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HASSE DIAGRAMS FOR PARABOLIC GEOMETRIES 

LUKAS KRUMP AND VLADIMiR SOUCEK 

1. INTRODUCTION 

Invariant differential operators on manifolds with a given parabolic structure have 
been intensively studied last years. General introduction to the concept of parabolic 
geometries can be found in [12]. Construction of basic data of a parabolic geometry 
from a given geometrical data is described in [5]. 

The motivating example of parabolic geometry is conformal geometry. A systematic 
discussion of conformally invariant differential operators can be found, for example, 
in [13]. A general overview of basic facts on invariant operators in the case of a general 
parabolic geometry is available in [14]. 

Invariant operators can be divided into two basic classes, standard and nonstandard. 
Another possible division is into regular or singular cases. Standard regular operators 
are coming in repeated patterns called Bernstein-Gelfand-Gelfand (BGG) sequences. 
In flat case, these sequences are in fact complexes. These complexes were constructed 
first in homogeneous case in terms of the dual language of homomorphisms of (gener
alized) Verma modules, see [1], [2], A geometrical construction of BGG sequences in 
a curved case was given in [9] and in [3]. Explicit form of many of regular standard 
operators is described in [4]. 

Every BGG sequence has a pattern characteristic for considered parabolic geometry. 
This pattern is given by the corresponding Hasse diagram. It is hence useful to have 
at hand efficient means how to compute the form of the Hasse diagram in individual 
cases. The main aim of the paper is to describe an alternative way how to characterize 
Hasse diagrams and to give its more efficient description in the case of low gradings. 
The most important case is the case of AHS structures ([6], [7], [8]), i.e., the |l|-graded 
case. 

2. NOTATION 

This section introduces notation used in the paper. The basic data for a parabolic 
geometry is a simple Lie algebra g with a Cart an subalgebra \) and a |k|-grading 
G = 9-k © •.. ® 0*. There is a decomposition of the subalgebra flo = .9o © flo> where gg 
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is semisimple with Cartan subalgebra \)s. Let p = 0o0.. .00*, denote the corresponding 
parabolic subalgebra of 0 and p+ = 0i 0 . . . 0 0* its positive part. 

If g' is a subalgebra of 0, the symbol A(0;) denotes all roots such that their root 
spaces belong to g'. The symbols A+, A" denote the positive and negative roots of 
the whole graded Lie algebra 0. 

The reflection aa(f3) with respect to a root a is given by aa((3) = /3 - (/?, a) a, with 
a = njri. The Weyl group W of 0 is generated by the reflections aai for a{ simple 
roots. As usually, we denote by 5 the half sum of all positive roots of 0. 

3. THREE ALTERNATIVE DESCRIPTIONS OF THE HASSE DIAGRAM 

The main aim of this section is to reformulate the standard definition of the Hasse 
diagram for a chosen parabolic subalgebra in an alternative way, which is more suitable 
for computations. The Hasse diagram is a labeled graph (with labels in a set A+ of 
positive roots). Throughout the section, let a semisimple Lie algebra 0 and its Weyl 
group W be fixed. For w G W, the symbol \w\ denotes the length of w, i.e. the least 
integer k such that w = aai o • • • o aak, where a» are simple roots. 

Let us recall first the classical definition of the Hasse diagram for a given simple Lie 
algebra 0, which can be found in [1]. 

3.L Hasse diagram of the Weyl group. 

Definition 3.1. The Hasse diagram H = H(g) of the Lie algebra 0 is a labeled 
oriented graph with labels in A+ . The set of its vertices is the Weyl group W. Let 
w, w' G W are two vertices of H. There is an arrow from w to w' labeled by a G A+ , 
if w' = aa o w and \w'\ = \w\ + 1. 

The following simple lemma will be useful below. 

Lemma 3.2. Let w,w' GW, a 6 A+ . Then the following conditions are equivalent: 

(1) w' = aa ow, 
(2) w'(fi) = aa(w(fi)) for all weights \x of 0, 
(3) w'(6) = aa(w(6)), 
(4) there exists an integer ca such that w'(5) -w(5) = caa; the number ca is then 

given by ca = (&, 5). 

Proof. (1) «=> (2) «=> (3) ==> (4) is trivial. To prove (4) = > (3), note 
that |w'(o*)l = |w(<5)|. Difference between these two elements is a multiple of a, hence 
w'(6) = <ra(w(6)). a 

3.2. The Hasse diagram of the (*)-saturated sets. 

Definition 3.3. A subset $ of A+ is called saturated, if a, /? G $, a + /3 G A+ implies 
a + / ?G$ . We shall say that $ satisfies the property (*) (or is (*)-saturated) if both 
$ and $ c = A+ — $ are saturated. 

For w G Wy let $ w := A+ H w(A~). It is well known that a set $ C A+ is (*)-
saturated iff there exists w eW with <£ = $w. Moreover, \w\ = card($\u) (see [10]). 
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Definition 3.4. Define the Hasse diagram G(W) of the (*)-saturated sets as follows. 
The set of vertices of G(W) is the set of all $w,w e W. There is a labeled arrow 
$w -̂ -> $w/, a G A+, if the difference 

is a multiple of a and |P/i«,'| > |Pfttu|-

The following lemma can be found in [2]: 

Lemma 3.5. For every w G W, 

w(5) = S-Y,P-
/3€*u, 

Theorem 3.6. Let W be the Weyl group of $. Then the graphs H(W) and G(W) are 
equivalent as A+-labeled graphs. More precisely, the mapping w i—• $w is a bisection 
and for every w,w' eW, a G A+ , we have 

Proof. Recall first that card($tl,/) = ca rd (^ ) + 1 iff \w'\ = |uj| + 1. 
Suppose first that there is an arrow $w -^U $w/, i.e. that the difference ^T,pE$ / P ~~ 

Ylyetv, 7 *s a multiple of a. Then by Lemma 3.5, the same is true also for w'(S) — w(5) 
and it is sufficient to use Lemma 3.2. 

On the other hand, suppose that w' = aa o w for some w, w' G W. Then clearly 
-£/?€*„ P ~~ -C/3€*v 0 = w (6) ~ tt;((5) i s a multiple of a. D 

It is useful to reformulate the condition for an arrow between two nodes in the 
Hasse diagram of (*)-saturated sets in a more suitable way. To do so, we first prove 
the following lemma. 

Lemma 3.7. Suppose that a, /3 G A+ and u' = aa o w. Then: 

(1) if P e$w, a£ $w and aa(f3) G A", then ft G $w>; 
(2) a e ^ U $w> and a £ $w fl <~V; 
(3) if ae ®w>, then aa($w - $w,) C (*«,/ - {a}) - $w; 
(4) a e$w if and only if \w'\ > \w\. 

Proof. (1) We know that (w)"1^) e A_; (^)_ 1( a) e A+ a n d we suppose that 
c-0(/?) G A". Hence aa(/3) = /3 - fca with fc > 0. Then 

(u / ) - 1 ^) = u," 1^) - kw'l(a) G A". 

(2) It follows immediately from 

(a/)"1 (a) = w~l(aa(a)) = - t iT^a ) . 

(3) Consider /3 G ( ^ ^ - ^ z ) . Hence w~l((3) G A_ and (u/)-^/?) e A+- Consequently, 

tiTl(<7a(/»)) = (w')-l(f3) G A+; ( t ^ W / ? ) ) = W~\P) € A_. 
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Note now that if aa(P) e A_, then P G $w> by (1), which is a contradiction. Hence 
both p and aa(P) belong to A+ . But then clearly aa(/3) g $w and aa(P) e $w>. 
(4) Prom (3), it follows that if a e $w>, then \$w - $w>\ < \($w> - {a}) - $w\. 
Hence \$w\ < \$w>\. Using the same for w and w' interchanged, we get the claim that 
\w'\ > \w\ iff a e $w>. • 

Now we are able to prove the following theorem. 

Theorem 3.8. There is a labeled arrow w -̂ -> w', a e A+ iff a e $w> and 

($w> - {a}) -$w = aa($w - $w>). 

Proof. If w - ^ w', then w' = aa o w, a e $w> and aa($w - $w>) C ($w> - {a}) - $w. 
Moreover we know that \$w>\ = \$w\ + 1. Hence 

(<-V - {a}) - $w = aa($w - $w>). 

On the other hand, if the above two sets coincide and a G $u,'> then clearly the 
difference J2pe$ , & ~" YJ^^ 7 l s a mu-tiple of a. and we can use the previous theorem 
to get that w -̂ -> w'. • 

The condition in the theorem can be also reformulated in the following way. There 
is a labeled arrow $w —> $w> if and only if a e $w> and there exists a number k > 0 
and positive roots 7i, Si for 1 < i < k such that 

$*' .-$«, = { M i , . . . 4 } , 

* w - $ w ' = {7ii---7ib}, 
and 

0"a(7») = <*i 

for every 1 < i < k. But if the reflection aa acts in an nontrivial way on (3 e A"1", it 
changes the grading of /?. Hence we get immediately the following corollary. 

3.3. Weight graphs and Hasse graphs for parabolic subalgebras. In this part, 
we want to find a suitable characterization of sets $w in the Hasse diagrams for para
bolic subalgebras useful for practical applications. Let us first recall the definition of 
the Hasse diagram for parabolic subalgebras bigger than the Borel subalgebra. 

Let p = 5o H h Qk be a parabolic subalgebra of g. The Hasse diagram H(p>g) 
for p is the subgraph of the Hasse diagram jf7(g) obtained from H(g) by deleting all 
vertices w with $w (£. A(p+). The notion of the weight graphs will be a useful tool. 

Definition 3.9. The weight graph for p is defined in the following way: 
• the set of its vertices is the set of all roots (3 e A(p+), 
• there is an arrow Pi —^ Pi if a n d only if there exists a simple root a» in A (go) 

such that /?2 = Pi — ai. 

Definition 3.10. A subset V C A(p+) is called acceptable if the following three 
conditions are satisfied: 

(1) whenever 7 G V, /? G A(p+) and a e A+ such that 7 = P + a, then /? is also 
inV, 

(2) whenever /?, P' G V and 7 = /? + P' e A(p+), then 7 G V, 
(3) whenever /3, P' i V and 7 = p + P1 G A(p+), then 7 £ V. 



HASSE DIAGRAMS FOR PARABOLIC GEOMETRIES 137 

The property (1) implies that if the end point of an arrow in the weight graph 
belongs to an acceptable set V, then the same is true for the beginning point of the 
arrow. By induction, if there is a path in the weight graph from 0\ to 02 and 02 G V, 
then also 0\ G V. The described property of acceptable sets makes it easy to construct 
them explicitly for low gradings. 

Note that in |l|-graded case, the conditions (2) and (3) are vacuous. For |2|-graded 
cases, the condition (1) still plays a key role. On the other hand, for the Borel case, 
the condition (1) is superfluous. 

The definition of acceptable sets has important practical consequences. The condi
tions (2) and (3) imply that whenever V is an acceptable subset of A(p+) and /?,/?', 7 
is a triple of roots such that 7 = 0 + 0', then the intersection V fl {/?, 0', 7} can be 
only one of the six possible sets 

while the sets {0,0'}, {7} are not possible. This causes the "diamond-like" subgraphs 
in Hasse graphs (see examples below). We can now prove the following useful charac
terization of the set of all vertices $w in the Hasse diagram H(p, g). 

Theorem 3.11. A subgraph V o/A(p+) is acceptable if and only if there exists w G W 
such that V = $w and V C A(p+). 

Proof. We know that it is sufficient to prove that a subgraph V of p+ is acceptable if 
and only if V is (*)-saturated. 

Acceptability of a set was defined by condition (1), (2) and (3) of Definition 3.10. 
The definition of (*)-saturated sets can be written as: 

(2') whenever 0, 0' G V and 7 = 0 + 0' G A+ , then 7 G V, 
(3') whenever 0, 0' G (A+ - V) and 7 = 0 + 0' G A+ , then 7 G (A+ - V). 

Clearly (2) <^> (2>) and (3') =-> (3). 
To show that (1) and (3) => (3'), we have to treat 4 subcases. If 0,0' G A(rj0), 

then also 0 + 0' G A(g0) C A+ - V. If 0,0' G (A+(p+) - V), then it is sufficient to 
use (3). Suppose now that 0 G A(g0) and 0' G (A+(p+) - V), (the other case being 
similar). If 7 = 0 + 0' G V, then using (1), we get that 0' belongs to V, which is 
a contradiction. Hence 7 ^ V. • 

3.4. The |l|-graded case. In the case that a parabolic subalgebra p is given by a 
|l|-graded Lie algebra g, the description of the Hasse diagram is very easy. 

Corollary 3.12. Suppose that the algebra g is \\\-graded. Then 

(1) the set V C A(p+) is acceptable, if the condition (1) of the definition holds, 
(2) w-?->w',aeA+ iff$w, = $w U {a}. 

Proof. The conditions (2) and (3) of the definition are trivially satisfied for the Ill-
graded Lie algebras. The second part follows from the fact that a sum of two roots 
from A(p+) is from ©j>2gj- D 
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4. EXAMPLES 

4.L The case x—x . 
In all examples, roots are denoted by a^ = e,- — e .̂ The roots are ai2, #23 in Qi and 

a i 3 in g2 with the relation ai3 = ai 2 + a23-
The weight graph has no arrows, it looks like 

ai2 a n a23 

The acceptable subgraphs are 

V0 = 0, Vn = {a i 2}, V12 = {a23}, 
V2i = {ai2,ai3},V22 = {a2 3,ai3}, V3 = {ai 2 ,a 2 3 ,ai 3 }. 

Hence the Hasse diagram is 

4.2. The case x—• . . . •—x . 
The roots are a i 2 , . . . , a i n , a 2 , n + i , . . . , an > n +i in Gi and ai.n+i in g2 with the relations 

ait + a i > n +i = ai,n +i for alH G {2,..., n}. 
The weight graph is then 

ai.n û:2 ,ři+i 

o;i,n-i «3,f»+i 

Ol,n+l 

0̂ 1,3 a n -4,n + 1 

û-1,2 CtnSH 
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The acceptable subgraphs are of two types. Type 1 contains only roots of degree 1: 

V = {C*in, . . . , alk} U {a2yn+U • • • > <*n,n+l} 

for I < ky while type 2 subgraphs contain the degree 2 root a\iU+\' 

V = {c*in,..., alk} U {a 2,n+i,..., an,n+i} U {ai,n+i} 

for / > k. 
Hence the Hasse diagram is 

a\ny 
Ч ^ n + l 

a i , n - i / \ alny 

«2,n+l 

4<*3,n+l 

<*i2/ \ a\3/ \ a\y 

<*2,n+l \ / an-\,n+\ \ / O n | T l +i 

• . . . • • 

ttl.n+l 

a\2a2tn+i \ I 

OJl,n+l <*l,n+l a\tП+\ 

aүy/ ^. a\,n-\/ \ aÌПy 

ö2,n+i ^ / «з,n+i Ч / aПyП+\ 

an/ \ aU/ 
<-*n-l.n+l ^ / í*n,n+l 

a\2. 

a n , n +i 
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4.3. The case x — x — • . 
Without any detailed analysis, we just show the resulting Hasse diagram: 

ixN 
• • • 

\ / \ | 

MXÍ 

A * ^ ^ • a - 2 -**+l,k+2 Otk+t+itk+i+2 

4.4. The Grassmanian case • • • • x • • • • 
The algebra Q = Ak+i+i = sl(k + I + 2,<C), the module gi is isomorphic to Cw. Its 

roots are a^, i G { 1 , . . . , k + 1}, j G {k + 2, k +1 + 2}, ordering is given by 

j > f = > Qfij > Oij'. 

The acceptable subgraphs are exactly the sets of roots of the form 
vh,~Jv+i = {a-i5* G {1, . . . ,* ' + 1} for some k' < ky 

and for every such i, j G {j i , . . . , k + Z + 2}, 

where j i < • < J W I } -

The cardinality of V5li...J-fc#+1 is ji + • • • + jV+i-
Hence, we can state the following 

Proposition 4.1. The level m of the Hasse diagram of the Grassmanian structure 
contains exactly all acceptable subgraphs Vjlt...jkf+1 such that j \ - \ \-jv+i = m. 

By the Corollary 3.12, all arrows in the Hasse diagram are given by inclusions. This 
gives the complete structure of the Hasse diagram. 
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