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NILPOTENT SPACELIKE JORDAN OSSERMAN 
PSEUDO-RIEMANNIAN MANIFOLDS 

P. GILKEY AND S. NIKCEVIC 

ABSTRACT . Pseudo-Riemannian manifolds of balanced signature which are both 
spacelike and timelike Jordan Osserman nilpotent of order 2 and of order 3 have been 
constructed previously. In this short note, we shall construct pseudo-Riemannian 
manifolds of signature (2s, a) for any s > 2 which are spacelike Jordan Osserman 
nilpotent of order 3 but which are not timelike Jordan Osserman. Our example and 
techniques are quite new because they are adapted to a completely new situation. 

1. INTRODUCTION 

Let (M,g) be a pseudo-Riemannian manifold of signature (p,q). Let 

S±(Myg) := {x'TM: (x,x) = ±1} 

be the bundles of unit spacelike and unit timelike vectors, respectively. Let R be the 
associated Riemann curvature tensor. If x G TpM, then the Jacobi operator J(x) is 
the self-adjoint linear map of TpM which is characterized by the identity: 

(l.a) 9(J(x)y, z) = R(y, x, x, z). 

One says that (M, g) is spacelike Osserman or timelike Osserman if the eigenvalues of 
J are constant on 5+(M, g) or on S~(M, g), respectively. These are equivalent notions 
if p > 1 and q > 1 [12] so such manifolds are simply said to be Osserman. 

If p = 0, and similarly if q = 0, then one is in the Riemannian setting. If (M, g) is 
a rank 1 symmetric space or if (M,g) is flat, then the local isometries of (M,g) act 
transitively on S+(M, g) so the eigenvalues of J are constant on S+(M,g). Osserman 
[19] wondered if the converse held. Work of Chi [7] and of Nikolayevsky [17] has shown 
this to be the case if the dimension is different from 8 and 16. 

If p = 1, and similarly if q = 1, then one is in the Lorentzian setting. Blazic, 
Bokan and Gilkey [1] and Garcia-Rio, Kupeli and Vazquez-Abal [9] have shown that 
Lorentzian Osserman manifolds have constant sectional curvature. 

The situation is quite different in the higher signature setting where p > 2 and q > 2. 
There exist Osserman pseudo-Riemannian manifolds which are not symmetric spaces 
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[2, 3, 4, 5, 11]; we refer to [10] for an excellent and quite comprehensive treatment of 
the subject. 

In the higher signature setting, it is natural to impose a more restrictive hypothesis 
and study the Jordan normal form of the Jacobi operator. We say that (M, g) is 
spacelike Jordan Osserman or is timelike Jordan Osserman if the Jordan normal form 
of J(x) is constant on S+(M,g) or on S~(M,g), respectively. Relatively few examples 
of such manifolds are known. 

The eigenvalue 0 is distinguished. One says that (M,g) is nilpotent Osserman if 
J(x)p+g = 0 or equivalently if 0 is the only eigenvalue of J(x) for any x G TM. The 
orders of nilpotency n(x) and n(M) are then defined by the properties: 

J(x)nW = 0, J(x)n{x)~l 7- 0, and n(M) := sup n(x). 
xeTM 

Fiedler and Gilkey [8] gave examples of m dimensional pseudo-Riemannian manifolds 
for any m > 4 where n(M) = m — 2; thus n(M) can be arbitrarily large. However 
for these examples, n(x) was constant neither on S+(M,g) or on S~(M,g) so these 
manifolds were neither spacelike nor timelike Jordan Osserman. 

Results of Gilkey and Ivanova [13] show that if (M, g) is spacelike Jordan Osserman 
of signature (p, q) where p < q, then the Jacobi operator is diagonalizable and hence 
(M,g) can not be nilpotent. Thus we suppose p > q henceforth. Examples of spacelike 
and timelike Jordan Osserman manifolds of neutral signature (s, s) which are nilpotent 
of order 2 have been constructed Gilkey, Ivanova, and Zhang [14] for any s > 2. 
Examples of spacelike and timelike Jordan Osserman manifolds of signature (2,2) 
which are nilpotent of order 3 have been constructed by Garcia-Rio, Vazquez-Abal 
and Vazquez-Lorenzo [11], This brief note is devoted to the proof of the following 
result: 

Theorem 1.1. If s > 2, then there exist pseudo-Riemannian manifolds of signature 
(2s, s) which are spacelike Jordan Osserman nilpotent of order 3 and which are not 
timelike Jordan Osserman. 

Our examples are quite different in flavor from those described in [11, 14] in several 
respects. The primary feature is that we are not in the balanced setting where p = q\ 
the extra timelike directions play a central role in our construction. Additionally, the 
examples of [11, 14] are also timelike Jordan Osserman; this is not the case for our 
examples. 

To prove Theorem 1.1, it is convenient to work first in a purely algebraic context. 
In Section 2, we shall construct a family of algebraic curvature tensors R on a vector 
space V of signature (2s, s) which are spacelike Jordan Osserman nilpotent of order 3 
and which are not timelike Jordan Osserman. We complete the discussion in Section 
3 by realizing this family geometrically. Our construction will show that in fact there 
are many such examples; although we shall use quadratic polynomials to define the 
metric in question, this is an inessential feature. 

2. ALGEBRAIC CURVATURE TENSORS 

Let V be a finite dimensional real vector space which is equipped with a non-
degenerate symmetric bilinear form g(-, •) of signature [p, q). Let R E ®4V*. We say 
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that R is an algebraic curvature tensor if R satisfies the symmetries of the Riemann 
curvature tensor: 

R(x, y, z, w) = -R(y, x, z, w), 

(2.a) R(x, y, z, w) = R(z, w, x, y), 

R(x, y, z, w) + R(y, z, x, w) + R(z, x,y,w) = 0. 

The associated Jacobi operator is then defined using equation (La) and the notions 
spacelike Jordan Osserman and so forth are defined analogously. 

Definition 2.1. Let s > 2. Let {Uu... ,US,VU ... ,Va,Tu... ,Ta} be a basis for R35. 
We let indices a, b, c, d range from 1 through s. Let gab = g^ be an arbitrary symmetric 
matrix. Define an inner product g of signature (2s, s) on R35 whose only non-zero 
entries are among the components: 

g(Ua, Ub) = gab, g(Ua, Vb) = g(Vb, Ua) = S^, g(Ta, Tb) = -Sab. 

Let 91 and 1Z be algebraic curvature tensors on Span{U0} = R5. Define a 4 tensor 
R = R^n on R35 whose only non-zero entries are among the components 

R(Uai Ub, Uc, Ud) : = VK(Ua, Ub, Uc, Ud), 

R(Ua, Ub, Uc, Td) = R(Ua, Ub, Tc, Ud) = R(Ua, Tb, Uc, Ud) 

= R(Ta, Ub, Uc, Ud) := ll(Ua, Ub, Uc, Ud). 

Lemma 2.2. Let %\ and 1Z be algebraic curvature tensors on R5. Let R := R^n be 
the associated 4 tensor on R35 given in Definition 2.1. Then: 

1. R is an algebraic curvature tensor on R35. 
2. IflZ(Ua, Ub, Uc, Ud) := Sad5bc — S^SM, then R is spacelike Jordan Osserman nilpo-

tent of order 3 and not timelike Jordan Osserman. 

Proof. LetU:={Ui,...,Ua},V:={Vl,...,Va},andT:={Tl,...,T9}. The sum of 
algebraic curvature tensors is again an algebraic curvature tensor. Because we have 
R = R?X,O + RO,K, the problem decouples. Clearly R^i0 is an algebraic curvature tensor 
since we may assume x,y,z,w GU in establishing the relations appearing in display 
(2.a). Thus we may set 9t = 0 and consider only the effect of 1Z in proving assertion 
(1). In that case, exactly one of the vectors x,y,z,w must be taken from T and 
the remaining 3 vectors must be taken from U. Suppose, for example, x E T while 
y,z,w £ U. Then replacing x by the corresponding element x € U replaces the tensor 
R by 1Z and thus the relations of display (2.a) follow for R due to the corresponding 
relations for 1Z\ Assertion (1) follows. 

The tensor 1Z of assertion (2) is the algebraic curvature tensor of constant sectional 
curvature +1 with respect to the standard scalar product (Ua, Ub) = Sab. Consequently, 
it is invariant under the action of the orthogonal group O(s). 

Expand a spacelike vector X e R35 in the form X = uaUa + vaVa + taTa where we 
adopt the Einstein convention and sum over repeated indices. Then 

g(X, X) = gahUaUi, + 25abuavb - S^t^. 

If u = 0, then g(X, X) < 0. Consequently u ^ 0. 
We now define a new basis of [/-vectors by making an orthogonal transformation of 

the original U basis such that, in the new basis, we have U\ = 1 and ua = 0 for a > 1 
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(we use also rescaling of the vector X if need be). If we now define a new basis of V 
vectors, and that of T vectors, respectively, using the same orthogonal transformation, 
then the general form of g and of R remains the same with respect to the new bases. 
Thus we may suppose without loss of generality that Ui = 1, and that ua = 0 for 
a > 1. For 1 < a,b,c,d< s, define nabcd := n(Ua,Ub,Uc,Ud). Then: 

(J(X)Ua, Ub) = Cab, (J(X)Ua, Tb) = nallb, (J(X)Ua, Vb) = 0, 
(J(X)Ta,Ub)=nanb, (J(X)Ta,Tb) = 0, (J(X)Ta,Vb) = 0, 
(J(X)Va, Ub)=0, (J(X)Va, Tb) = 0, (J(X)Va, Vb) = 0, 

where Cab = Cba is an appropriately chosen matrix. We then have: 

j(x)ua = cabvb - nallbTb, J(x)Ta = naUbVb, J(x)va = o. 
It is now clear that J(X)3 = 0. We have J(X)X = 0 and J(X)V0 = 0. Since nanb = 0 
if a = 1 or b = 1, J(X)T\ = 0. Furthermore, 7£0n& = 6ab for a > 2. Since u\ = 1, 
{X, U2,..., US,TU ...,Ts,Vi,.. .,VS} is a basis for V = R35. Consequently: 

Rauge(J(X)) = Span{J(X)X, J(X)U2,..., J(X)US, J(X)TX,..., J(X)TS, 

J(X)VU...,J(X)VS} 

= Span{J(X)[/2,..., J(X)US, J(X)T2,..., J(X)TS} 

= Sv*Ji{C2bVb-T2,...,CsbVb-Ts,V2,...,Vs}. 

The set {C2bVb -T2,..., CsbVb - Ts, V2,..., Vs} is linearly independent. Furthermore: 

Rauge(J(X)) n ker(J(X)) = Span{V2, •. •, Vs} , 

Range(J(X)2) = Span{V2, ...,VS}. 

Clearly the tensor R is spacelike Jordan Osserman nilpotent of order 3. Since J(T\) = 0 
while J(U\ - V\) = J(Ui) ^ 0, R is not timelike Jordan Osserman. • 

3. GEOMETRIC REALIZATIONS 

We complete the proof of Theorem 1.1 by showing that the structures of Lemma 2.2 
are geometrically realizable. The metrics we shall consider are similar those described 
in different contexts in [6, 15, 18]. We take coordinates (u,v, t) on R35 where u = 
(uu...,us), v = (vu...,vs), a,ndt = (ti,...,ts). Let 

%'•=&> «:=&' and 9 * : = £ 
be the associated coordinate frame for the tangent bundle. 

Definition 3.1. Let n be an algebraic curvature tensor on the vector space R5. Set 
i>abcd := -l(nacdb+nadcb); ipabcd = V w = ifrabdc- Define a pseudo-Riemannian metric 
g on R35 of signature (2s, s) whose only nonzero entries are among the components 

g(u, v, t)(8%, d%) = ifobcdUctd, 

g(u,v,t)(dl,dl) = g(u,v,t)(dldl) = 6ab, 

g(u,v,t)(dt
a,d

t
b) = -6ab. 

Theorem 1.1 will follow from Lemma 2.2 and from the following Lemma: 
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Lemma 3.2. Let TZ be an algebraic curvature tensor on Rs. Let g be the associated 
pseudo-Riemannian metric of signature (2s, s) on R3s given in Definition 3.1. Let 
P = (u,v,t) e R35. Let R(P) be the curvature tensor of g at P. LetVK be the algebraic 
curvature tensor on W with <R(P)abcd '•= -Z2(-D)(9U,3",^U,3U). Then R(P) = R^p^n 

is given in Definition 2.1. 

Proof. At this point, we change our indexing convention slightly for the remainder 
of the proof. We shall let indices a, 6, c index elements of U := {9J*,..., d"}, indices 
a, /3,7 index elements of V := {dj*,..., 9^}, and indices i, j , k index elements of T := 
{9{,.. . , dl}. Indices n , r 2 , . . . will index the full coordinate frame 

By an abuse of notation, we shall set Fate = 9(^d^dbid^), r^ j = ^V^d^c?-) , etc. 
We replace an element of T by the corresponding element of U to define Vwi, T^otd, 
T̂ oWc, ^oi6c, and Hiabc The non-zero components of the Christoffel symbols of the 
metric are: 

, x Voftc = \($bcai + i>acbi - ^o6ci)*i , 

- io6 = -• aib = ~~I abi = 2 ™6ci^c • 

We raise indices to see: 

(3.b) 1nr2 = 0 , 1 rir2 = """-• r i w a n o - Irir2 = I nr2a • 

The curvature tensor is given by: 

•^rir2r3r4 = £r\*- T2TZTA ~~ ^rj-- nr3r4 ~r 1 T\T^TA*- ^ 3 ~~ 1 ̂ ^ 4 - rir3 

If r5 indexes an element of V, then r ^ * = 0 by equation (3.a) while if r5 indexes an 
element of W, then T*/5 = 0 by equation (3.b). Thus r5 must index an element of T 
and consequently, we may express:-

l-'W -^rir2r3r4 = ^ri-- T2TZT± ~~ &T2*- rir3r4 + I riir4-- r2r3 ~" -• r2i^l nr3 • 

Thus by equation (3.a), quadratic terms in T can only appear in equation (3.c) if ru 

r2irsj and r± all index elements of U. The only other non-zero curvatures occur when 
exactly one of r„ indexes an element of T and the remaining ru index elements of U. 
We may therefore compute the proof by computing: 

R{%, d%, %, dl) = d^Tbci - d^Faci = \$acbi - 4>bcai) 

= —3 V'̂ a6ic + '^aibc ~~ '^baic ~~ >^biac) 

— ~""(2^a6ic — T̂ ia&c ~" Hibca) = ~" ^(2T^abic + Hicab) = Habci- ---" 

Remark 3.3. It is worth giving a very specific example. Define an inner product g on 
R6 whose non-zero components are, up to the usual Z2 symmetries, included among 

0(^3?) = -2112*2, 9(dld%) = -2ultli g(dld2)=u1u2i 

9(dl 81) = g(dl dl) = -g(dl d[) = -g(8l %) = !. 

This manifold has signature (4,2). It is spacelike Jordan Osserman nilpotent of order 
3. It is not timelike Jordan Osserman. Furthermore, it is curvature homogeneous up 
to order 0 as defined by Kowalski, Tricerri, and Vanhecke [16]. 
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