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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 99-113 

ON TYPES OF NON-INTEGRABLE GEOMETRIES 

THOMAS FRIEDRICH 

ABSTRACT. We study the types of non-integrable G-structures on Riemannian 
manifolds. In particular, geometric types admitting a connection with totally 
skew-symmetric torsion are characterized. 8-dimensional manifolds equipped with 
a Spin(7)-structure play a special role. Any geometry of that type admits a unique 
connection with totally skew-symmetric torsion. Under weak conditions on the struc­
ture group we prove that this geometry is the only one with this property. Finally, 
we discuss the automorphism group of a Riemannian manifold with a fixed non-
integrable G-structure. 
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1. INTRODUCTION 

Riemannian manifolds equipped with additional geometric structures occur in many 
situations and have interesting properties. The most important structures are almost 
complex structures and almost contact metric structures. Moreover, in special di­
mensions we have exceptional geometries resulting from the list of exceptional Lie 
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groups, for example there is a 7-dimensional representation of the group G2 and a 
26-dimensional representation of the group F4. In case the Riemannian geometry is 
compatible with the additional, geometric structure we call it integrable. The com­
patibility condition means that the geometric structure under consideration is parallel 
with respect to the Levi-Civita connection or, equivalently, the Riemannian holonomy 
group reduces to the subgroup preserving the geometric structure. Examples are 
Kahler manifolds, Calabi-Yau manifolds, parallel G2-structures in dimension 7, paral­
lel Spin(7)-structures in dimension 8 and symmetric spaces. However, there are many 
interesting Riemannian manifolds equipped with non-integrable geometric structures. 
This happens in any case for almost contact metric structures in odd dimensions, there 
are (non-Kahler) hermitian manifolds in even dimensions and non-symmetric, homo­
geneous spaces. Usually the Riemannian holonomy group of these manifolds is the full 
orthogonal group. Consequently, they are of general type in the sense of holonomy 
theory and cannot be distinguished from this point of view. 

A lot of work has been done in order to understand special non-integrable geome­
tries. In case the geometric structure can be defined by some tensor T, one con­
siders its Riemannian covariant derivative VL CT . It is a 1-form with values in the 
representation space of the tensor. The decomposition of the corresponding tensor 
product under the action of the group G preserving the tensor T yields the differ­
ent classes of non-integrable geometric structures. For any class of non-integrable 
geometries one derives a differential equation characterizing the class and involving 
the tensor T. This program was developed, for example, for almost hermitian man­
ifolds (Gray/Hervella [20]), for G2-structures in dimension 7 (Fernandez/Gray [7]), 
for Spin(7)-structures in dimension 8 (Fernandez [6]) and for almost contact metric 
structures (Chinea/Gonzales [3]). 

Some years ago I became interested in 16-dimensional Riemannian manifolds with 
a Spin(9)-structure (see [9], [10]). There the situation is slightly different, since a 
structure of that type is not defined by a single tensor. Therefore, I looked for another 
method in order to introduce a classification of non-integrable G-structures. The 
theory of principal fiber bundles and connections yields the idea that a classification 
of non-integrable G-structures can be based on the difference T between the Levi-Civita 
connection and the canonical G-connection induces on the G-structure. In some sense 
T measures the non-integrability of the G-structure in a natural way. It is a 1-form 
defined on the manifold with values in the subspace m orthogonal to the Lie algebra g. 
At the same time A. Swann (see [24], [5]) and A. Fino (see [8]) considered this 1-form 
for different reasons, too (see also Chiossi/Salamon in [4]). 

Let us define the different classes of non-integrable G-structures as the irreducible 
components of the representation Rn ® m. If the geometric structure is given by a 
tensor, this point of view is completely equivalent to the approach described before. 
One of the aims of this note is to explain that one obtains all the known results in a 
unified way. The approach seems to be a kind of "folklore" for some people, but even 
in differential geometry it is not as popular as it should be. It will turn out that the 
reproduction of some classical results cited before becomes much less computational 
in our approach. It also has the advantage of being applicable to geometric struc­
tures not defined by a tensor. For example, we discuss irreducible SO(3)-structures 
on 5-dimensional manifolds, Spin(9)-structures on 16-dimensional manifolds as well as 
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F4-structures on 26-dimensional manifolds. Some problems concerning non-integrable 
geometric structures can be solved immediately from this point of view. In string 
theory one wants to know which types of geometric structures admit affine connec­
tions V with totally skew-symmetric torsion (see [16], [23]). It turns out that the 
answer depends mainly on the decomposition of two representations into irreducible 
components. An interesting example are 8-dimensional Riemannian manifolds with 
a Spin(7)-structure. It is well known (see [22]) that any Spin(7)-structure admits a 
unique connection with totally skew-symmetric torsion. In this paper we prove that 
under certain weak conditions on the structure group this is the only geometry with 
this property. Finally, we study the automorphism group of non-integrable geometric 
structures. 

2. G-STRUCTURES ON RlEMANNIAN MANIFOLDS 

Let G C SO(n) be a closed subgroup of the orthogonal group and decompose the 
Lie algebra 

so(n) = g©m 

into the subalgebra Q and its orthogonal complement m. We denote by prfl and prm the 
projections of the Lie algebra so(n) onto g and m, respectively Consider an oriented 
Riemannian manifold (Mn, g) and denote its frame bundle by Jr(Mn). It is a principal 
SO(n)-bundle over Mn . A G-structure of Mn is a reduction 1Z C Jr(Mn) of the frame 
bundle to the subgroup G. The Levi-Civita connection is a 1-form Z on Jr(Mn) with 
values in the Lie algebra so(n). We restrict the Levi-Civita connection to 1Z and 
decompose it with respect to the decomposition of the Lie algebra so(n): 

z\T{n) := z* ® r. 

Then, Z* is a connection in the principal G-bundle 1Z and T is a tensorial 1-form of 
type Ad, i.e., a 1-form on Mn with values in the associated bundle IZXQXXX. The triple 
(Mn,g,1Z) is an integrable G-structure if the 1-form T vanishes, i.e., the Levi-Civita 
connection preserves the G-structure 1Z. Many interesting geometric structures are not 
of that type. In this paper we consider mainly non-integrable geometric structures, 
T ^- 0. We introduce a general classification of these structures using the G-type 
of the 1-form T. More precisely, the G-representation Rn ® m splits into irreducible 
components. The different non-integrable types of G-structures are defined — via the 
decomposition of T — as the irreducible G-components of the representation Rn ® m. 
Let us give a local formula for T. Fix an orthonormal frame e i , . . . , en adapted to the 
reduction 1Z. The connection forms u>ij := g(SL°eu ^j) of the Levi-Civita connection 
define a 1-form Q := (uij) with values in the Lie algebra so(n) of all skew-symmetric 
matrices. The form T is the m-projection of ft, 

T = prjft) = pvm(uij). 

The case that the subgroup G is the isotropy group of some tensor T is of special 
interest. Suppose that there is a faithful representation g : SO(n) —* SO(V) and a 
tensor T G V such that 

G = {9eSO(n):g(g)T = T}. 
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Then a G-structure is a triple (Mn, g, T) consisting of a Riemannian manifold equipped 
with an additional tensor field. The Riemannian covariant derivative is given by the 
formula 

VLCT = <?.(r)(n 
where D* : so(n) —» so(V) is the differential of the representation. V L C T is an element 
of Rn O V. The algebraic G-types of VL CT define the algebraic G-types of T and vice 
versa. Indeed, we have 

Proposition 2.1. The G-map 

Rn ®m —-• Rn ® End(V) —> Rn ® V 

given 6y T —> p*(r)(T) is infective. 

Proof. If p*(r)(T) = 0, then the endomorphism p*(T(X)) stabilizes T for any vector 
X G Rn, i.e., p*(r(K)) G p*(g). Since the representation is faithful, we conclude that 
T(X) G 0. On the other hand, we have T(X) G m, i.e., T = 0. • 

The covariant derivative VL CT has been used for the classification of geometric 
structures — see the examples. The approach presented here uses the 1-form T and 
applies even in case that the geometric structure is not defined by a tensor. Moreover, 
in many situations it is simpler to handle the G-type of T then the G-type of the 
covariant derivative-
Proposition 2.2. If the group G does not coincide with the full group SO(n), then the 
G-representation Rn is always one of the components of the representation Rn ® m. 

Proof. Indeed, consider the map 
n 

R* —> Rn O m, X —• J2ei ® Prm(e* A x)> 
i= l 

where e i , . . . , en is an orthonormal basis in Rn. Suppose that a vector X belongs to 
its kernel. Then, for any vector y , the exterior product X A Y is an element of the Lie 
algebra g. Since the commutator of two elements again belongs to the Lie algebra g, 
we conclude that the exterior product Y A Z of two vectors orthogonal to the vector 
X is in g, i.e., g = so(n). • 

Geometrically this fact reflects the conformal transformation of a G-structure. Let 
(Mn

yg,TZ) be a Riemannian manifold with a fixed geometric structure and denote by 
g := e2* • g a conformal transformation of the metric. There is a natural identification 
of the frame bundles 

f(M\g) *T(M\g) 

and a corresponding G-structure It. On the infinitesimal level, the conformal change 
is defined by the 1-form df. 

2.1. SO(3)-structures in dimension 5. The group SO(3) has a unique, real, irre­
ducible representation in dimension 5. We consider the corresponding non-standard 
embedding SO(3) C SO(5) as well as the decomposition 

50(5) = 50(3)©m7 . 
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It is well known that the SO(3)-representation m7 is the unique, real, irreducible 
representation in dimension 7. We decompose the tensor product into irreducible 
components 

R5®m7 = R 3 e R 5 0 m 7 e E 9 0 E n . 
There are five basic types of SO(3)-structures on 5-dimensional Riemannian manifolds. 
The symmetric space SU(3)/SO(3) is an example of a 5-dimensional Riemannian man­
ifold with an integrable SO(3)-structure, (V = 0). 

2.2. Almost complex structures in dimension 6. Let us consider 6-dimensional 
Riemannian manifolds (M6, g, J) with an almost complex structure J. The subgroup 
U(3) C SO(6) describes a geometric structure of that type. We decompose the Lie 
algebra 

so(6) = u(3)0m 

and remark that the U(3)-representation in R6 is the real representation underlying 
A1,0 and, similarly, m is the real representation underlying A2,0. We decompose the 
complexification under the action of U(3): 

(R6(8)m)C = ( A ^ Q A ^ e A ^ ^ A 0 ' 2 ) 0 . 

The symbol (.. .)R means that we understand the complex representation as a real 
representation and complexify it. Next we split the complex U(3)-representations 

A1-0® A2'0 = C3®A2(C3) = A3>°0E8, 

A1'0® A0'2 = C3®A2(C3) = C3®A2(C3)* = (C3)*0E6 . 

E6 and E8 are irreducible U(3)-representations of complex dimension 6 and 8, respec­
tively. Finally we obtain 

R 6 ®m = A 3 ' ° 0 ( C 3 ) * 0 E 6 0 E 8 . 

Consequently, R6 ® m splits into four irreducible representations of real dimensions 
2, 6, 12 and 16, i.e., there are four basic types of U(3)-structures on 6-dimensional 
Riemannian manifolds (Gray/Hervella-classification — see [20]). In case we restrict 
the structure group to SU(3), we obtain two trivial summands in the decomposition 
of R6 ® 5u(3)± corresponding to nearly Kdhler manifolds (see [18], [19], [24]). Almost 
hermitian manifolds of that type have special properties in real dimension n = 6. They 
are Einstein manifolds (see [19]), the differential equation describing the nearly Kahler 
manifolds is 

[VL
X

CJ){X) = 0, VLCJ T- 0 

and, finally, these are precisely the 6-dimensional manifolds with real Killing spinors 
(see [21]). 

2.3. G2-structures in dimension 7. We consider 7-dimensional Riemannian man­
ifolds equipped with a G2-structure. Since the group G2 is the isotropy group of a 
3-form a;3 of general type, a G2-structure is a triple (M7,<?,u;3) consisting of a 7-
dimensional Riemannian manifold and a 3-form u3 of general type at any point. We 
decompose the G2-representation (see [11]) 

£7®m = R1 ø-R7 0 A\A 0 Л3 

27 
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and, consequently, there are four basic types of non-integrable G2-structure. In this 
way we obtain the Fernandez/Gray-classification of G2-structures (see [7]). The differ­
ent types of G2-structures can be characterized by differential equations. For example, 
a G2-structure is of type R1 {nearly parallel structures) if and only if there exists a 
number A such that 

du3 = A • (*CJ3) 

holds. Again, this condition is equivalent to the existence of a real Killing spinor 
(see [14]). The G2-structures of type R^Afy- {cocalibrated structures) are characterized 
by the condition that the 3-form is coclosed, our3 = 0. In general, the differential 
equations for any type of G2-structure involving the 3-form a;3 were derived in [7]. In 
the spirit of the approach of this paper one can find the computations in [11]. 

2.4. Spin(7)-structures in dimension 8. Let us consider Spin(7)-structures on 8-
dimensional Riemannian manifolds. The subgroup Spin(7) C SO(8) is the real Spin(7)-
representation A7 = R8. The complement m = R7 is the standard 7-dimensional 
representation and the Spin(7)-structures on an 8-dimensional Riemannian manifold 
M8 correspond to the irreducible components of the tensor product 

R 8 ®m = R 8 0 R 7 = A 7 0 R 7 = A 7 0 K = R 8©K, 

where K denotes the kernel of the Clifford multiplication A7 0 R7 —* A7. It is well 
known that K is an irreducible Spin-representation, i.e., there are two basic types of 
Spin(7)-structures (the Fernandez-classification of Spin(7)-structures — see [6]). 

2.5. Spin(9)-structures in dimension 16. The group Spin(9) is an interesting sub­
group of SO (16). The representation in R16 is irreducible. We consider 16-dimensional 
Riemannian manifolds with Spin(9)-structures. Again, we split the Spin(9)-represen-
tation into four irreducible components 

R16<g>m = R 1 6 ©Pi (R 9 ) eP 2 (R 9 ) e^ 3 (R 9 ) . 

Consequently, there are four basic types of non-integrable Spin(9)-structures on 16-
dimensional Riemannian manifolds. A Spin(9)-structure on a 16-dimensional Rie­
mannian manifold has an associated 8-form. Some differential equations for the dif­
ferent types of Spin(9)-structures involving the 8-form have been computed in the 
paper [9]. 

2.6. F4-structures in dimension 26. We consider the subgroup F4 C SO(26) and 
26-dimensional Riemannian manifolds with a F4-structure. The orthogonal comple­
ment 

50(26) = f40m2 7 3 

is the unique, irreducible, 273-dimensional representation of F4. We compute the 
decomposition 

R26 0 m273 = R26 ffi f^ & m273 @ £324 0 £1053 0 £1274 0 £4096^ 

Consequently, there are seven basic types of F4-structures in dimension 26. 
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3 . G-CONNECTIONS WITH TOTALLY SKEW-SYMMETRIC TORSION 

An interesting question in some models in string theory (see [11]) is to ask of which 
geometric structures admit a connection V preserving the structure and with totally 
skew-symmetric torsion. In order to formulate the general condition, let us introduce 
the maps 

0 i : A3(Rn) —• Rn ® m, 0 2 : A3(Rn) —-» Rn ® g 
given by the formulas 

e.(T) := £><jT)®a., 02(D := YfaAT)®nh 
i j 

where r/» is an orthonormal basis in m and fij is an orthonormal basis in g. Then we 
have 

Theorem 3.1. (see [10] j A G-structure 11 C f (M") of a Riemannian manifold admits 
a connection V with totally skew-symmetric torsion if and only if the 1-form T belongs 
to the image of 0 i . 

2-T = - 0 i ( T ) . 
In this case the 3-form T is the torsion form of the connection. 

Proof. Suppose there exists a connection V with totally skew-symmetric torsion T. 
We compare it with the Levi-Civita connection and obtain the relation 

VXY = V?Y + yT(X,Y,*). 

Moreover, the definition of the 1-form V as well as the G-connection Z* yield the 
equation 

V£CY = V%Y + T(X)Y. 
Finally, since V preserves the G-structure, there exists a 1-form /? with values in the 
Lie algebra g such that 

VXY = VZxY + P(X)Y 

Combining the three formulas we obtain, for any vector X, the equation 

2-p(X) = 2-T(X)+T(X,*,*). 
We project onto the subspace m. Since P(X) belongs to the Lie algebra g, we conclude 
that T should be in the image of Qu 0i(T) = - 2 • T. O 

Theorem 3.1 only decides which geometric types admit connections with totally 
skew-symmetric torsion. However, if the geometric structure is defined by a tensor T, 
one prefers to express the torsion form T of the connection V directly by this tensor T. 
Formulas of that type were computed for almost complex structures, almost contact 
metric structures, G2-structures and Spin(7)-structures (see [11], [12], [13], [22] and 

[11. [-!)• 
Example 3.1. We consider 5-dimensional Riemannian manifolds with an SO (3)-
structure. Then we obtain 

R5(g)m7 = R 3 e R 5 e m 7 © E 9 © E n , A3(R5) = R30m7 . 

In particular, a conformal change of an SO(3)-structure does not preserve the property 
that the structure admits a connection with totally skew-symmetric torsion. 
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Example 3.2. In the case of almost complex structures in dimension 6, we have 

R6<g)m = A 3 ' ° e ( C 3 ) * e E 6 0 E 8 , A3(R6) = A 3 ' °0(C 3 )*0E 6 . 

Consequently, an almost complex manifold (M6, p, J) admits a connection with totally 
skew-symmetric torsion if and only if the E8-part of T vanishes. In case the connection 
exists, it is unique and the formula for its torsion has been derived in [11]. 

Example 3.3. In dimension 7 we decompose the G2-representation 

A3(R7) = R 1 ©R 7 0A^ 7 , R 7 ®m = R1 0 R7 © A2
U 0 A^7. 

Consequently, a G2-structure admits a connection with totally skew-symmetric torsion 
if and only if it is of type R1 0 R7 0 A^. These condition describes the conformal 
changes of cocalibrated G2-structures. In case the connection exists, it is unique and 
the formula for its torsion has been derived in [11]. 

Example 3.4. Let us consider Spin(7)-structures on 8-dimensional Riemannian man­
ifolds. Here we find 

R8<g>m = A 7 0 K , A3(R8) = A 7 0 K , 

i.e., A3(R8) —> R8 ® m is an isomorphism. Theorem 3.1 yields immediately that any 
Sp'm{7)-structure on an 8-dimensional Riemannian manifold admits a unique connec­
tion with totally skew-symmetric torsion (see [22]). 

Example 3.5. In case of G = Spin(9), we have 

R1 6®m = R 1 60A 3 (R 1 6 )0P 3 (R 9 ) , 

and the R16-component is not contained in A3(R16) = Vi{R9)®V2{R9). A conformal 
change of a Spin(9)-structure does not preserve the property that the structure admits 
a connection with totally skew-symmetric torsion (see [10]). 

Example 3.6. In dimension 26 and for the subgroup F4 C SO(26) we have 

R26<g>m273 = R 2 6 0 f 4 0 m 2 7 3 0 E 3 2 4 0 E 1 O 5 3 0 E 1 2 7 4 0 E 4 0 9 6 , 

A3(R26) = m2 7 30E1 O 5 30E1 2 7 4 . 

In particular, a conformal change of an restructure does not preserve the property 
that the structure admits a connection with totally skew-symmetric torsion. 

4. THE AUTOMORPHISM GROUP OF NON-INTEGRABLE G-STRUCTURES 

We consider a Riemannian manifold {Mn,g,K) with a fixed geometric structure. 
Since the Lie algebra A2(Rn) = so(n) = g 0 m splits, the bundle of 2-form A2(Mn) 
decomposes into two subbundles. They are associated with the reduction 1Z of the 
frame bundle and we denote these two bundles again by g and m, respectively, 

A2(Mn) = g 0 m . 

Let X be a Killing vector field. Then the covariant derivative VLCX G T{T <g) T) 
is skew-symmetric. In fact, if we understand X as a 1-form on the manifold, the 
covariant derivative of X coincides with the exterior differential, 

VLCX = \-dX. 
2 
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We suppose now that the G-structure 71 admits a unique connection V with totally 
skew-symmetric torsion T. Then VK G T(T (g) T) is a skew-symmetric tensor, too. 
Moreover, we have 

VK = V L C X - » - ( X j T ) . 

Theorem 4.1. Let (Mn,g,7l) be a G-structure and suppose that there exists a unique 
G-connection V with totally skew-symmetric torsion T. If a Killing vector field X is 
an infinitesimal transformation of the G-structure, then 

CXT = 0, [K ,VyZ]-Vy[X ,Z] = V[Xy)Z. 

The 2-form VK G Q belongs to the subbundle Q. In particular, we have 

prm(dX) = Prm(XjT). 

Proof. Since V is the unique G-connection with totally skew-symmetric torsion, 
any transformation of 71 should preserve the connection and its torsion form, i.e., the 
first two conditions are necessary. In fact, the condition VK € g characterizes the 
infinitesimal transformations preserving a G-structure. Let us — for completeness — 
give the argument. The covariant derivative of a vector field with respect to an affine 
metric connection can be computed via the formula 

g(VYX,Z)(p) := jtg(dft(p)(Y),r?(Z)), 

where ft: Mn —> Mn is the 1-parameter group generated by the vector field X and r t
v 

denotes the parallel displacement along the curve ft(p)- Fix a basis e i , . . . , e„ G Tip in 
the G-structure at the point p G Mn and denote by Aij(t) the matrix defined by 

n 

dft(ei) := J^Ai^-r^ej). 
i= i 

The endomorphism VX(p) is given by the matrix ( J4^(0) ) . If the 1-parameter group 
ft preserves the structure 71, then the matrix (Aij(t)) belongs to the subgroup G, i.e., 
VK is a 2-form in g. • 

Remark 4.1. The formula prm(rfK) = prm(X J T) was derived in case of a nearly 
parallel G2-structure in [14, Theorem 6.2] (notice that there is a sign error). Indeed, a 
nearly parallel G2-structure admits a unique connection with totally skew-symmetric 
torsion T, which was computed in [11, Example 5.2]. Using these expression for T we 
obtain from Theorem 4.1 the formula of Theorem 6.2 in [14]. 

The invariance of the torsion form restricts the dimension of the automorphism 
Q(7l). Denote by GT the isotropy group of T G A3(Rn) and dT G A4(Rn) inside of G. 
Then we have 

dim(e(ft)) < n-l-dim(Gr). 
The group Gr preserves the Ricci tensor of the unique connection V as well as the 
symmetric endomorphism Tjmn -^mri- These geometric objects have been computed in 
several cases and can be used in the computation of the isotropy group of the torsion 
form. 
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Example 4.1. Denote by H6 the 6-dimensional Heisenberg group. There exists a 
left-invariant, cocalibrated G2-structure u>3 on the 7-dimensional Lie group H6 x R1. 
In [11] we computed its torsion form T: 

w3 = ei27+ei35-ei46-e236-e245+e347 + e567, T = e5A(ei3-e67) + e4A(e37-f ei6). 

Moreover, the Ricci tensor Ricv of the unique connection with totally skew-symmetric 
torsion as well as the symmetric endomorphism Timn • Tjmn are given by the formulas 

Ricv = diag(-2, 0, - 2 , 0, 0, - 2 , -2) , Timn • Tjmn = diag(4, 0, 4, 4, 4, 4, 4). 

A transformation preserving the geometric structure preserves the Ricci tensor Ricv 

and the symmetric form Timn • Tjmn, too. Consequently, for the Lie algebra QT of the 
group Gr we obtain the necessary conditions cj2a = 0, u^ = 0, u^ = 0 for any 
1 < a < 7, / ?T-=5 and 7 ^ 4 . Combining these 14 equations with the equations 
defining the Lie algebra g2 inside of so(7) (see [14] or [11]) we obtain seven nontrivial 
parameters 0^13,̂ 16, ̂ i7,̂ 36,-*>37,k>67,k>45, related by three equations 

U>13 = — UQ7, LUIQ = 6^37, (^17 + o;36 + 6J45 = 0. 

We understand the skew-symmetric matrix fl := (uij) as a vector field on R7 and 
compute the Lie derivative C^T of the torsion form, 

CQT = 2 • a;i3 • (ei47 - e34e) + 2 • u16 • (e356 - ei57) + 2 • uu • (e357 + ei5e + ei34 - e467)-

Consequently, the Lie group Gj is one-dimensional and its Lie algebra is described by 
two parameters u^e, ^45 and one equation: 

^36 + ^45 = 0. 

Example 4.2. The product N6 x R1 of the 3-dimensional, complex, solvable Lie 
group N6 by R1 admits a left invariant cocalibrated G2-structure. In [11] we derived 
its torsion, 

T = 2 • (e256 - e234). 

A straightforward calculation yields that the subgroup GT C G2 is a maximal torus 
of G2. A basis of its Lie algebra is given by the following two matrices 

0 0 0 0 0 0 - 2 " •0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 , 0 0 - 1 0 0 0 0 
0 0 0 - 1 0 0 0 0 0 0 0 0 - 1 0 
0 0 - 1 0 0 0 0 0 0 0 0 1 0 0 
2 0 0 0 0 0 0 . . 0 0 0 0 0 0 0 

5. A CHARACTERIZATION OF SPIN(7)-STRUCTURES • 

Let us once again return to Example 3.4. Any 8-dimensional Riemannian manifold 
equipped with a Spin(7)-structure admits a unique connection preserving the Spin(7)-
structure with totally skew-symmetric torsion (see [22]). In general, fix a compact, con­
nected subgroup G C SO(n) and consider G-geometries. Any Riemannian G-manifold 
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(Mn,g,R) admits a unique G-connection with totally skew-symmetric torsion if and 
only if the G-representations 

0 i : A3(Rn) —>Rn<g)m 

are isomorphic (see Theorem 3.1). We will prove that under a certain condition on 
the group G only the case of n = 8 and G = Spin(7) is possible. 

Lemma 5.1. Let G be a compact, connected Lie group and denote by T its maximal 
torus. Then the inequality 

dim(G) < 4-(dim(T))2 

holds. Moreover, if no exceptional Lie algebra occurs in the decomposition of the Lie 
algebra g. then we have 

dim(G) < 3-(dim(T))2. 

Proof. Remark that the inequality holds for the product of two groups Ti C Gi, 
T2 C G2 in case it holds for Gi and G2. Indeed, Ti x T2 is a maximal torus in Gi x G2 

and we obtain 

dim(G!xG2) < 4-(dim(T1)2-fdim(T2)2) < 4 • (dim(Ti)+ dim(T2))2. 

We split the Lie algebra g = Qi © • • • © gt © 3 into the simple ideals 0* and its 
center 3. Unless g» is a classical simple Lie algebra, we know that its dimension 
is bounded by 3 • (dim(Ti))

2 (see [15]). For the exceptional Lie algebras we obtain 

dim(G2) = 14, 4-(dim(T))2 = 16; dim(F4) = 52, 4 • (dim(T))2 = 64; 

dim(E6) = 72, 4-(dim(T))2 = 144; dim(E7) = 133, 4-(dim(T))2 = 196; 

and dim(E8) = 248, 4 • (dim(T))2 = 256. • 

Let h G G be an element of the Lie group and denote by 

Z(h) := {geG:g-h = h-g}, z := dimZ(ft) 

its centralizer as well as its dimension. We agree to say that a subgroup G C SO(n) of 
dimension g := dim(G) has the involution property if one of the following conditions 
is satisfied: 

( l ) n 2 ^ 3-g-f-l; 
(2) n2 = 3 • g 4-1, but there does not exist a pair (h) p) consisting of an involution 

h G G and an even integer 0 < p < n such that 

3 - ( g - z ) = 2 . p - ( v / 3 - g + l - p ) . 

Solving the latter equation with respect to p we obtain 

P = ityrTFi ± ve-z-3-g+i). 
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Remark 5.1. Using the representation of G in Rn we can formulate this condition 
in a more geometric way. Fix an involution h G G C SO(n) and consider the two 
symmetric spaces 

_G_ SO(n) 
Z(n) ZSO(„)(/i) "'p' 

where Gn>p denotes the Grassmannian manifold of all oriented p-planes in Rn (p even). 
By the involution property we want to exclude the case that n = */3 • g + 1 and the 
ratio of the dimensions of these two symmetric spaces is §. 

Example 5.1. Consider the group SU(3). Then ^ 3 • g + 1 = 5 and the dimension 
of the centralizer of the involution h = diag(l, —1,-1) equals z = 4. In particular, 
6-z — 3 - g + l = 1 andp = 2,3. Nevertheless there does not exist a subgroup of SO(5) 
that is isomorphic to SU(3), i.e., SU(3) has the involution property. 

Example 5.2, In case of Spin(7), we have y/3 • g + 1 = 8, but there is no involution 
h e Spin (7) such that 

3 • (21 - dim Z(A)) = 2 - p - ( 8 - p ) 

for an even number p. More generally, we have 

Proposition 5.1. Any compact simple Lie group G has the involution property. 

Proof. For the exceptional Lie groups G2, F4, E6, E7, E8 the number y/3 • g + 1 is 
not an integer. For the classical groups the irreducible symmetric spaces G/Z(h) given 
by an involution / iGG are well known (see [17, Chapter 11.2.4]) 

SU(m)/S(U(r)xU(m-r)), SO(m)/SO(r)xSO(m-r), Sp(m)/Sp(r) xSp(m-r ) . 

The dimension of the group G = SU(m) equals (m2 - 1) and we obtain the restriction 
n = y/3 • m2 — 2 w \/3 • m. On the other hand, the lowest real dimension of an 
SU(m)-representation is 2-m, (m > 3). This means that even in case n = y/3 • m2 — 2 
is an integer, there is no subgroup of SO(n) that is isomorphic to SU(m). A similar 
argument applies to the group Sp(m). Finally, we discuss the case that G is locally 

isomorphic to SO(m). Then n = w | - m - ( m — 1) + 1 « vf'771. Taking into account 
the dimensions of all irreducible real SO(m)-representations we conclude that the 
embedding SO(m) —• SO(n) is the standard inclusion 

(h o \ 
\0 In-mj' 

and the embedding of the symmetric spaces is the usual inclusion of two Grassmannian 
manifolds 

_G_ _ SO(n) _ 

Z(h) " ^ ZsowW " "'P' 
In particular, p is bounded by m, p < m. The dimension condition yields 3-m—p = 2-n 
and together with 2 • n2 = 3 • m • (m — 1) + 2 we see that there is no solution (p, m, n) 
of these two equations satisfying the condition p < m. • 



ON TYPES OF NON-INTEGRABLE GEOMETRIES 111 

Theorem 5.1. Let G C SO(n) be a compact, connected group with the involution 
property. Decompose the Lie algebra into $o(n) = g © m and suppose that the G-
representations 

0i : A3(Rn) —>Rn<g>m 
are isomorphic. Then n = 8. G = Spin(7) and the representation is the unique 
irreducible representation of Spin(7) in R8. 

Proof. Denote by x> X* • G —» R1 the characters of the G-representation in Rn and of 
the adjoint representation Q. Since A3(Rn) is isomorphic to Rn ®m by assumption, an 
easy computation yields the following functional equation between these two characters 

Z-X(h)-X'(h) = x\h)-X(h3), fc e G 

(see [15, p. 381]). Evaluating the characters at the element h = e we obtain a formula 
relating the dimensions of the group G to the dimension of the representation Rn, 

n2 = 3 • dim(G) + 1. 

Fix a maximal torus T* c G of dimension t and denote by h\ := e, /12, • • • , /i2« its 
elements of order two, 

h± = e, h{' hj = hj • hi. 

The character equation simplifies for each of these elements, 

3-x(M-x*(fc) = x3(tV)-x(lO = x(tV>-(x2(tV>-i)-
Suppose that x(^io) ¥" 0 for some index 2 < z0 < 2l. Then we obtain 3 • X*(hi0)

 = 

X2CO ~ 1- Using the equations 

X*(hi0) = 2 • dim Z(hi0) - dim(G), n2 = 3 • dim(G) + 1, x(^0) = n - 4 • g 

we see that the latter equation contradicts the involution property of the group G 
except for q = n/2 and hio = — Id^n. Consequently, the character x(^.) = 0 vanishes 
for any element hi 7-- ± Id^n. Then the number 

must be an integer. Indeed, denote by H the finite group consisting of all involutions hi. 
Consider the space (Rn)H of all H-invariant vectors and its dimension (see [15, p. 16]), 

1 2t 

dim(R )̂H = £ £ > ( * ) . 

If the involution (— Id^n) ^ H does not belong to the subgroup, we obtain 

dim(R")H = | . 

If (— IdRn) is an element of H, we choose a subgroup Ho C H of order two not containing 
this involution. In this case we obtain 

dim(R")H° = ^ . 

By the previous Lemma 5.1 we have the inequality 

4 • t2 > dim(G) = i (4 ' - x • Jfc2 - 1) > i(4 t"1 - 1). 
o 3 



112 THOMAS FRIEDRICH 

In particular, the rank of the compact group G is bounded by five, t < 5. The cases 
t = 1,2 or 4 can be directly excluded by the conditions 

3-dim(G) + l = 4*"1 - fc2, dim(G) < 4 - t 2 . 

Let us discuss the case of t = 3. Then we obtain the conditions 

dim(G) < 36, 3-dim(G) + l = 16 • fc2. 

If fc = 1, the dimension of the group equals five, dim(G) = 5, and the dimension n of 
the real representation is given by the formula n2 = 3 • dim(G) + 1 = 16. Therefore, 
the group G is a compact subgroup of rank three in SO (4), a contradiction. In case of 
fc = 2 we obtain dim(G) = 21 and n = 8. The group is a 21-dimensional subgroup of 
rank 3 in SO(8), i.e., T3 C G = Spin(7) C SO(8). The cases that fc > 3 are impossible 
(t = 3). 

Finally, we discuss the case of t = 5. Then we obtain the conditions 

dim(G) < 100, 3-dim(G) + l = 256-fc2. 

The parameters fc > 2 are impossible and fc = 1 yields an 85-dimensional subgroup 
G C SO(16) of rank five. Since 85 = dim(G) $£ 3-t2, by Lemma 5.1 the decomposition 
of the Lie algebra g into simple Lie algebras must contain one of the exceptional 
algebras 02 or f.4. Again, this is impossible. Suppose, for example, that 0 = 02 © 0*-
Then the compact Lie algebra 0* has dimension 71 and rank 3 and these parameters 
contradict Lemma 5.1. A similar argument excludes the second exceptional summand. 

• 

REFERENCES 

[I] Agricola, I., Connexions sur les espaces homogenes naturellement reductifs et leurs operateurs 
de Dirac, to appear in C.R. Acad. Sci. Paris. 

[2] Agricola, I., Connections on naturally reductive spaces, their Dirac operator and homogeneous 
models in string theory, math.dg/0202094. 

[3] Chinea, D. and Gonzales, G.,A classification of almost contact metric manifolds, Ann. Mat. 
Pura Appl. 156 (1990), 15-36. 

[4] Chiossi, S. and Salamon, S., The intrisic torsion o/SU(3) and G2-structures, 
math.dg/0202282. 

[5] Cleyton, R. and Swann, A., Cohomogeneity-one G2-structures, math.dg/0111056. 
[6] Fernandez, M., A classification of Riemannian manifolds with structure group Spin(7), Ann. 

Mat. Pura Appl. 143 (1986), 101-122. 
[7] Fernandez, M. and Gray, A., Riemannian manifolds with structure group G2, Ann. Mat. Pura 

Appl. 132 (1982), 19-45. 
[8] Fino, A., Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998), 1-22. 
[9] Friedrich, Th., Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. 

Math. 5 (2001), 129-160. 
[10] Friedrich, Th., Sp'm(9)-structures and connections with totally skew-symmetric torsion, 

math.dg/0201263. 
[II] Friedrich, Th. and Ivanov, S., Parallel spinors and connections with skew-symmetric torsion 

in string theory, math.dg/0102142, to appear in Asian J. Math. 
[12] Friedrich, Th. and Ivanov, S., Killing spinor equations in dimension 7 and geometry of inte-

grable G2-manifolds, math.dg/0112201. 
[13] Friedrich, Th. and Ivanov, S., Almost contact h-manifolds and type II string equations, 

math.dg/0111131. 



ON TYPES OF NON-INTEGRABLE GEOMETRIES 1 1 3 

[14] Priedrich, Th., Kath, I., Moroianu, A. and Semmelmann, U. On nearly parallel G2-structures, 
J. Geom. Phys. 23 (1997), 259-286. 

[15] Fulton, W. and Harris, J., Representation Theory, Graduate Texts in Mathematics, Springer-
Verlag, New York, 1991. 

[16] Gauntlett, J., Martelli, D., Pakis, S. and Waldram, D., G-structures and wrapped NS5-branes, 
hep-th/0205050. 

[17] Goodman, R. and Wallach, N., Representations and Invariants of Classical Groups, Cambridge 
University Press, 1998. 

[18] Gray, A., Weak holonomy groups, Math. Z. 123 (1971), 290-300. Hervella 
[19] Gray, A., The structure of nearly Kahler manifolds, Math. Ann. 223 (1976), 233-248. 
[20] Gray, A. and Hervella, L., The sixteen classes of almost hermitean manifolds and their linear 

invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58. 
[21] Grunewald, R., Six-dimensional Riemannian manifolds with real Killing spinors, Ann. Global 

Anal. Geom. 8 (1990), 43-59. 
[22] Ivanov, S., Connections with torsion, parallel spinors and geometry of Sp'm(7)-manifolds, 

math.dg/0111216. 
[23] Strominger, A., Superstring with torsion, Nucl. Phys. B 274 (1986), 253-281. 
[24] Swann, A., Weakening holonomy, in "Proceedings of the second meeting on quaternionic struc­

tures in Mathematics and Physics", Roma 6-10 September 1999, ed. S. Marchiafava et al., 
Word Scientific, Singapore 2001, 405-415. 

THOMAS FRIEDRICH 

INSTITUT FÜR MATHEMATIK 

HUMBOLDT-UNIVERSITÄT ZU BERLIN 

SITZ: WBC ADLERSHOF 

D-10099 BERLIN, GERMANY 

E-mail address: f r iedricQmathematik.hu-berl in.de 


