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SIGMA MODELS IN GEOMETRY 

MARTIN ROCEK 

1. LECTURE 1 

These lectures are lightly edited versions of the actual lectures that I gave at the 
Srni Winter School in January 2003. I have tried to make them comprehensible to 
mathematicians, but being a physicist, I cannot say to what extent I have succeeded. 
There are plenty of good references for people who want to study more about super-
symmetry - several books, recent lectures by Ulf Lindstrom at a previous Srni Winter 
School, e t c 

The basic question that we will study in these lectures is: "What can we learn 
about the geometry of a manifold by studying maps into the manifold and/or into 
bundles over the manifold?" For example, studying maps from Sn into a manifold M 
tells us about the homotopy of the manifold M. The problem of maps of surfaces into 
a general manifold is known as the harmonic map problem. As shown in the figure, 
we consider a manifold £ with possible additional structure such as the spin bundle 
£>(£); these are mapped into the manifold M, and into possible additional structure 
on M such as the tangent bundle T(M): 

S(X) T(M) 
spin bundle tangent bundle 

By studying the properties of £ and the maps of £ into M we want to learn about 
the geometry of M. 

An important example that we'll explore in detail is the case when £ is a super-
manifold. Then the maps of £ into M tell us about the holonomy of M. 

The paper is in final form and no version of it will be submitted elsewhere. 
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1.1. Supersymmetry. Supersymmetry can be viewed as a relation between the spec
trum of first and second order operators, for example, between the Dirac operator p 
which acts on T(S) (that is on sections of the spin bundle) and the d'Alembertian D 
which act on zero forms UQ. This relation can be seen by taking a solution of the Dirac 
equation 

(1) (p-m)ip = 0. 

The square of the Dirac operator (in flat space) is the d'Alembertian. Using a parallel 
spinor e, that is, e G T(S) such that De = 0, we can construct a solution to the 
Klein-Gordon equation by picking out the zero form piece in the tensor product of 
e and rj>. We can do this as sections of the spin bundle transform under the spin \ 
representation of the spin group; we are simply taking the spin 0 piece of the tensor 
product of spin | with itself. In terms of gamma matrices, we write this as 

(2) U)Q = II}). 

Thus, for each parallel spinor, we get a solution to the Klein-Gordon equation 

(3) (D-m 2 )a ;o-=0, 

from a solution of the Dirac equation. 

Why is this supersymmetry according to "standard" point of view? This is a slightly 
unusual way of introducing supersymmetry, which is usually described as an invariance 
of an action functional under certain transformations. Such an action leads to a 
variational problem that is solved by the solutions to certain differential equations; 
supersymmetry as introduced above is then a relation among such solutions. In the 
particular example that we just considered, the action functional is the sum of the 
Dirac and Klein-Gordon actions. The advantage of the description we used is that it 
requires less background machinery, but we shall need to discuss actions later on. 

Another example of supersymmetry arises when we construct a one-form u)\, satis
fying d-kdui = 0, from solutions of the Dirac equation t/> and a parallel spinor e. This 
we get by choosing the one-form piece in the tensor product of tp and e. Using gamma 
matrices we can do this by taking the product 

(4) eyv. 

This corresponds to a "vector" super-multiplet while the previous construction corre
sponds to a "scalar" super-multiplet. 

What we have discussed so far is called rigid supersymmetry. Some of these notions 
can be generalized to the case where the spinor e is not parallel, and can be an arbitrary 
section of the spin bundle; this requires more structure (i.e., supergravity) and is called 
local supersymmetry. 

We now turn to supersymmetric sigma models. This gives us a nonlinear generaliza
tion of the scalar multiplet that we have just discussed. As shown in the figure below 
- which is a particular example of the general structure that we saw above - we define, 
in addition to the maps (p%(cr) from E into M, Grassmann odd (anticommuting) maps 
ii){(a) from 5(E) to T(M) at the point <p(a): 
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S> 
£,S(E) 

<p>), VH 

M, T(M) 

For concreteness, we focus on the case when E is 3-dimensional. The supersym-
metric multiplet involved is once more a scalar multiplet. The action is given by 
the pullback by <p(a) of the length of dtp, a Dirac-term involving the pullback of the 
connection on M, and a term constructed from the Riemann tensor: 

S=^~ J <p*(\d<p\2 + (ip,pilj) + \Riem(tp ® rp ® tp ® ip)0) 

= h L{giM ^ ' d ( p j + ^ j + ^ ( ^ ^ r a ) i 
(5) + ^ i * m ( ^ y ) ( ^ r o ) ) • 

Where is the supersymmetry? It can be found as a symmetry of the action under the 
transformations 

(6) Sip* oc (e<S>rp% = eilji 

(7) Stf oc W + T)kW)^k)e. 

As explained above, these transformations can also be used to relate solutions to the 
extremal equations for <p and ip, which are now the generalized Laplace and Dirac 
operators, respectively. 

If M has a complex structure J, this construction can be generalized. In this case 
one can define more than one supersymmetry by using the complex structure 

(8) Stp* ex <p*J[(e g> ^)0] i = J*;(e^). 

This leads to an interesting relation between the number of supersymmetries and the 
holonomy of M. 

# SUSY's dim(Лf) Hol(M) Type 
0,1 n 0(n) Riemann 
2 n = 2m U(m) Rigid: Kähler 

Local: Hodge 
3,4 n=4k Sp(k),Sp(l)xSp(k) Rigid: Hyperkähler 

Local: Quaternionic 
Kähler 

TABLE 1. The relation between supersymmetries and holonomy. 
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Thus extra structure on M leads to extra supersymmetry on E. We will turn this 
around and use the supersymmetry on E to construct manifolds of special holonomy. 

1.2. Superspace. Instead of using the fields <p% and tp% separately, we can combine 
them into one object, a supermultiplet or a superfield. We do this by combining the 
spaces E and 5(E) into a single space, a so-called superspace. To describe this space 
we choose additional coordinates 0 on 5(E) which are Grassman odd. Superfunctions 
are functions of these coordinates and since 0 are odd, if we make a Taylor expansion 
in them, the expansion always ends after a finite number of terms, e.g., 

(9) $'((7,0) = tp%(o) + (0® VOo + F%(0® 0)o. 

The number of spinor 0 coordinates introduced is given by the number N of supersym-
metries in the problem. Thus, when E is 3-dimensional, for N = 1 supersymmetry, 
there is one spinor 0 coordinate with two independent Grassman odd components. 
Now a supertransformation can be written very compactly as 

(10) 6$% = (e®Q&)0, 

where Q is an differential operator defined by 

(ID « a | - ^ ^ -
This obeys the important relation 

(12) Q®Q = -?, 

and thus the supersymmetry generator Q is a "square root" of the translation genera
tor. One may also construct an object which commutes with the SUSY transformation 
generator Q 

da) D«lo+e®i-
Since D anticommutes with Q (DQ + QD = 0) we have that 

(14) D(6&) = 6(D$%). 

This allows us to use D when we construct supersymmetric actions. For example, 
in N = 1 superspace the action functional for a number of scalar multiplets can be 
written 

(15) J(D®D)o[((D$,D$))o\. 

For N = 2 supersymmetry, it is natural to combine the two linearly independent spinor 
derivatives D into complex combinations; then the action can be written suggestively 
as 

(16) f(D®D)o(D®D)0 [!<(&,&)] . 
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2. LECTURE 2: QUOTIENTS 

In this lecture we include a metric on both the source manifold E and on the target 
manifold M. The metric on M is called g and the metric on £ is called h. 

l,h,o« M'g '?1 

Then we can write an action for the immersion <p as 

(17) J W\]<h = J Vhhal>da<p%<pkgik(<p). 

Now consider a target space manifold M that has a Killing vector field X, that is, a 
vector field X such that 

(18) Cxg = 0. 

(In general, the Lie derivative of g gives the change of the metric under an infinitesimal 
shift in the coordinates along a vector field; thus a Killing vector field preserves the 
metric). Now we would like to find the quotient of the space M by the action of the 
vector field X. The points on the quotient space are the orbits of the action of the 
vector field X. The isometry generated by X induces an invariance of the action (17). 
Thus we can define a 17(1) action (if the orbits are compact; otherwise, we have a 
real GL{\) action) under which the sigma model (17) is invariant. To define a sigma 
model on the quotient manifold, we gauge this action. We can understand intuitively 
that this is the correct thing to do since gauging the action means that we can locally 
choose any representative of any orbit. Thus the action depends only on the orbits 
and must be well defined on the quotient. The gauging is performed by introducing a 
U{\) connection 1-form on £ 

(19) d^ -> dA(px = dip1 + AX*(tp). 

Under the shift </>*—> ipx + aXx the connection 1-form transforms as A —> A — da, 
leaving the action invariant. The connection can be eliminated from the action by 
using its equation of motion, that is, by extremizing the action with respect to the 
connection. This gives a sigma model on the quotient manifold with the canonical 
induced metric. One might wonder why we did not include a kinetic term such as 
|cL4|2 for the gauge field. Such a term is unimportant for sufficiently slowly varying 
configurations, and leads to interactions that do not have the form (17) of a pure 
sigma model; it is interesting in some contexts, but is not relevant to the discussion of 
quotients. 

We may introduce supersymmetry into the game as in the last lecture; the classi
fication in table 1,1 stays intact, and thus supersymmetric quotients can be used to 
find explicit metrics on new manifolds of special holonomy. 
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2.1. Symplectic reduction. We now focus on the case when M is a Kahler manifold 
with Kahler form u, and the isometry preserves both the metric and LU: CX9 = C>xw = 
0. Because the Kahler form is closed, we can define the moment map /i by 

(20) d\xx = ixu, 

where ixw is the contraction of the 2-form u with the vector X, and is thus a 1-form. 
Now we define the Kahler quotient to be the quotient with respect to the isometry 
generated by the Killing field X of the submanifold (/ix)_1(0) defined by the zero set 
of the moment map. An alternative but equivalent way to define the Kahler quotient 
is as the quotient of (most of) M with respect to the action of the complexified vector 
field {X, JX}. Because of the definition of \i, the action of X always lies within 
(nx)~l(0) whereas the action of JX takes us out of this submanifold. This can be 
written as 

(21) (nx)-l(0)/G="M"/G*, 

where G* is the complexified gauge group and "M" denotes the stable submanifold of 
M, which consists of all the points in M that can be reached by the action of G* on 
(/JLX)~1(0). In the figure below, we see the orbits generated by X lying in (fix)~l(0) 
as well as the complexified orbits generated by X and JX: 

The definition of the Kahler quotient as the complexified quotient of the stable 
submanifold arises automatically in superspace. Consider the case when £ is a three 
(bosonic) dimensional N = 1 superspace. As discussed at the end of the previous 
lecture, the coordinates on £ are ca, a = 0,1,2 and the grassman coordinates 6A, 
A = 1,2. Both transform in representations of SO(l,2) ~ SL(2,R), a in the vector 
representation and 0 in the spinor representation (which is real in three dimensions). 
We also have the supercovariant derivative DA which is Grassman odd and obeys 

(22) {DA,DB}=2ipAB 
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where $AB is the Dirac operator on E (which is assumed to be flat). N = 1 superfields 
on E are now functions $l(a, 9) from the superspace E into M (which is still assumed 
to be an ordinary manifold). 

£ s ,o« 0 

If we Taylor expand the superfield we find 

(23) H = o = SI?) 
(24) DAV\e=0 = <(<-). 

Here we recognize <p% as the immersion we started with and ipA is a map from the spin 
bundle 5(E) on E to the tangent bundle -F(M) on M at the point <p%. We can use the 
symplectic metric on the spin bundle eAB to build an action 

(25) J Dce
CEDE [DA^eABDB^kgik(^)} . 

For N = 2 supersymmetry, we complexify the Grassman coordinate 6A and add 
the conjugate SA to our superspace E. There is consequently a second supercovariant 
derivative DA and the algebra of derivatives is 

(26) {DAiDB} = 0 

(27) {DA,DB} = 0 

(28) {DA,DB} = ipAB 

In this case the scalar superfield <$* is no longer an irreducible representation of the 
supersymmetry algebra. It can be decomposed into chiral and antichiral superfields 
defined by 

(29) D$ = 0 chiraJ 

(30) D$ = 0 antichiral 

The superfields $ ' and $ ' are now mapped into the complex coordinates on the man
ifold M, which is necessarily Kahler. The complex Grassman coordinates 9 and 9 get 
tied to the complex structure on M: 

$*| = <p* $»| = ft 

(31) DA&\ = i>\ DA&\ = &A 

DA&\ = 0 DA&\ = 0 

In the N = 4 case we have four (real) Grassman coordinates, which naturally leads to 
quaternions and hyperkahler geometry on the target space. 
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To perform the superquotient we need a super version of a connection. To this end 
we consider another representation of supersymmetry, namely a real scalar superfield 
V = V. Under gauge transformations V transforms as V -» V - iA + zA where (A) 
A is some arbitrary (anti) chiral superfield. Using the gauge transformations some 
components of V can be gauged away. For instance, we can choose 

(32) 
(33) 
(34) 

y| = o 
DAV\ = 0 
ĎAV\ = 0 

and under the gauge transformation the component [L^-D^] V\ transforms as 

(35) [DA, DB] V -> [DA, DB] (V - i(A + A)) = [DA, DB] V + pAB(A + A) 

i.e., it transforms as an ordinary gauge field (defining as usual A = A|, etc.). Thus we 
may define 

(36) [DA,DB]V\=i/lAB 

with 

(37) A^A-id{\-\). 

We continue this discussion in the next lecture. 

3. LECTURE 3 

Recall our setup from lecture 2 

фЧo.Ф 

-:s,o«, eA,h M,^1, i|/\ g 

In the N = 2 case the action takes the form 

(38) 5 = í D2D2K(Ф,Ф). 

For example, the supersymmetric sigma model for Cn is given by its Kahler poten
tial K = X)?=i ****• We can get CPn~l from Cn via a (symplectic) quotient. The 
complexified U{\) action is given by 

(39) 

(40) 

ф< _ , gфi 

ф< _> 5 t ф ť 

Notice that g is the complexified group element so that gg* ^ I. In fact, we can see 
that in order to preserve the chiral properties of $ we have to choose g to also be chiral: 
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Dg = 0. Thus we can parametrize g as g = eiA where A is a chiral field: DA = 0. The 
action as it stands is not gauge invariant since it transforms as 

(41) Jф fФЧj]фW :(л-лt) 

To make it gauge invariant we have to introduce the gauge field V which transforms 
as V —> V — 2 (A — A*) under gauge transformations. This gives the gauge invariant 
action 

(42) / D2D2 V t f S ' e 1 io2Ď2^%W. 

Also, since the measure in the action includes integration over all superspace coordi
nates, we could also include a gauge invariant term /E D2D2cV for some constant c. 
The action now depends only on the orbits of the action of the complexified gauge 
group, which is the quotient. The gauge field V can be removed by extremizing the 
action with respect to it. Variation with respect to V gives 

n 

(43) £ , $ W - c = 0, 
«=i 

or 

(44) V = In C 

£$$' 
This V gives the complexified gauge transformation that takes an arbitrary stable 
point in M down to the submanifold £" = 1 $*$* - c, namely i*~l{0). Substituting back 
into the action gives 

(45) jГø.f l . ţşrt^ - = - - C І П ; 

and thus to a Kahler potential for the quotient space CPn~l 

(46) K = const. + cln ] P $<£ 

which we recognize as the Kahler potential for the Fubini-Study metric on CP71'1. 
The algebraic geometric way to see the quotient is to define it as the solution of 

an invariant holomorphic polynomial equation. In N = 4 supersymmetry (without 
N = 4 superspace) this becomes relevant since there we have an S2's worth of complex 
structures which means that we have an 52,s worth of moment maps. We choose the 
complex structure o;3 so that u)i ± iu2 is a holomorphic (antiholomorphic) two form. 
The basic supersymmetry representations are now given by hypermultiplets which in 
N = 2 language consist of two chiral superfields $+ and $_, and vector multiples 
which consist of a chiral superfield S and an N = 1 vector multiplet V. The action for 
a quotient of some flat quaternionic space described as a complex even-dimensional 
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flat space is given by 

f D2D2 (]T M+e v + £ $_^_e"y - cV) 

(47) + f D2 (J2 $+$- -b)S + c.c. 

(where c.c. stands for complex conjugate) and the variation with respect to 5 gives 
the holomorphic constraint 

(48) Y^Ф+Ф- = Ь. 

This is called the holomorphic moment map. This can be encoded in a so called 
"quiver diagram". A quiver diagram is essentially a labelled graph, for example 

where each node (with label n*) represents a complex vector space V{ = Cni trans
forming under the gauge group G-, = U(rij). Links represent maps between the vector 
spaces. For instance a link between the node i and the node k represents a map 
$ + 6 HomVj -» Vk and a map <£_ e HomV* -» VJ which carry canonical G; and G* 
actions. The quiver diagram contains the gauge theory data that we use to set up 
the quotient construction. Therefore it is interesting to study if different quivers can 
give rise to the same quotient. This is in fact the case. The equivalent quivers are 
related by Seiberg duality which can be defined as an operation that takes quivers 
into other quivers that are equivalent in the sense that they give the same quotient. 
The operation acts on any node with label n* in a diagram by replacing it with a node 
labelled by the number we get by summing over all nj of the nodes connected to the 
node n,- and then subtracting n.,. 

One can ask which diagrams are self dual? The answer turns out to be exactly 
the diagrams that correspond to the extended Dynkin diagrams of the ADE groups. 
Equivalently, this means that the only symmetric matrices with 2 along the diago
nal, nonpositive integer coefficients off-diagonal, and a zero eigenvalue are the Cartan 
matrices of the affine ADE Lie algebras. 

Invariant polynomials can be represented as closed contours on the quiver. The 
holomporphic moment map can also be described in this diagrammatic fashion. This 
is perhaps best done in a graph 
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-o— - b . f 
(a) 

o—>—o— — —o- = b, - - o - -o— 

o 

(0 

= b, 

The quotient space is given by the ring of contours on the quiver modulo the ideal 
generated by the holomorphic moment map relations. 

It is clear the Seiberg duality gives a large class of diagrams (i.e. gauge theories) 
that define the same quotient. For instance, one may always add a node with index 
0 and the perform Seiberg duality on that node. There are many interesting open 
questions here. Can one find a description that is manifestly invariant under Seiberg 
duality? Can one define a "minimal" quiver in any equivalence class under Seiberg 
duality? 

Acknowledgement. I am happy to thank the organizers of the school, and Rikard 
von Unge for producing a first draft of these notes. 
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