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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 159-161 

A CONSTRUCTION OF FINITE-DIMENSIONAL FAITHFUL 
REPRESENTATION OF LIE ALGEBRA 

YURII A. NERETIN 

ABSTRACT. The Ado theorem is a fundamental fact, which has a reputation to be 
a 'strange theorem'. We give its natural proof. 

1. CONSTRUCTION OF FAITHFUL REPRESENTATION 

Consider a finite-dimensional Lie algebra g. Assume that g is a semidirect product 
p tx n of a subalgebra p and a nilpotent ideal n. Assume that the adjoint action of p 
on n is faithful, i.e., for any z G p, there exists x € n such that [z, x] ^ 0. 

Consider the minimal k such that all the commutators 

[...[[xi,x2],x3],...,xfc], Xj en 

are 0. 
Denote by U(n) the enveloping algebra of n. The algebra n acts on U(n) by the left 

multiplications. The algebra p acts on U(n) by the derivations 

dzx\X2xz... xi = [z, Xi]x2xs ...xi+ xi[z, x2]x$ . . . x\ + . . . , where z E p. 

This defines the action of the semidirect product p K n = g on U(n). 
Denote by I the subspace in U(n) spanned by all the products x\x2.. .XJV, where 

N > k + 2. Obviously, 

1. I is the two-side ideal in U(n). 

2. Consider the linear span A C U(n) of 1 and all the x G g . Obviously, In .A = 0. 

3. I is invariant with respect to the derivations dz. 

Obviously, the module U(n)/I is a finite-dimensional faithful module over g. 

2. THE ADO THEOREM 

Lemma 1. Any finite-dimensional Lie algebra q admits an embedding to an algebra 
g such that 

(a) g is a semidirect product of a reductive subalgebra p and a nilpotent ideal n; 
(b) the action ofp onn is completely reducible. 
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Obviously, Lemma 1 implies the Ado theorem. Indeed, g admits a decomposition 

g = p' 0 (p" tx n) 

where p', p" are reductive subalgebras and the action of p" on n is faithful. After this, 
it is sufficient to apply the construction of p.L 
REMARK. The Ado theorem implies Lemma 1 modulo the Chevalley construction of 
algebraic envelope of a Lie algebra. But Lemma 1 itself can be easily proved directly 

3. KILLING LEMMA 

Let g be a Lie algebra, let d be its derivation. For an eigenvalue A, denote by Q\ its 
root subspace Qx = Ufcker(d — A)fc; we have g = ®g\. As it was observed by Killing, 
z € flA, y € fl,, implies [x, y] G Qx+^ 

Thus the Lie algebra g admits the gradation by the eigenvalues of d. Consider the 
gradation operator ds : g —> g defined by dsv = \v if v £ Q\. Obviously, ds is a 
derivation, and dds = dsd. We also consider the derivation dn:= d — dsi this operator 
is nilpotent (the equality d = dn + ds is called the Jordan-Chevalley decomposition). 
Clearly 

(1) kevds D kerd; kerdn D kerd; 

(2) im ds C im ds\ im dn C im ds. 

4. ELEMENTARY EXPANSIONS 

Let q be a Lie algebra, let I be an ideal of codimension 1. Let x fi I. Denote by 
d the operator Adx : / —• I. Consider the corresponding pair of derivations dS) dn. 
Consider the space 

q' = Cy + Cz + I 
where y, z are formal vectors. We equip this space with a structure of a Lie algebra 
by the rule 

[y, z] = 0, [y, u] = dsu, [z, u] = dnu, for all u G I 

and the commutator of tx, v G I is the same as it was in I. 
The subalgebra C(y + z) © I C q' is isomorphic q. We say that q' is an elementary 

expansion of q. 
Obviously, [q',q'] = [q,q]. 
For a general Lie algebra, the required embedding to a semidirect product can be 

obtained by a sequence of elementary expansions. 

5. PROOF OF LEMMA 1 

Let q be a Lie algebra. Let f) be its Levi part, and r be the radical. Denote by m 
the nilradical of q, i.e., m = [q,r]; recall that m is a nilpotent ideal, and [q, q] = f) K m 
(see [1], 1.4.9). 

Consider a nilpotent ideal n of q containing the nilradical m. Consider a subalgebra 
p D J) such that the adjoint action of p on q is completely reducible and p fl n = 0; for 
instance, the can choice n = m, p = fj. 
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Obviously, the q-module q/(p K n) is trivial. Consider any subspace I of codimen-
sion 1 containing p K n, obviously I is an ideal in q. Since the action of p on q is 
completely reducible, there exists a p-invariant complementary subspace for I. Let x 
be an element of this subspace. Since the p-module q/I is trivial, x commutes with p. 
We apply the elementary expansion to these data. 

We obtain the new algebra q7 = Cy + Cz + I with the nilpotent ideal n7 = Cz + n 
and with the reductive subalgebra p7 = Cy © p (by (1), y commutes with p). 

It remains to notice that 

dim q7 - dim p7 — dim n7 = dim q — dim p — dim n — 1 

and we can repeat the same construction. 
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