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T-SEMISYMMETRIC SPACES AND CONCIRCULAR V E C T O R 
FIELDS 

JOSEF MIKES, LUKAS RACHUNEK 

ABSTRACT. In this paper we prove that concircular vector fields in proper T-semi-
symmetric (pseudo-) Riemannian spaces are convergent. Further, these results are 
generalized and applied to Kenmotsu manifolds. 

1. INTRODUCTION 

This paper is concerned about certain questions of concircular vector fields in T-
semisymmetric Riemannian spaces. The analysis is carried out in tensor form, locally 
in a class of sufficiently smooth real functions. 

One of the most studied classes of special (pseudo-) Riemannian spaces Vn are 
semisymmetric spaces, which were introduced by N. S. Sinyukov in 1954 (see [3], [11], 
[18]) and which generalize symmetric spaces. Semisymmetric spaces are investigated 
e.g. in [3], [21], [22]. 

Generalizations of semisymmetric spaces are Ricci semisymmetric spaces (see the 
review [16]), and these are further generalized by the spaces introduced by J. Mikes 
as T-semisymmetric and studied in [10], [11], [12]. 

A Riemannian space Vn is called T-semisymmetric ([10], [11]), if for a tensor T the 
condition 

(1) R{X,Y)oT = 0 

holds for all tangent vectors X, Y in tangent space TM of Vn, where R(X, Y) denotes 
the corresponding curvature transformation and the symbol o indicates the corre­
sponding derivation on the algebra of all tensor fields. We can write this condition in 
the local transcription as T'.'.' r/m- = 0, where "," denotes the covariant derivative with 
respect to a (possibly indefinite) metric tensor gij of a Riemannian space Vn and [jk] 
denotes the alternation with respect to j and k. 
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Evidently, a T-semisymmetric space is semisymmetric, or Ricci semisymmetric if T 
is the Riemannian tensor /?, or the Ricci tensor Ric, respectively (see [1], [2], [3], [10], 
[11], [16], [18]). 

The study of recurrent, convergent and torse-forming vector fields has a long history 
starting in 1925 by the works of H.W. Brinkmann, P.A. Shirokov and K. Yano (see 
[11], [18], [23], [24]. In Riemannian spaces Vn with the above vector fields there exists 
a metric of a special form; these spaces are now called (almost) warped products [4]. 
These vector fields have been used in many areas of differential geometry, for example 
in conformal, geodesic and holomorphically projective mappings and transformations 
(see [8] - [24]), in the theory of subprojective spaces by Kagan [18], Kenmotsu mani­
folds [1], [2], [6] and others. 

In the papers [1], [2], [5], [7], [18] there were studied semisymmetric and Ricci 
semisymmetric spaces which contain concircular and torse-forming vector fields satis­
fying some other assumptions. 

In our papers [13], [14] we have proved that all torse-forming vector fields in T;- and 
Tij-semisymmetric spaces (provided T» 7-- 0, T,j 7-- Qgij, where gij is a metric tensor in 
Vn and Q is a function) are convergent. 

In this paper we present the following analogical assertion: Any concircular vector 
field in a T-semisymmetric space, where T is a tensor with an arbitrary valency, which 
cannot be decomposed in a tensor sum of products of functions, the Kronecker delta 
symbols and the metric components (with lower or upper indices) is convergent. This 
assertion follows from the more general theorem, which is proved here. 

2. ON THE THEORY OF CONCIRCULAR VECTOR FIELDS 

Now we will recall results concerning concircular vector fields and their special case 
- convergent vector fields, which have been obtained in [4] - [7], [8] - [24]. 

A vector field f in a Riemannian space Vn is called concircular if it satisfies V^f = 
QX where X 6 TM and Q is a function. In the local transcription this reads 

(2) i) = e% 

where fh are the components of £ and 5h is the Kronecker symbol. Throughout this 
paper we assume £h 7-= 0. 

A concircular vector field f is called convergent, if Q = const. A vector field f is 
called isotropic if #(£, £) = 0, where g is a metric on Vn. 

It is well known (see [18]) that, if a Riemannian space Vn admits a non-isotropic 
concircular vector field £, then in Vn there exists a coordinate system x, in which the 
metric takes the form 

ds2 = e(dxl)2-rf(xl)ds2 

where e = ±1 , /(T-= 0) is a function, and ds2(x2,... ,xn) is the metric form of the 
associated Riemannian space K-i-

We can write the equation (2) for a concircular vector field in the following form 
[18]: 

(3) Zij = Q9ij > 
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where & — £agai is a locally gradient covector, i.e. & = /|f- where / is a function, 
gij is the metric tensor in Vn. Evidently, a concircular vector field with g ^ 0 is 
non-isotropic. This implies: 

Lemma 1. Any non-convergent concircular vector field is non-isotropic. 

In the following we shall study non-isotropic concircular vector fields. The integra-
bility condition arising from (3) can be written in the form 

(4) ZaR?jk = 9ijQ,k-gikQj 

where R!--k is the Riemannian tensor of Vn. 
When contracting (4) with such a £*, we arrive to the formula 

tjQ,k-£kQ,j = 0. 

In view of & =?- 0, we get 

(5) Q,i = Tti 

where r is a function. Then (4) can be written in the form 

(6) ZaKijk = r{9ijtk ~ 9iktj) • 

According to (5) we can see that if £ is not convergent, i.e. g ^ const, then gyi ^ 0 
and therefore r ^ 0 is true. 

3. ON THE OPERATOR R(X, Y) 

In this section we shall be interested in T-semisymmetric Riemannian spaces where 
T is an arbitrary tensor field of type (0,ra), i.e. T will be an m-linear form 

T(X i ,X2.. . . ,Xm), 

where XuX2,...,Xm eTM. 
If Vn contains a convergent field £, then instead of the condition (1) one can consider 

a weaker condition 

(7) R(X,()°T = 0 for each XeTM. 

In the local transcription this condition can be written in the form T...f[/flr]f
0f = 0. 

Because the operator R(X, Y) is a derivation on the tensor algebra, we have for any 
two tensor fields U and V the equalities 

R(X,Y) o(U±V) = R(X,Y) oU± R(X,Y) o V 

^ R(X,Y) o (U <g> V) = (R(X,Y) oU)®V + U® (R(X,Y) o V). 

Under the assumption that the tensor T is the tensor composition of functions on 
Vn and the metric tensor g we can get by means of (8) that (7) is satisfied. 

Let us denote by T an arbitrary contraction of the tensor T with gl* where ||gtJ|| = 
ll^jll"*1 . Then the above properties of the operator R(X, Y) imply the following 
lemma. 

Lemma 2. Let the tensor T satisfy R(X, ()oT = 0, VK G TM. Then R(X, Qof = 0, 
VK e TM holds. 
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4. O N CONCIRCULAR VECTOR FIELDS IN T - S E M I S Y M M E T R I C SPACES AND THEIR 

GENERALIZATION 

The classical result that all concircular vector fields in semisymmetric (with non 
constant curvature) and those in non-Einsteinian Ricci semisymmetric spaces are con­
vergent was generalized by J. Mikes for arbitrary Tt- and T tj-semisymmetric spaces 
such that Ti 7- 0 and Tij 7- ggij, respectively, see [10]. This was proved also in the 
case of torse-forming vector fields by J. Mikes and L. Rachunek in [13] and [14]. 

Let us show further generalization of the above assertions. 

Theorem 1. Let Vn be a T-semisymmetric space, where the corresponding m-covari-
ant tensor field T is of degree m <n. If there exists a concircular vector field { on Vn, 
then either a) £ is convergent, orb) T can be expressed as the tensor sum of products 
of functions and metric components. Moreover, in the last case, T = 0 for m odd. 

This theorem follows from the more general theorem 

T h e o r e m 2. Let T be a m-covariant tensor field in a space Vn (m < n) and f is 
concircular vector field on Vn. If the condition (7) is satisfied, then either £ is con­
vergent or T can be expressed as the tensor sum of products of functions and metric 
components. In the last case, T = 0 for m odd. 

Proof. Let there exist a concircular vector field £ on Vn which is not convergent. We 
will use the induction. Theorem 2 is valid for m = 1,2, see [13] and [14]. Supposing 
the validity of Theorem 2 for m — 1 we prove it for m > 2. 

Let (7) for m-covariant tensor T be satisfied. In the local transcription (7) can be 
written in the form 

m 

(9) j:K^-Til...i^ai,+l...im=0 
a = l 

where T^tV-.-mfa) are local components of tensor T and a,/? are summation indices 
too. 

Using the assumption that £ is not convergent (r 7- 0) and the properties of the 
Riemann tensor we get by means of (6) and (9) 

m 

\*-v) / AQkig^ It'i...tt-_iaf<-+l...im ~" W-i i . . . t 'a- i fc . '<- + i . . .«mJ = U . 
a = l 

Contracting (10) with gkl% e = 1 ,2 , . . . ,m, we obtain a system of equations whose 
left-hand sides contain the terms 

\ -*AJ S 1Qfl2...»m 5 4 IUart3...tm > ' ' ' 1 S It'it2...a 

and right-hand sides contain the metric components, the covariant components £t of £ 
and the components of all contracted tensors T of T. The last tensors T according to 
the induction assumption (since they have their valency less than m — 1) and due to 
Lemma 2 can be expressed as the tensor sum of products of functions and the metric 
tensor. 

We can show that under the assumption m < n the system of equations with the 
unknown variables (11) has a nonzero determinant and thus it has a unique solution, 
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which means that the unknown variables (11) can be determined as a linear combina­
tion of the right-hand sides. Therefore 

m (a) 

(*•£) 4 It*i...t3_iats+i...tm = 2 - / sta g ti...tQ_ita+i...tm 

a = l 

(a) 

holds, where the tensors g have the form of the tensor sum of products of functions 
and the metric components. 

If we substitute (12) to (10) we get the system of equations 
m 

(13) 2-f stV-T.i....ff.MH-+i •••--» = 0 
(7 = 1 

<r a a 

w h e r e Tixi2...im = Ptit2...tm + 3ixi2...im and gtlt'2...tm are t h e tensor s u m s of p r o d u c t s of 
functions with the metric components. Applying the differential operator R(Xy Y) on 
(13) and using its properties we obtain 

m a 

(14) £(£,•-& - Ua9i«i)' Tti . . . t ._1^+ i . . ,m = 0. 
< T = l 

Let us suppose that T 7- 0. Then there exist vectors a'1, a t2, . . . , a tm such that 

-Tut2....-mf f • • • ^ m 7 - 0 -

According to Lemma 1 we have £ a£ a 7- 0. Therefore, contracting (14) with ak a12 • • • a tm , 

we deduce that rank||<7ij|| < m which contradicts the assumption m < n. This means 

that T — 0. Therefore T is the tensor sum of products of functions on Vn and the 
metric components. 
R e m a r k s . It is clear that Theorems 1 and 2 are not valid in a general case for m < n. 

5. O N T - S E M I S Y M M E T R I C K E N M O T S U MANIFOLDS 

A (2n + l)-dimensional Riemannian space V2n+i is said to be a Kenmotsu manifold 
if it admits a vector field £, a 1-form n and an endomorphism <j) of its tangent bundle 
TM for which: 

1) (^J7?'>Ci9) is metric almost contact structure, i.e.: (f)2 = id + n ® £, J7(£) = 1, 
<tf _ 0, r, o y> = 0, 5(v»Jf, ̂ Y) = g(X, Y) - v(XHY), r,(X) = g(X, £), and 

2) ( V ^ ) Y = -g(X,<pY)t - v(X)<pY, Vxf = X - ri(X){ for any X,Y e TM, 
where V denotes the Riemannian connection of g. 

Kenmotsu manifold is an example of almost contact manifold, which is not a K-
contact (and hence not a Sasakian-manifold), as shown by Kenmotsu [6]. 

T.Q. Binh, U.C. De, L. Tamassy and M. Tarafdar [1], [2] studied Ricci-semisymme-
tric and semisymmetric Kenmotsu manifolds. In Kenmotsu manifolds there exists a 
unit vector field £ satisfying the condition Vx£ = X - n(X)^ where n(X) = g(X^). 
By simple observation we convince ourselves that this vector field is concircular, but 
it is not convergent. 
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Therefore we can apply the results of Theorems 1 and 2 on Kenmotsu manifolds 
and in this way we can generalize the results of [1] and [2]. On the base of the above 
Theorems we get 

Theorem 3. Let T be a m-covariant tensor field in a Kenmotsu manifold Vn (m < n) 
and let £ be a concircular vector field on Vn which generates this manifold. For a 
Kenmotsu manifold the following conditions are equivalent: 

1) R(X,Y) oT = 0for any X,Y E TM} 

2) R(X,{) oT = OforanyXe TM. 
3) T is the tensor sum of products of functions and the metric components. 
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