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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 41-66 

SUPERSYMMETRY, A BIASED REVIEW 

U. LINDSTROM 

ABSTRACT. This set of lectures contain a brief review of some basic supersymmetry 
and its representations, with emphasis on superspace and superfields. Starting from 
the Poincare group, the supersymmetric extensions allowed by the Coleman-Mandula 
theorem and its generalisation to superalgebras, the Haag, Lopuszanski and Sohnius 
theorem, are discussed. Minkowski space is introduced as a quotient space and 
Superspace is presented as a direct generalization of this. The focus is then shifted 
from a general presentation to the relation between supersymmetry and complex 
geometry as manifested in the possible target space geometries for N = 1 and N = 2 
supersymmetric nonlinear sigma models in four dimensions. Gauging of isometries 
in nonlinear sigma models is discussed for these cases, and the quotient construction 
is described. 
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1. INTRODUCTION 

In these lectures I try to give a physicists picture of (some aspects of) supersymme-
try and its representations. Since the majority of the audience at the meeting were 
mathematicians, I presented a lot of background that is normally taken for granted. In 
taking this course, the choice of what to include and what to leave out becomes even 
more difficult than is usually the case. Ideally, had I been able to request a similar con­
tribution from a mathematician I myself would have wanted a translation table of the 
kind "When they say... they mean...", but the present article is no such thing. In the 
end, in the written version, I have included additional explanations wehere I feel that 
a few words may clarify the presentation substantially for a newcomer to the subject. 
One problem is, of course, that I do not know what points may create difficulties. I do 
not want to make too much of the "clash of cultures", but it is abundantly clear that, 
e.g., the use of indices creates one communication problem. Rather than modifying 
the presentation to conform with an index-free notation, however, I have kept to the* 
physicists notation in a hope that a reader may use the text to understand how indices 
are used to keep track of transformation properties in the physics literature. 

I must stress that the title I have given my contribution is correct; I have only in­
cluded the material I thought I needed to get to the relation between supersymmetry 
and complex geometry as soon as possible without totally sacrifying the general pic­
ture. This is also reflected in my list of references, which is sadly inadequate. However, 
I believe it includes enough standard texts ([1], [2], [3], [4]) that the reader may find 
his way to all the basic sources through them. A couple of the general references are 
further particularly suited for a mathematical audience, namely [5] and [6]. 

The lectures are divided into two parts, introductory material (Sections 1, 2 and 3) 
and the relation between supersymmetry and complex geometry (Section 4). For the 
first part I draw from numerous sources, consiously and subconsiouly. For the second 
part my main material is the three articles [7], [8] and [9]. 

2. RELATIVISTIC SYMMETRIES 

References for this section are the text books and articles referred to in the in­
troduction along with any good book on quantum field theory such as [10] or [11]. 
Also the (old) review articles [12] and [13] may provide useful background. If one is 
more generally interested in graded algebras and their representations samples of the 
possible references are [14], [15], [16], [17], [18], [19], [20], [21]. 

2.1. The Poincare algebra. In theoretical high-energy physics we study the motion 
of particles, strings and branes in various ambient space times. This means that we are 
interested in manifolds with a range of dimensions, from zero spacelike and one timelike 
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(the particle) to 25 spacelike and one timelike (the target space1 of the bosonic string). 
In all these dimensions we mainly focus on relativistically invariant models, however. 
Thus the fundamental structure is given by the (tangent space) group ISO(D — 1,1), 
the .D-dimensional Poincare group. The generators of its Lie-algebra iso(D — 1,1) 
satisfy the following algebra 

(1) [Pa,A] = 0 

[Mabi Pc] = -rjc[aPb] 

[Mab, Med] = -r)c[aMb]d - c <-• d, 

where2 Pa generate translations, Mab generate Lorentz transformations, and rj is the 
Minkowski metric whose relation to the spacetime metric g is 

(2) ds2 = gmndXmdXn = rjabe
a

rne
b

ndXmdXn, 

where the line-element ds2 is expressed in using the coordinates Xm in the space-time. 
The one forms ea = emdXm are often called "viel-beins" in the physics literature. As 
a further note on notation, "curved" (space-time) indices are taken from the middle 
of the alphabet, tangent space indices are from the beginning of the alphabet and the 
summation convention is used (repeated indices are summed over). 

The algebra (1) shows that Pa transforms in the fundamental representation of the 
Lorentz group (LG), i.e., as a vector, and that Mab itself transforms as an (antisym­
metric) second rank tensor. 

One is typically interested only in the proper Lorentz group, SO(D — 1,1)T, given 
by matrices A : ATrjA = 77, detA = +1, AQ > 0. This semi-simple Lie-group is not 
simply connected. Its universal covering group is Spin(D — 1,1). An element in the 
fundamental representation of this group is called a spinor and we will denote it by 
^o £ Ts- All (finite dimensional) representations of the LG may be obtained from 
tensor products Ts ® Ts ® Ts..., a useful fact that, e.g., later allows us to use pairs 
of spinor indices to represent vector indices. 

The representations of the LG fall into two distinct classes, those with integer spin, 
the bosons, and those with half integer spin, the fermions. To be more precise, the 
names refer to the elementary particles that transform in the corresponding repre­
sentations. Fermions are the constituents of matter and bosons govern the forces in 
nature. The obey different statistics; many bosons can occupy the same state (cf. 
Bose-Einstein condensate) while only one fermion can be in a particular state in the 
Hilbert space (the Pauli exclusion principle). 

2.2. Minkowski space M. A useful way of representing the Poincare group is in 
terms of fields3 over Minkowski space M, with the generators of the algebra (1) de­
scribed by differential operators acting on these fields. The Minkowski space itself 

1Target space and ambient space-time is synonymous in this text. 
2We use the bracket notation to indicate symmetry or skewness, i.e. (ab) denotes symmetrization 

and [ab] denotes antisymmetrization, with no combinatoical factors. 
3I am using the word "field" in the standard physicist way, meaning (usually C°°) functions. 



4 4 U. LLNDSTROM 

may be thought of as the quotient of the Poincare group with the Lorentz group 

(3) ISO{D-l,l)/SO{D-1,1). 

Since this is analogous to the way in which Superspace is defined in subsection 3.1, it 
pays to look at the construction in some detail in this simpler context. 

A point in M is parametrized as 

(4) h{x) = e ix°Pal, 

and the group acts by left multiplication 

(5) h{gx) = h{x') = gh{x)modSO{D - 1,1). 

For a translation g = el*°p°, with parameter f, this yields 

(6) gh = e^
ap»eixOPo = e ^ ° + ^ P a + - ^ p ' x P ] + " 

= c-(«
a+ea)Pa 

= h{x'l 

where the Baker-Campbell-Hausdorff (BCH) formula becomes trivial since translations 
commute, as seen in (1). A translation thus induces the following coordinate change: 

(7) x'a = xa + £a, =><Sxa = r , 

where the last relation gives the infinitesimal transformation. The corresponding cal­
culation for a Lorentz transformation g = eiufabMab with parameter u^ is less trivial 
since the generators P and M do not commute. The BCH formula thus contributes 
nontrivially. One also has to make use of the quotient structure when calculating 

(8) h{x') = gh = e^ahMabeixCPc 

_ ei"
abMabeix

cPce-iu
abMab 

= ex
c(e^MPce-^M) 

= e*e(OS-°. 

where all operations are performed modSO{D — 1,1). The induced action of on the 
coordinate is thus 

(9) x'a = x V ) a =» Sxa = xbuja . 

2.3. Fields over M.. Now that we know howe the Poincare transformations act on 
the Minkowski coordinate x, we find representations in terms of (scalar) fields / by 
requiring that they transform as 

(10) /'(*') = /(*)• 

Under an infinitesimal transformation x -> x + 5x, the fields thus obey 

(11) 6f(x) = f'(x) - f(x) = -6xadaf(x), 

where da = 9/9xa, and (11) defines what we are to mean by the infinitesimal variation 
of a field. Inserting the infinitesimal coordinate transformations in (7) and (9), we 
find the action of a translation or a Lorentz transformation on a scalar field. We 
emphasized "scalar" to indicate the alternative possibility that / also transforms in 
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some matrix representation of the Lorentz group. E.g., it may transform as a Lorentz 
vector, which we indicate by a vector index 

(12) ^ / a = [ ^ - M , / a ] = ^6 c77a[6/c ], 

(cf. the transformation of Pa in (1)). If it transforms as a spinor instead, we endow / 
with a spinor index, and a Lorentz transformation reads 

(13) Sufa = [w-M, fa) = ^{T^U, 

where the Dirac algebra is 

(14) {r f l >r6} = 2tj f l 6.i, 

and 

(is) r ^ = - r [ a r b ] . 

Combining (7), (9) and (11) with the possibility of a matrix representation and defining 

(16) 6f = i[u. M + t-PJ], 

we see that we may represent the generators of ISO(D — 1,1) as operators on the 
fields i / as ; follows: 

(17) Pa - iдa 

мab - 2X\*дъ\ ~~ tM, 

where M i is the appropriate matrix гepгesentation. 

2.4. Internal symmetries. In addition to the transformation properties under the 
LG described in the previous subsection, the fields may also transform in some repre­
sentation of an internal symmetry group Q. We indicate this by an additional index 
i on the fields. Thus, e.g., fl(x) is a spinor field which transforms in some matrix 
representation of £, 

(18) Sxti-XiBiYjfi, 
where A is a transformation parameter which is taken to depend on x e M for gauge 
symmetry. Popular internal (gauge) symmetry groups are Q = U(\) (electro mag­
netism), Q = SU(2) (weak interactions) and Q = 577(3) (strong interactions). 

It is of course tempting, in the name of unification, to try to find a larger group 
which encompasses both the Poincare group and the internal symmetry group in a 
non-tivial way. All such attepts came to an halt in the late 1960's due to the famous 
"No-Go" theorem of Coleman and Mandula (CM) [22], where the requirements of a 
relativistic quantum theory are used to limit the possibilities. In brief (leaving out 
some technicalities) it states that if 

(1) the S-matrix is based on a local relativistic field theory in space time, 
(2) there are only a finite number of different particles associated with one particle 

states at a given mass, 
(3) there is an energy gap between the vacuum and the one-particle states, 

then: 
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The most general Lie-algebra of symmetries of the S-matrix has, gene­
rators Pa, Mab and £?/, where the P/'s are Lorentz scalars and belong 
to a compact Lie-group Q. 

The setting for this theorem is really D = 4, so the conclusion is that the group 
structure has to be 5O(3,1) ® Q. 

2.5. Supersymmetry. In the 1970's, with the advent of supersymmetry, it was re­
alized that there is a loop-hole in the CM theorem, and it was extended by Haag, 
Lopuszanski and Sohnius to allow for Z2 graded Lie-algebras [23]. The result may be 
most simply stated by giving the most general super-algebra allowed (in D = 4). In 
addition to the Poincare algebra (1), we also have 

(19) [Mafc,£7] = 0 

[Pa,-9/] = 0 
[BI,BJ]=ic/fBK 

Wa.OJ} = ^(TaC)aPPa + Ca0Z^(T5CUY^ 

[Mat>,Qa] = \(TahWp 

[Bl,Qa] = miJQa 
[Pa,OL]=0 
[0,Z] = [0,Y]=O, 

where the three first realations say that the generators of the group 4 Q = 0(Af) are 
Poincare scalars, in accordance with the CM theorem. The radically new structure is 
carried by the JV odd generators Q. As seen from (19) they are translationally invariant 
Lorentz spinors that carry a non-trivial representation of the internal group Q. They 
come together with the anticommutator { , }, under which they close to a translation 
plus terms that depend on the central charges Z and Y. (The last relation in (19) is 
meant to indicate that Z and Y commute with all generators.) The central charges 
are antisymmetric in their Q indices, and C, finally, is the charge conjugation matrix. 

The spinors in (19) are Majorana spinors, i.e., they obey the "reality condition" 

Q = CQT. In general, in D dimensions the spinors have 2'"-"- complex components 
(where square bracket denotes 'integer part of). Depending on the dimension D, 
one may impose "reality" and/or chirality conditions on the spinors according to the 
following table (adapted from [24]) 5 

4Note that the internal group has to be 0(M) or a subgroup thereof, c/j are its structure constants. 
5The table refers to space-time signature (-++...). In (-++... +-), which is sometimes considered, 

there are other possibilities. Note also that we are discussing conditions over and above the Dirac 
equation which is always assumed for the spinor fields. 
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D 11 10 9 8 7 6 5 4 3 2 
Spinor type M MW M W D W D W M MW 
Real spinor dim 32 16 16 16 16 8 8 4 2 1 
Real/Complex R R R C C c c C R R 
N 1 2 2 2 2 4 4 8 16 (16,16) 

1 1 1 1 2 
1 

2 
1 

4 
2 
1 

8 
4 
2 
1 

(8,8) 
(4,4) 
(2,2) 
(IД) 

Table 1 

In this table, M denotes Majorana, D denotes Dirac and W denotes Weyl conditions. 
The Majorana condition was given above, Dirac just means a Dirac spinor, i.e., no 
additional constaraints, and the Weyl condition in even D dimensions is 

(20) ф = P_ф = - ( 1 • Г в + i tø . 

where ip is called a Weyl spinor and YD+I is the totally antisymmetrized product of 
the D Dirac-matrices (suitably normalized to make P_ a projection operator). In four 
dimensions one may impose either the Majorana or the Weyl condition, as we will see 
below. In two dimensions, finally, by (p, q) we have indicated the possibility of having 
separate right and left moving supersymmetries. 6 

The reader may ask what restricts the entries in Table 1 to D < 11 and/or N < 16. 
The reason is as follows. We know what equations various spins should obey, and 
we also know the spin content of the irreducible representations of spersymmetry (see 
subsection 3.3). For N = 8 in D = 4 the spin content is (2,3/2,1,1/2,0), whereas 
higher N will necessarily contain spin > 2. But "higher spin" field theories (with a 
finite number of higher spin fields) are in general unphysical as interacting theories. 
Since N = 8 i n D = 4 i s N = l i n D = l l , this sets the limit. 

2,6. D = 4 Supersymmetry. In D = 4 we illustrate explicitly the equivalence be­
tween Majorana and Weyl spinors as well as how to build the tensors from spinor 
representations. 

In D = 4 the Weyl projection operators are given by P_ = | (1 ± Ts). We utilize 
the isomorphism Spin(3,1) « SX(2, C) to introduce a convenient notation for the 
Weyl spinors. Let \I>Q now be a spinor that transforms with the SX(2,C) matrix Nf, 
and denote by # a a spinor that transforms in the conjugate representation according 
to Nf. Introducing also the two sets of 5L(2, C) matrices aa = (1,__) and aa = (1, —__) 
with a being the Pauli matrices, we use a representation of the Dirac algebra where 

(21) 
. _ / 0 aa \ 

a~\aa 0 ) • 

The relations between a and a may be stated as 

(22) (áa)
aa = ťpeap(oa) 

6One may in fact introduce this possibility also, e.g., in D = 6 and 10. 
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where 

(23) (ea/3) = ( } - 1 ) = (e^) = -(V*) = - ( ^ ) . 

In this representation 

(24) 0 - (?J - ) -
and a Majorana spinor may be written 

(25) * = ( « - ) • 

It is a straightforward matter to convince one-self that (25) indeed satisfies C^T = $, 
and that 

(26) / > + * - - ( * « ) 

(27) P _ * = ( ^ ) , 

thus explicitly demonstrating the equivalence between the Majorana and Weyl rep­
resentations in four dimensions. In fact, in four dimensions the latter representation 
is often preferred. In that context it is also convenient to represent vector indices as 
pairs of spinor indices according to 

(28) Va -> (aa)aaVa = Vaa. 

This notation becomes particularly useful when discussing representations of susy 
in superspace. 

3. SUPERSPACE 

The main references for this section are the books [1], [2], [3] and [4], but also the 
review article [24]. 

3.L Induced representation. Superspace is defined via the natural generalization 
of the Minkowski-space construction described in Section 2.2 above. Denoting the 
graded (N = 1) Poincare group by SISO(D-l,l) and specifying to D = 4, the relevant 
part of the superalgebra reads 

(29) {Qa,Qa} = P«« 

[Ma/3,QJ = -ey{aQl)) 

[Map,P^] = -^iaPm 

[MQ/3, Ml6] = ^{aMp)5 + 7 ~ <*), 

where the antisymmetric generator of Lorentz transformations, Mab, is represented by 
its irreducible (symmetric) spinor parts according to 

(30) Mab « Maá(3p = iea(3Máp + ieá^Ma0. 
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Prom the algebra we exponentiate to get the group elements. This requires introduc­
tion of Grassmann valued (anti commuting) spinor parameters. 7 A general group 
element is thus written 

(31) g = e^p^Q^M\ 

where we use the short hand e • Q for eaQa + ?*Qa, and u • M for uaS3Map + u)af3Ma^ 
In analogy with our discussion of Minkowski space M> we parametrize a point in the 
neighbourhood of the identity in S7£0(3, l)/50(3,1) by x and 0 according to 

(32) h(x,9) = h(ZA) = ei(x'p+$Q\ 

(where ZA = x°,0a,0a), and find the action on x and 0 through h(Z') = g • h mod 
S0(3,l). We then represent the generators as differential operators on superfields, i.e., 
on funtions <f>(z). We first state the result and then supply the necessary explanations. 
The operators are (cf. (17)) 

(33) Paa = i^~r=idaa CtOĹ dx{ 

p\ 1 1 

Qc = iQ^ + ̂ daa = ida + -e"daa 

Q* = f a P + 2rdai* - iB°+ 2e°d™ 
% 

Here the ̂ 's, like all the spinors, are anticommuting, which means that derivatives with 
respect to 0 is defined as Berezin integrals/derivatives [25]. We take the derivatives 
to act from the left according to da0^ = 6%, and the corresponding integration is 
/ d0a0P = 6%. There is a wealth of results on the geometry of superspace, but we shall 
only need a few items. 

The covariant derivatives are differential operators D that anti-commute with the 
supersymmetry generators {.D, Q} = 0. They are 

(34) Da = da+
l-0adaa 

Da = 8a+
 l-9adaa) 

and their existence might have been anticipated from the fact that left and right 
multiplication commutes and that the Q's were defined using left multiplication. From 
the point of view of superspace geometry their (anti) commutation relation 

(35) {Da,Da} = idaa, 

signals that even "flat" superspace has torsion. The usefulness of the .D's lies in the fact 
that they anticommute with the Q's, since this allow us to impose invariant conditions 
on the super fields. 

7This exponentiation with parameters that are nilpotent is not mathematically well defined. For 
this reason, mathematicians prefer to extend the functions on the previously discussed quotient by 
allowing them to depend on Grassmann parameters instead. Operationally, I believe the net result 
amounts to the same thing. See, e.g., [6] for a stringent definintion of Superspace from this point of 
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3.2. Superfields. The differential operators (33) allow us to represent supersymmetry 
on fields oveer superspace M^ as we represent the Poincare group on fields over M 
(here (p,q) denotes p bosonic and q spinorial coordinates). For example, using the 
explicit form of the Q's given in (33) we evaluate the anticommutator of two Q's 
acting on a scalar superfield <f>(z) 

(36) {Qa,Qa}<t>(z) = idQQ<f>(z). 

From the point of view of functions on Minkowski space, a superfield is a collection 
of ordinary fields over M. This is seen if we make a formal Taylor expansion in the 
Grassmann coordinates 0 of, e.g., a real (so called vector) superfield 

(37) <f>(z) = c(x) + eaxa(x) + eaxa(x)-e2M(x)-^M(x) + eaeaAa^ 
-e2ea\a(x) - e2ea\a(x) + e2e2B(x). 

Although the Taylor series quickly terminates in this case (N = 1 in four dimensions), 
it is more economical to define the component fields using the covariant derivatives 
(34). With | denoting "the 0 independent part of, the above component fields are 

(38) <j>(z)\ = C(x) Da<j>(z)\ = Xa(x) Da(z)\ = xa(x) 

[Da, Da)<j>(z)\ = Aaa(x) D2cj>(z)\ = M(x) D2<t>(z)\ = M(x) 

-D2Da(j>(z)\ = \(x) D2Da<j>(z)\ = \(x) D2D2<j>(z)\ = B(x), 

where D2 = DaDa. The "supermultiplet" of M fields represented by (j)(z) and trans­
forming into each other under supersymmetry transformations is thus a collection of 
scalar, spinor and vector fields 8 

(39) (C,X,X,Aa,M,M,\\,B). 

In analogy to (16), a supersymmetry transformation of a superfield is 

(40) 5(t>(z) = i[taQa + €aQa,<t>}. 

To illustrate the result on the component fields, we first introduce the concept of a 
chiral superfield, which is simply a (complex) superfield $ which satisfies 

(41) Da$ = 0. 

As mentioned earlier, this is a covariant condition, i.e., Da6$ = 6(Da$)y as is seen 
from (40) and {Q, D} = 0. We define the components of $ as follows 

(42) $ | = A(x), Da$\ = Aa(x), D2$\ = F(x). 

With, correspondingly, 

(43) 5$\ = 5A(x)} DJ$\ = 6\a(x), D26$\ = 5T(x), 

we find the component transformations 

(44) 5A = -ea\a, 6\a = taT - %&daaA, 5T = -it&lK. 

In fact, starting from these transformations, one may show that the algebra clooses 
on all the fields. 

8In a physical model, not all of these fields will be dynamical. They have different mass-dimensions 
and some of the fields will be auxiliary. 
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3.3. Representations. In the previous subsection we saw how supersymmetry may 
be represented on superfields. In particular, a chiral superfield was seen to be a 
smaller representation than an arbitrary superfield (it has fewer component fields). 
The question thus arises of what are the irreducible representations of supersymmetry 

Staying with the superfields in four dimensions, we first give the projection operators 
that project onto the irreducible superfields. This is in analogy with the way a Lorentz 
vector Va is split into irreducible pieces according to 

(45) Va = [(UL + UT)V}a, 

where 

(46) (UL)b
a = d~2dad

b (UT)b
a = d-26aWdc, 

(such that n L + n T = 1). Explicitly 

(47) (ULV)a = d-2da(&Vh) = d~2daS, (UTV)a = d-25b
aFd[cVb] = d-2FFca, 

where S and F are irreducible representations of the Poincare group. The correspond­
ing operators on superfields are (for N = 1 in four dimensions) 

(48) n0 = d~2D2D2 

III = -d-2DaD2Da 

n2 = d~2D2D2, 

such that n 0 + III + Il2 = 1. This is not quite sufficient, ITi has to be further specified 
as IIi±, where 

(49) U1±ip = -d~2DaD2Da^ + $ . 

Then an arbitrary (complex) scalar superfield $ contains a chiral superfield, two vector 
superfields and an antichiral superfield (in that order) according to 

(50) $ = no* + ul±^($ + *) + n2$, 

thus displaying the irreducible parts of the superfield. 

Another question regarding representations of supersymmetry has to do with the 
particle content and representations as states in a Hilbert space. We will use Wigners 
"little group" method to find those. 

The N-extended supersymmetry algebra in four dimensions involves the anticom-
mutator (see (19)) 

(51) {<?„%} = 26* (YaCUPa. 

For particles with mass m 7-- 0 we choose Pa = (-m, 0,0,0). Rescaling the charges, 
Q —» Q, by a factor (m)~a we have the Clifford algebra 

(52) { < t ^ } = ^,;t3, za = l , . . . ,4N . 

Rewriting this in Weyl notation, 

(53) {<£,<%} = {<&,<%} = 0 

{<%,<%} = Ma* . 



52 U. LDNDSTRÓM 

we recognize a set of 2N pairs of annihilation and creation operators, Qa = aa and 

Qa = aa\ Introducing the Clifford vaccum |0) such that aa\0) = 0, a general state is 

(54) |nn, ni2, . . . , niAr,n2i,...,n2N) = Yl (at*&)na*l0)> 
a=l,2 i=l,2,...N 

where nai denotes the occupation number of the state created by aUa. There are 
clearly 22N such states. For example, when N = 1, the possibilities are 

(55) 10), o^lO), aV^lO) = —t^of • 0*10), 

representing a Lorentz scalar, a spinor (two states) and a scalar respectively. 

The massless representations are similarily derived. Starting from the massless four 
momentum Pa = (—P, 0,0, P), we have the anticommutation relation 

(56) {<&,<%} = 2 ^ , 

where 

(57) г«ß- 2P 
( ! ! ) • 

In a way analogous to the massive case, this leads to a set of annihilation and creation 
operators, a% and a}1 which step down and up half a unit in helicity and satisfy 

(58) {a\a^} = Sij. 

Again we introduce a Clifford vacuum which is annihilated by a*, and create the states 
with a*1. Since we only have one set of operators for each i, instead of two, there are 
2^ states in the massless representation. 

With JMAX = J depending on the helicity of the Clifford vacuum, we find the 
following table of massless states and their multiplicity for various number of super-
symmetries N. 

N=He- 1 2 3 4 5 6 7 8 
licity 
J 1 1 1 1 1 1 1 1 

н 1 2 3 4 5 6 7 8 
J-l 1 3 6 10 15 21 28 
J-2 
J 2 

1 4 10 20 35 56 
J-2 1 5 15 35 70 
J-5 
J 2 

1 6 21 56 
J-3 1 7 28 

J-l 1 8 
J-4 1 

Table 2 

The multiplicity is simply the binomial coefficient 

(59) (Ï) 
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for the totally antisymmetric product of k creation operators. One observes from 
Table 2 that for N = 8 we need a J of at least 2, for N = 4 J has to be at least 1, for 
the smallest (CPT conjugate) multiplet with helicities J, J. For other N, e.g, for 
N = 1, we cannot choose a J to satisfy CPT conjugation, and for a physical theory 
we have to add the charge conjugated states. 

4 . SUPERSYMMETRY AND COMPLEX GEOMETRY 

The complex geometry in this section is from the books [26], [27], and the back­
ground material relating to supersymmetry is found in [28], [29], [30]. The main part 
of the section, however, is from the articles [7], [8] and [9]. 

4.L Notation. In this subsection we collect some definitions and notation needed 
later. 
For any d = 2n dimensional real manifold M with coordinates xl, we may locally 
introduce complex coordinates as 

(*n\ i f zA = xi + ixi+n \ . 

A mixed second rank tensor Jj such that Jx
mJ™ = — 1 is called an almost complex 

structure on M. A metric g^ which preserves Jj 

(01 J Jj9imJn
 = 9jny ^ Jj9in = Jjn = Jnj, 

is called an almost hermitean metric. To make everything globally well defined and 
ensure that there exist canonical complex coordinate patches related by holomorphic 
transition functions, integrability conditions are needed. They may be phrased as the 
vanishing of the Nijenhuis tensor 

(62) .v i/ = ^ a w ^ + jn
fca[3^ = o. 

The integrability conditions remove "almost" from the definitions above. In the canon­
ical coordinates the complex structure takes the form 

and the components gAB and gA§ of the hermitean metric vanish. 

If we further require the fundamental 2-form 

(64) u = Ji
jgikdxj A dxk = 2igAAdzA A dzA

y 

to be closed, the manifold is Kahler. In such a manifold, the Levi-Civita covariant 
derivative of the complex structure vanishes 

(65) ViJj5 = 0, 

and the metric has a Kahler potential K 

(66) 9AA=dpw' 
The converse is also true, if VJ = 0 then the Nijenhuis tensor vanishes and g = ddK. 
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When the manifold carries three covariantly constant complex structures J^ y X = 
1,2,3, and these complex structures satisfy the SU{2) algebra 

(67) J\x)ijf)k = -6XY6* + ^YZJ\Z)\ 

the geometry is hyperkahler. 
The various spaces described in this section are also characterized by their holonomy. 

The holonomy group Hp at a point p € M is the subgroup of the tangent space group 
obtained by paralell transporting vectors around closed loops in M. The restriction 
to contractible loops is the restricted holonomy Wp/. When M is simply connected 
Hp w Hpf and is always a subgroup of GL{d, R). When T is the Levi-Civita connection, 
the holonomy group is further a subgroup of 0(d), so a subgroup of 0(2n) for a complex 
manifold. For a Kahler manifold it is smaller: E.g., if M is Ricci-flat the holonomy is 
C SU{n). 

4.2. Nonlinear sigma models. A link between supersymmetry and complex geom­
etry was first established in the context of supersymmetric non-linear sigma models, 
(NLSM's), [29], [30], [28]. A sigma model is a map from a manifold M, oftent taken 
to be space-time, and a Target space T 

(68) $A : M -+ T, 

mapping the coordinates 

(69) xa G M -+ T 3 $A{x). 

This map is obtained by extremizing the action 

(70) 5 = f dx GAB{$) da$
Adb$

Br)ab
} 

which gives the equation 

(71) r)abda$
BVBdb$

A = 0, 

with 

(72) VAVB = dAVB + TA
A

cV
c, 

the target space covariant derivative. The Levi-Civita connection Y is formed from 
the target space metric GAB, 

(7 3) rAC = 2GCD(GD(A>B) ~ GAB,C)-

To get an indication of how the relation between NLSM's and complex geometry we 
look at an example: 

The complex projective space 

(74) CP(n) = U{n -I- 1)/U(n) x C7(l), 

is Kahler. Now U{n + 1)/U{n) x 17(1) may be thought of as the surface 
n+l 

(75) uAeCn+\ ^ u V = l, 
/= i 
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in C n + 1 . The space CPM is thus given by the equivalence class 9 

(76) (-' n ^ w e V . - . B ^ 1 ) , 

with uA as in (75). How may we describe this in terms of a NLSM? We want the model 
to incorporate the structure of the manifold and to also provide us with a metric on 
that manifold. If we promote the coordinates in (75) to functions from some space M 
and take the sigma model action to be 

/

n+l 

dxdau
A(x)dauA(x); J^uA(x)uA{x) = *> 

I=l 

we have a start. But we still have to encode the independence of phases (76) at each 
point. In physics terms this is the question of how to promote the rigid U(l) symmetry 
to a local one, to gauge a sigma model. It entails introducing a gauge field Aa(x) via 
minimal coupling 

(78) S-+SG= f dx(da + iAa(x))uA(x)(F - iAa(x))uA(x). 

Next we eliminate A by extremizing SG. This does not break the gauge invariance, it 
means that we choose a particular A expressed in the other fields. In terms of that 
particular A 

(79) SG^ fdx (дай
АдРиА + ±{йл да иА)(йв Т ив)) . 

Finally, we rewrite this in coordinates that solve the constraint in (75) 

(80) ua= * V 1 , -4 = 1,...,n 
y/l + Z - Z 

un+1 = 
1 

v!l + z • ž ' 

where z • z = zAzA, A = 1 , . . . , n. This gives 

<81> W^T^t^-irSi)^5 

We recognize the Fubini-Study metric on C P ^ . The corresponding Kahler potential 
is K = ln(l + z- z). 

This example is our first encounter with a quotient construction, which will play an 
important role later. 

9There are only phase independence left from the projective requirement due to the constraint 
in (75). 



56 U. LINDSTROM 

4.3. The bosonic quotient construction. In the example in the previous subsec­
tion, we start from the Kahler manifold Cn+1 with potential K = uAuA and construct 
another, C P ^ as the space of gauge orbits by "gauging the isometries" and choosing 
a particular gauge potential that extremizes the action.10 These ideas generalize. 

Suppose we have a NLSM (70) with target space T: 

(82) S = Jdx GAB($) da$
Adb$

Brja\ 

and an isometry, i.e., a vector field k($) such that 

(83) 69A = A«fc?(«) = [Xqkf ($)d/d$B, $A] = £A.fc** C\.kGAB = 0, 

where C\.k denotes Lie derivative along fc. Since the variation of the action (82) is 

(84) 5S = J dx (dMdh$BrfhC\.kGAB), 

it follows that an isometry is an invariance of the action S. In a general situation, the 
isometry will be non-abelian 

(85) [**,**] = <£*-.-

corresponding to a non-abelian isometry group Q. 

We gauge the isometry (83) by substituting 

(86) da$
A - • V a $ A = dM - Aq

ak
A = d a$A - [Aq

ak
Bd/d$B, $A] 

(cf. (78)). This results in 

(87) S->SG= [dx GAB($) V a $ A V 6 $ V 6 . 

Proceeding as in the example, we eliminate A by extremising SG, which gives 

(88) Aq
a = U-^GABkAda^

B, 

where 

(89) Mqp = kAGABkB, 

and 

(90) SG= fdx (GAB - WlpqkpAkqB) da$
AF$B = J dxGABda$

AF$>B. 

It is easy to see that the new target space metric GAB projects onto the original 
manifold modulo the k-orbits, i.e., it is a metric on the quotient space T/Q. 

The quotient construction described above gives a new target space geometry (the 
coset) starting from one which has isometries. It remains to see under which conditions 
the two geometries are of the same typer (as in the Cn + 1 -» CP^n^ example). In 
particular we shall be interested in when the supersymmetry of the original NLSM 
is carried over to the quotient. To that end we first need to study supersymmetic 
NLSM's. 

10We are glossing over the presense of the constraint in (75) to bring out the essentials. 
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4.4. N = 1 Supersymmetric nonlinear sigma models. We want to find a su-
persymmetric extension of (70), and first need to introduce actions in superspace. 
Schematically, an action is written 

(91) S= I'dxd0C{9,Da$,...), 

where the measure dxdQ will depend on the kind of superspace under consideration. 
Explicitly, for M^^ the full superspace measure is dpxdq6. (We will mostly consider 
(p>q) = (4,4).) As introduced in subsection 3.1, the integral over 6 is equivalent to a 
derivative, /dO = d/69 = DQ\, a fact that we will often use. E.g., the invariance of 
this action under a susy transformation may be shown as follows (recall that | denotes 
"the 0-independent part of") 

(92) SS = J dxdOSC = (dxdOe >QC= (dxDqe • QC\ 

= (dxe • QDqC\ = (dxe . DDqC\ = 0, 

where the last relation = 0 means "= 0 up to totaPderivatives", and follows from the 
supersymmetry algebra for a product of more than q .D's. 

Specializing to four dimensions, the superfields $ that contain scalar component 
fields but not vectors are the chiral superfields Da$ = Da® = 0. A general action in 
superspace for a set $A of such fields is 

(93) S= ( d4xd20d2(9K($A, $A)} 

where we use Weyl spinor notation. Keeping the definition (42) in subsection 3.2 in 
mind, we expand the action, again exploring the relation between 0-derivatives and 
integrals 

(94) (dxxd20d20K($AM) 

= ( dAxD2D2K\ = ( dAx (-2KABdAAdAA + . . . ) 

where indices on K denote derivatives with respect to $'s and where only the purely 
bosonic content is displayed in the last equaility. This shows that as a bosonic sigma 
model, we are dealing with a Kahler target space with Kahler potential K and metric 
KA& (ignoring the - 2 , which is due to our conventions). In keeping with this observa­
tion, we rename the lowest component in (42), AA -» zA (and A —• •?/!), and interpret 
the remaining terms in the expansion geometrically. We find 

(95) JdAxD2D2K\ = (dAx{-2GAB(dzAdzB-i¥d^B-idi;A^-^A^B) 

+rABc(FC$B • ¥ - 2i^cdzBi>A) 

+rABc(^B • ¥ + 2i^AdzB^c) 

+(RCADB + GEEYCDZTB-DE)^D . ipc$B . ¥} , 
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where we have introduced the curvature RCADB
 a n d connection TABC, TABc for the 

metric GAB. The spinorial contractions are indicated by '•' or are the obvious ones. 
Eliminating the auxiliary field ̂ finally gives the fully geometric form of the component 
action 

(96) I dAx {-2GAB (dzAdzB - iil)AVp - zDVA<P) + RCADB^D • i>ci>* • ¥} , 

where the Fdzip'iji terms are incorporated in the derivative terms TpV^. 
To conclude this section, a supersymmetric NLSM in four dimensions necessarily has 

a Kahler target space T . The canonical complex coordinates are the lowest components 
of the chiral superfields. Integrability etc is thus manifest (locally). 

4.5. Isometries in Kahler spaces. In complex coordinates, the isometry (83) be­
comes 

(97) SzA = XqkA 

SzA = XqkA. 

For a holomorphic isometry k = k($) and k = &($), and the requirement that 
they leave S in (93) invariant means that they have to leave K invariant up to a 
Kahler gauge transformation 

(98) 6K($, $) = X<(KAkt($) + KAkf($)) = A«(r.,(*) + *J.(*)). 

The right hand side of (98) will give zero in the superspace integral due to the 
(anti)chirality of the fields. In fact, the condition (98) for the holomorphic fc's is 
sufficient to show that CkddK = 0, i.e., that they generate an isometry and satisfy 
Killing's equation 

(99) VAkA + VAkA = 0. 

The relation (98) only determines rj up to an imaginary constant. This is reflected in 
an ambiguity in the (real) Killing potential Xq($, <l) defined by 

(100) kAKA = iXq + rjq 

kAKA = -iXq + fjq. 

Clearly Xq is correspondingly defined only up to a real constant. From (100) it follows, 
using the properties of k, that 

(101) kqB = kAKAB = iXqB 

kqB = ~iXqB, 

hence the name "Killing potential". It further follows that 

(102) kfXpB + kp
BXqB = 0, 

and, hence, that 

(103) SXP = iXq(kfqXp]A + kfqXp]A). 

This expression for the transformation of the Killing potential will be needed later. 
For holomorphic Killing vectors, the algebra (85) becomes 

(104) K^kl,A=c^kf, 



SUPERSYMMETRY, A BIASED REVIEW 5 9 

and its complecx conjugate. In conjunction with the transformation of the Kahler 
potential K 

(105) SK = Xq(KAkf + KtarAk}) = Xq(rjq + rjq), 

and analyticity, we may use (104) to derive the transformations of rj: 

(106) kfrj^c^ + iop, 

k^f)q]=cp
T

qr]r-iOpq. 

It is important for gaugin the isometries that the rfs transform equivariantly. When 
the constants opq are not removable, they thus constitute an obstruction to gauging the 
isometries. Prom the Jacobi identities one finds that they have to satisfy 0p[9cr*] = 0. 
This is the case if Opq = cpq£r for some real constant f, and the shift rj —* rj + i£ 
then removes the obstructions, except for invariant abelian subgroups. Indeed, for 
semi-simple groups, even non-compact ones, we may choose fg = cqporag

ps, with g the 
Killing metric. 

As an illustration of the previous discussion, let us look at the an example where 
the isometry group is Abelian and the obstructions not removable. Take the Kahler 
potential to be K = $ $ corresponding to the flat metric G = 1. Then the translations 
generated by 

(107) kx = d/d$ + d/d$ = d + B 

k2 = i(d-8), 

are isometries. From the variation SK, we find 

(108) 771 = $ , 772 = - i * . 

Calculating the effect of a transformation as in (106), we have 

(109) tfxr)2]A = -2 i => o12 = -2i. 

Since the isometry is abelian, this obstruction is not removable, and the implication 
is that we can only gauge a linear combination of k\ and k2. 

4.6. Gauging isometries in N = 1 susy sigma models. Let us first discuss some 
generalities before taking on the isometries. We study chiral fields that transform 
under some representation of a Yang-Mills group Q 

(110) $A/ = (eiA)£ $*, ** = $ 5 (e-iAY , 

where A^ = Aq(Tq)£ with Aq(x}9,6) a chiral superfield and Tq the generators of the 
lie-algebra g of Q 

(111) [Tq>Tp] = ic£Tr. 

Since A 7-- A, the group Q acts on $ and ^ through its complexification Qc (=> Tq —> 
(T„iT,)). 

The gauge potential is an adjoint vector superfield V = VqTq. It transforms as 

(112) ev' = (e<A) ev (e" i A), 
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which means that we may define a superfield $A from $A which transforms in G\ 
rather than in G\* 

(113) * = $ B (ev)A
B, => $ ' = ($e" i A) . 

This is precisely what is needed to construct invariant actions. To this end we also 
introduce the gauge covariant superspace derivatives 

(114) V^ = (Va, Va , Va a) = (e-vDae
v, Da, - { V a , Va}). 

With these tools we write the gagued NLSM action in superspace as (cf. (94)) 

(115) f d*xd2ed26K($A, $A) - • /dAxd20d20K($A, $A), 

and instead of (42) we use an the component expansion 

(116) zA = $A\, Va = V a $ A | , FA = V2$A\, 

for the chiral fields along with 

(117) Aq
aa = z(Vaa | - daa)

q, Xq
a = iD2Va\ = Wa\, Dql = - | { V « , Wa}\, 

for the physical components of the vector multiplet. 
Invariance of the ungauged action (94) under an isomorphism was shown above to 

be equivalent to SK = \(rj + fj). Now that we are promoting the constant A to a 
superfield A (and A), this is no-longer necessarily true. E.g., 

(118) fd2ed26Xqfjq = 0, 

but 

(119) fd29d26Aqfjq^0, 

in general. To amend this, we introduce a new chiral superfield £ with transformation 
properties (in the ungauged case) 

(120) <5C = r/,(^)A», <$C = *?,($ V . 

If the isometry under consideration is generated by fc, we now define new holomorphic 
Killing vectors k' in the enlarged target space with coordinates $ , $ , £ , f: 

(121) k'q = kAdA + rjqdc, k'q = kABA + fjqd{. 

The symmetries generated by k' leave the new Kahler potential K' = K($, ^) - C ~ C 
invariant. The new action is independent of C but it has important consequences for 
the gauged. It is this Kahler potential we will use when gaguging the isometries. 

The transformations (110) describe transformations linearly realized on $ and does 
not cover general isometries in arbitrary coordinates. To cover the general case we 
must gauge the isometries acting as in (83), or (83) for the holomorphic fc}s: 

(122) 5$A = Aqkf, 6$A = KqkA. 

The appropriate generalization of (112) is 

(123) $A = e £ ^ *$, 
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i.e., the action of an exponentiated Lie-derivative along the direction iVqkq, repre­
senting a finite gauge transformation with parameter Vq. Accordingly, for the case at 
hand with Killing vectors fc' as in (121) 

(124) C = ec"'V( 

where £' = Avjfc'> ai-d the prime is removed in the last equality because V and rj are 
independent of £. As noted earlier, the ( term, is irrelevant in the action, and thus 
the gauged action is 

(125) S = [d*xd20d20(K($,$)-<;-C) 

= fd4xd29d29 (K($,<l) - i y—p-) VqvA . 

Finally, we use the relation (100) to eliminate 77 in favour of the Killing potential X 
(which also entails removing the tilde from $ in K) 

(126) f d4xd29d26 (K($, $) + ( ^ ^ ) XqvA . 

The last term is hermitean, although not manifestly so. Through the ambiguity in the 
definition of X there is the possibility to include a so called Fayet-Iliopoulos term for 
each U(l) factor in Q, i.e., a term of the type cqV

q. (See the discussion of obstructions 
in subsection 4.5 above.) The action (126) solves the problem of gauging isometries of 
N = 1 supersymmetric NLSM's. 

We close this subsection with a simple example of a Kahler quotient construction. 
Let us again look at the C P ^ model discussed in subsection 4.2, but now from the 

point of view of superspace. We start from the flat space Kahler potential in C^n+1^ 
which is 

n+l y n x 

(127) tf($, $) = J2 $A$A = e(*°+*0) (1 + £ FP ). 
A=l ^ a= l ' 

where the last equality involves an obvious field redefinition and displays one of the 
isometries of the model. The corresponding Killing vector is 

(128) d<t>A = \qkAdA = i\q5°qd0, d$* = \qkABA = -i\q6°qd0. 

We gauge this isometry by letting <f>°+4>° —> </>°+^°+V, which amounts to introducing 
$° in this case. We may also use the freedom discussed after (126) to include a Fayet-
Iliopoulos term. Hence 

(129) # ( * , *) -* K(9, *) - cV = e(*°+*°> (l + ] T M * \ . 
^ a= l ' 
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We find the new quotient Kahler potential by extremizing the corresponding action 
with respect to V: 

(130) SV =--> V = -ln{l + Y^ 4>aF) -<t>°-4>° + const, 

which gives the quotient Kahler potential 

(131) K'{<j>^)=cln{l + Y,<t>ar\ 

and again we recognize the C P ^ Kahler potential for the metric (81). 

4.7. N = 2 supersymmetric nonlinear sigma models. To formulate the N = 2 
supersymmetric NLSM's we ideally want a N = 2 superspace where both supersym-
metries are manifest. This means that we need to introduce a second set of 0's and 
extend the integration measure accordingly, so that an action will be written as 

(132) S= ( éxéeéec. 

However, such an action cannot accomodate a Lagrangian £($# , $B)> where $ # is 
the smallest N = 2 representation, a so called hypermultiplet corresponding a pair of 
N = 1 chiral superfields. To be more precise, a dimensional analysis of the measure 
shows that such an action will not have the right bosonic content for a NLSM. There 
are ways around this. Enlarging the superspace by additional bosonic coordinates one 
may find invariant subspaces and corresponding subintegrals that give correct results. 
We do not discuss these projective supererspaces [31]—[38] and harmonic superspaces 
[39] here, though. Instead our discussion of N = 2 NLSM's will be entirely in terms of 
N = 1 superfields in N = 1 superspace. Our starting point will thus be the action (94) 

(133) f dAxd2ed29K{<f>A,$A). 

One supersymmetry is thus manifest due to the N = 1 formalism. For the second 
supersymmetry we make the ansatz 

(134) 6$A = D2(eftA), 5Q* = D2{eQA). 

The reason for the covariant derivatives is for the second supersymmetry to commute 
with the first, and they come squared to preserve the (anti-) chirality of the fields. Here 
Q = fi($, <J), so they represent the general situation. The requirements of closure of 
the supersymmetry algebra and invariance of the action will constrain the Q's and 
reveal an interesting target space geometry. 

The superfield transformation parameter satisfies 

(135) D&e = D2e = da6le = 0. 

Closure of the non-manifest supersymmetry means that 

(136) [<5£i, 5€2]$A = i{Dae2Dael - (1 *-> 2))da^
A, 

and implies 

(137) npl = -si ngjftg, = 0, 
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along with their hermitean conjugate. (An additional condition turns out to be a field 
equation of the model.) Additional subscript again represent derivatives with respect 
to the fields <£ and $. Invariance of the action (133) implies the further constraints 

(138) Kjufifc = -KACClj 

KAB^cD + KACD^B = ° 

KAB^CD + KABD^C = °' 

Putting all this together, we conclude that there are two additional integrable complex 
structures (from (137)) which are covariantly constant with respect to the hermitean 
Kahler metric G = ddK (from (138)). There are thus three covariantly constant 
complex structures. The (lowest components of the) chiral superfields are the canonical 
coordinates for one of them. The complex structures are 

tiooA r(3)- _ ( i$AB 0 \ (l)i _ / 0 fig \ j(2)i _ ( -0 itli \ 

(139) Jj -[ 0 _i&AByji -{nA
B o ; ' J * - v - * % o ) ' 

We conclude that the symmetries and invariances of a N = 2 susy NLSM requires the 
target space T to be hyperkahler. 

4.8. Isometries in hyperkahler spaces. The isometries we will consider in the 
N = 2 case are tri holomorphic, i.e., whereas a holomorphic Killing vector preserves 
the fundamental two-form (64) UJ = 2iKAAdzA A dzA corresponding to J(3\ a tri-
holomorphic Killing vector preserves in addition the two-forms related to J^ and 
J(2\ which means that 

(140) PB[c^D)~kB = KABClA
cVD]k

B = 0. 

This defines p (and p through the hermitean conjugate relation). Such a Killing 
vector has a Killing potential with respect to each J, or, in arbitrary coordinates, 
klJ>j ' = -X^x\j. We combine X^ and X(2) to a holomorphic potential P and an 
antiholomorphic potential P with respect to J(2) _ iJ^2\ respectively, 

(141) kA
PAB = - P , B , kApAB = -P,B • 

These ingredients are all needed to describe the gauging of isometries of N = 2 
NLSM's. 

4.9. Gauging isometries in N = 2 susy sigma models. When the N = 2 model 
(133) has triholomorphic isometries they may be gauged in a manner that closely 
follows the description in subsection 4.6. The new features to do with N = 2 super-
symmetry is that the scalar superfields now come in pairs of chiral N = 1 field that 
together constitute a N = 2 hyper multiplet. Also the vector superfield Vq gets an 
N = 2 partner, a chiral superfield Sq. 

(142) ** - (*£, ^ ) , Vq -> (Vq, Sq). 

The second supersymmetry (134) is affected by the gauging in that fi(<l>, <l) —> Q($, l>). 
In addition, for the N = 2 vector multiplet it reads 

(143) 5ev = eSev + ev Se, SS = -iWaDae 
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(see (117)). The gauge transformations with parameter A are as in (122) with the 
additional 

(144) 6S = i[A,S\. 

The gauged action, invariant under the local isometries, is the generalization of (126) 

(145) fd4xd20d2~ K^^)+(^^)xqV
q + gP9S^{e-vSev)q 

+ ( f d4xd2e(iSqPq) + h.c\. 

The possibility to add Fayet-Iliopoulos terms discussed for N = 1 generalizes to N = 2 

(146) SFI = / d4xd26d26cqV
q + ( f d4xd20icqS

q + h.c. \ , 

again with a sum over abelian factors. 
The action (145) is the starting point for the N = 2 quotient, the hyperkahler 

quotient construction [9], and we end with an example of this [7]. 
Starting from the action 

(147) / d4xd29d20 ($l$*ev + $**f e~v - cV) 

+ {f d4xd29^>H^ - bS) + h.c. | , 

which is a gauged flat (C2(n+1)) N = 2 action with Fayet-Iliopoulos terms (c and 6), 
invariant under the gauged abelian isometries 

(148) &± = e±iA<£>±, * i = e ^ i , V = V + t(A - A). 

We extremise this action with respect to the N = 2 vector multiplet, i.e., with respect 
to V and S 

(149) SV => < J ^ e v - $*$j:e-v = c 

SS -=> $*$$ = 6, 

where the last relation is known as the "moment map". With the gauge choice 

(150) *5+1 = ^ + 1 = 0, 

and the redefinitions 

(151) 91 = U14>9 a = l , . . . , n , 

these moment map constraints are solved. Further defining 

(152) M± = *£*£, 

we solve the V equations in (149) and rewrite the action (147) as 

(153) Jd4xd26d20 k/c2 + 4M+M_ - c (ln{c + y/tf + AM+M- ) - ZnM+)l . 

The Lagrangian density inside the square brackets is the new Kahler potential on the 
N = 2 quotient, which also has a hyperkahler target space T. The quotient Kahler 
potential is a generalization of that of the CPn models and yields the Calabi metrics. 
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