and for the scalar product on f) such that {#»}f=i form 
an orthonormal basis we have 

\\Q(X),Q(X)\\2 = 2 (zx
2 + z2

2 + z3
2) (x2

2 + Xl
2 + x3

2 + x4
2)2, 

which is an invariant function with respect to the representation Ad(#)|n . The func­
tion 2, j + T i\X3s+x i\ is invariant as well, so the map rj is Ad(#)-equivariant. It is a 
general geodesic graph and it is obvious, that this geodesic graph is linear. Indeed 

Vl = V2 = rj3 = 0 , T}4=Zi, T)5 = -Z2, 7/6 = Z3 . 

The linear geodesic graph shows, that the space N(i,o) is naturally reductive. An 
interesting observation shows, that this linear geodesic graph can be obtained as the 
canonical geodesic graph in the smaller group of isometries. If we put N(i,o) = G'/H\ 
where 

r/ = span(D4 , . . . ,D6)=su(2), 
we get the same map. We will use this idea in constructing linear geodesic graphs in 
a more general general case N(n,o) or N(o,m)« 

Let n(n,o) = 3 + 0 where D = £p=o t)p be an H-type algebra with dimj = 3 and 
the complemetnt t> decomposed into n irreducible modules of the first type. We put 
W(n,0) = G/H where f) = span(Dx,..., D3), acting by 

n - l 

D\ = 2 #(2,3) + 2 ^ (-4(4p+l,4p+2) + -4(4p+3,4p+4)) , 
p=0 

n - l 

D2 = 2 #( i | 3 ) + 2 ^ (--4(4p+l,4p+3) + -4(4p+2,4p+4)) , 
p=0 

n - l 

D3 = 2 #(i,2) + 2 ^ (y4(4p+l,4p+4) + ^4(4p+2,4p+3)) • 
p=0 

We have # = SU(2), G = N x # . From (1) we get 4n + 3 linear equations with 
right-hand sides for 3 components (6)?=i- This system splits into n quadruplets of 
equations corresponding to different values of p and one triplet of equations. In each 
quadruplet (for 0 < p < n — 1) only three equations are linearly independent and they 
can be expressed as a matrix equation Apf = bp where 

/ x4p+2 — x4p+3 x4p+4 \ ( x4p+2Zl + x4p+ZZ2 + X4p+4Z3 

b p = —x4p+lZ\ — X4p+4Z2 + X4p+32:3 

x4p+4Zl — x4p+lZ2 — X4p+2Z3 

Ap = —^4p+l x4p+4 x4p+3 

i x4p+4 x4p+l ~x4p+2 J 

The components of the solution of each of these subsystems are 

6 = zx, £2 = —z2, (3 = z3 

) 
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and one easily verifies, that it is the solution of the whole system. 

Similarly, in the case of an H-type algebra with dimj = 3 and the complemetnt 
6 decomposed into m irreducible modules of the second type (n(0,m) = 3 + 6 where 
6 = ]C^=o **q) w e t ake f) = span(D!,... , D3), acting by 

D\ = 2S(2,3) + 2 ^ (--4(4g+i,4g+2) + -4(4g+3f4g+4)) , 
g=o 

m - l 

D2 = 2 £(1,3) + 22 (i4(4g+i,4g+3) + -4(4g+2,4g+4)) , 
9=0 

m - l 

D3 = 2 5(1>2) + 22 (""v4(47+l,4<7+4) + -4(49+2,4?+3)) -
9 = 0 

(Here ^(t,.) acts on t> in the same way as *4(jt,.) acts on t>, namely A(fci/)(/,-) = feF; 
SiiFk.) We have iV(0,m) = G/H where # * SU(2), G = N x # . We put 

Am Зm 

^ = E^F*+E г' z'' «*) = 5>Д-
* = i /=i ť=i 

and the equation (1) gives Am + 3 linear equations. For example the first quadruplet 
reduces to the matrix equation A0£ = b0 for 

-2/2 2/3 ~VA \ 

A 0 = | 2/i 2/4 2/з 

2/4 -2/i -2/2 

• b 0 = 

/ 2/2*1 + 2/3*2 + 2/4*3 \ 

-2/1*1+2/4*2 -2/3*3 

-2/4*1 - 2/1*2 + 2/2*3 
V / 

The solution, which solves other equations too, is again linear: 

6 = - * i , 6 = *2 , £3 = —*3 • 

We see, that all the H-type groups mentioned in this section so far are naturally 
reductive spaces. 

Finally, we shall consider the general case of an H-type algebra with dimj = 3. We 
have n(n,m) = 3 + 0 + 6 where D = Y^ll DP a n d 6 = T^Jo V Now> w e P u t 

n—1 m—1 

h = span(D1,..., .93„, Du..., DZm) a. 0su(2) e 0su(2) . 
p=0 g=0 

Each copy of su(2) acts effectively only on unique t)p and each copy of su(2) acts effec­
tively on unique X>q by the following skew-symmetric derivations. For p = 0 , . . . , n — 1 

I?3p+1 = — ̂ -(4p+l,4p+2) + -4(4p+3,4p+4) > 

I?3p+2 = +-4(4p+l,4p+3) + -4(4p+2,4p+4) > 

I?3p+3 = +-4(4p+l,4p+4) — -4(4p+2,4p+3) 
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and for q = 0 , . . . , m — 1 

I^3g+l = +-4(4g+l,4g+2) + ^(4g+3,4g+4) > 

Ajg+2 = +-4(4 g + 1 > 4 g + 3) — -4(4g+2f4g+4) > 

D3g+3 = +-4( 4 g + 1 | 4 g + 4 ) + -4(4g+2,4g+3) • 

There are other skew-symmetric derivations of n(n,m) involving the operators B(kj) but 
they are not needed here. 

Now we put 

4n Зn 

X = £ XІEІ + £ УjFj + £ zкZк, ţ(X) = £ ţiDi + £ ĘjĎj. 
t=l j = l fc=l í = l j '=l 

The equation (1) gives again the system of linear equations. It is equivalent to the 
matrix equation A£ = b for the block square matrix A (of rank 3(n-|-m)) with nonzero 
3 x 3 blocks along the diagonal. These blocks are 

A , = 

f — £ 4 p + 2
 x4p+3 x4p+4 

x4p+l x4p+4 ~x4p+3 I , A g = 

\ 2J4p+4 — x4p+l x4p+2 

f V4q+2 V4q+3 V4q+4 

— V4q+l —V4q+4 V4q+3 

\ V4q+4 ~ y 4 g + l ~ y 4 g + 2 

for p = 0 , . . . , n — 1 and q = 0 , . . . , m — 1. 

The right-hand side vector b (of 3(n + m) entries) can be written in block form as 
b = ( b 0 , . . . , bn_i, b 0 , . . . , bm_i)*, where 

x4p+2^\ + x4p+3?2 + x4p+4^3 \ 

bp = | — aJ4p+iZi — x4p+4*2 + x4p+3*3 

x4p+4*\ — x4p+\*2 — x4p+2^3 ) 

foг p = 0 , . . . , n - l , 

У4g+2^1 + У4g+3-?2 + У4g+4*3 

Ьg = | - У 4 g + l Z l + У4g+4^2 - У4g+3*3 | for q = 0 , . . . , ГП - 1 . 

-У4g+4^1 - У4q+\Z2 + У4g+2*3 

By using the Cramer's rule we get (after cancelling the common factors out) the 
components of the canonical geodesic graph of degree 2. The components ft and ft 
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for 1 < i, j < 3 are 

p _ (-x2 - x2 + x3 + x4) zi-2 (x3x2 + XjX4) z2 + 2 (xxx3 - x2x4) z3 

xi2 + x2
2 + x3

2 + x4
2 

2 (x2x3 - xxx4) z\ + (x2 - x2
2 + x3 - X42) z2 + 2 (xxx2 + x3x4) z3 

£2 = 

6 

6 = 

6 = 

X12 + x2
2 + x3

2 + X42 

2 (x3Xi + X4X2) Zi+2 (X3X4 - XjX2) z2 + (xi2 - x2
2 - x3

2 + x4
2) z3 

X\2 + x2
2 + X3

2 + X42 

(y2 + y22 - 2/32 - y2) z\ + 2 (y2y3 - yiy4) z2 + 2 (y3yx + y4y2) z3 

y\2 + 2/22 + í/32 + 2l42 

2 (y3y2 + y4y\) zx + (yx
2 - y2

2 + y3
2 - y4

2) z2 + 2 (y3yA - y\y2) z3 

y\2 + y22 + y32 + y*2 

2 (2/22/4 - 2/12/3) *i + 2 (yiy2 + y4y3) z2 + (yx
2 - y2

2 - y3
2 + y4

2) z3 

y\2 + 2/22 + ys2 + y*2 

and the components £3p+t: and £3g+j for 1 < p < n — 1 and 1 < q < m — 1 are obtained 
after replacing all Xk by the corresponding x4p+fc and all yi by the corresponding 2/4g-w 
(k ,/ = l , . . . , 4 ) . 

In the general case N(n,m) we can't use the similar construction as in the case N(i,o) 
and construct linear geodesic graph. For example in N(i,i) we have N(i,i) = G/H where 
I) = s p a n ( D i , . . . , D3 , Di,..., D3). The group G may be enlarged to the full connected 
isometry group G of N and we get N(i,i) = G/H with \) = \) + s p a n ( D i , . . . , D3). The 
action of additional elements of l) on n is given by 

Di = 2 B(2>3) + A(i,2) + v4(3,4) - A(i,2) + -4(3>4), 

D2 = 2 H(i,3) - A(lt3) + A(2j4) + A(i,3) + -4(2,4), 

D3 = 2 H(1>2) + A(li4) + A(2>3) - A(it4) + A(2>3). 

If we compute the canonical geodesic graph with respect to G (here d imq^ = 1) we 
get the same map as with respect to G, the components of {Dt}f=1 are zero. It is 
not hard to show that the similar trick for decreasing the degree as in the case N(i,o) 
doesn't work. It corresponds to the fact, which is known from the general theory, 
namely that the H-type groups with dim 3 = 3 and of general type are not naturally 
reductive. 
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