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CONSERVATION OF PSEUDO-NORM IN VT SYMMETRIC 
QUANTUM MECHANICS 

MILOSLAV ZNOJIL 

ABSTRACT. We show that the evolution of the wave functions in the VT symmetric 
quantum mechanics is pseudo-unitary. Their pseudo-norm (^|P|^) remains time-
independent. This persists even if the VT symmetry itself becomes spontaneously 
broken. 

1. INTRODUCTION 

Evolution in quantum mechanics [1] 

\r{,(t)) = e-iHt\m) 
conserves the norm of a state. The assumption H = H* of the Hermiticity of the 
Hamiltonian leads to the time-independence of the probability density, 

(i) (m\m) = (m\eiHUe-iHtmo)) = <mm) • 
Vice versa, in the light of the Stone's theorem, the unitarity of the evolution implies 
the Hermiticity of the Hamiltonian. 

Apparently, there is no space left for the non-Hermitian Hamiltonians which were 
recently studied by Bender et al [2]-[22]. The latter formalism may prove inspiring 
in field theory [3] but, as an extended quantum mechanics, it contradicts the Stone's 
theorem. In what follows, we intend to clarify this point. 

Section 2 reviews a few basic features of the extended formalism which replaces 
the Hermiticity H = H^ by its weakening H = H*. The latter property (called VT 
symmetry) is explained and several parallels between the symmetries H = H* and 
H = H* are mentioned. Explicit VT symmetric square well solutions [4] are recalled 
as an illustration of the whole idea. 

The introductory part of section 3 recollects the regularized spiked harmonic oscil­
lator bound states of ref. [5] as a solvable example of a VT symmetric system which 
is defined on the whole real line. With its orthogonality and completeness properties 
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kept in mind, we arrive at the first climax of our paper and formulate the appropriate 
modification of the conservation law (1) in the case of a general non-Hermitian system 
with the unbroken VT symmetry. 

At the beginning of section 4 the construction of the harmonic bound states is ex­
tended to the domain of couplings where the VT symmetry of the wave functions 
becomes spontaneously broken. We show how all the Hilbert-space-like concepts of 
orthogonality and completeness of the states may be generalized accordingly. In par­
ticular, the VT symmetric norm (or rather pseudo-norm) proves so robust that the 
new conservation law of the type (1) remains valid even in the spontaneously broken 
regime where the energies cease to be real. 

2. VT SYMMETRIC QUANTUM MECHANICS 

The concept of the extended, non-Hermitian quantum mechanics with the require­
ment of VT symmetry of its Hamiltonians grew from several sources. The oldest root 
of its appeal is the Rayleigh-Schrodinger perturbation theory. Within its framework, 
Caliceti et al [6] have discovered that a low-lying part of the spectrum of the cubic 
anharmonic oscillator # = p2 + x2 + gx3 is real for the purely imaginary couplings g. 
This establishes many formal analogies with quartic oscillator [7, 8]. 

A different direction of analysis has been accepted by Buslaev and Grecchi [9] who 
emphasized and employed some parallels between the Hermiticity and VT symmetry 
during their solution of an old puzzle of perturbative equivalence between apparently 
non-equivalent quartic anharmonic oscillators [23]. 

A mathematical background of the non-unique choice of the phenomenological Hamil­
tonians with real spectra has been pointed out, in non-Hermitian setting, by several 
authors [10]. Bender and Milton [11] emphasized the relevance of the unique analytic 
continuation of boundary conditions for the clarification and consequent explanation 
of the famous Dyson's paradox in QED [24]. 

In the cubic anharmonic models # = p2 + x2 + igx3 the reality of the energies at 
the sufficiently small g [6, 12] resembles the quartic case. Bender and Boettcher [13] 
attributed this connection to the commutativity of the Hamiltonian with the product 
of the complex conjugation T (which mimics the time reversal) and the parity P, 
# = VTHVT = #*. An acceptability of this conjecture has been supported by a few 
partially [14] as well as completely [15] exactly solvable models. 

In the physics community, a steady growth of acceptance of the VT symmetric 
models can be attributed to their possible phenomenological relevance. The cubic 
# = p2 + ix 3 has been found relevant in statistical physics [16] and its non-linear 
perturbations # = p 2 + (ix3)l+s were studied in field theory [17]. In all these models, 
a key argument that they can prove useful in some applications has been based on the 
reality of their spectrum. This argument is slightly misleading as we shall see in what 
follows. 

2.1. Solvable illustration: Square well. The possibility of a spontaneous break­
down of the reality of the energies has been recently studied via a VT—symmetric 
quartic oscillator # = p2 + igx + x4 [18]. In this model, one spots the sequence 
of "critical" couplings gn such that, step by step, the lowest real pair of the bound 
state energies E2n and -Ê n-i-i becomes converted into a complex conjugate doublet 
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beyond g = gn. Such a pattern may prove characteristic for a fairly broad class of 
non-Hermitian interactions. For the sake of simplicity of the whole discussion, let us 
pick up the Schrodinger bound state problem on a finite interval, 

^ ' " ' ^ Wl) = ft^l), Vn(-l)=VV.(l) = 0, (2) 
c Ь - + V ( x > 

i i \ — JsinA(x + l), x < 
l W ~ ( o s i n K ( Z - 1 ) , X > 

equipped with one of the most elementary VT symmetric forces V(x) = —zT2signx. 
Then, the ansatz 

0, 

0 

with E = k2 defines the solutions via the matching condition at x = 0. Using an 
abbreviation X = p — iq and rules 

X2 = k2-iT2, K

2 = k2 + iT2 = (X*)2 

we get the elementary matching condition 

tan A _ . 
—-— = purely imaginary 

A 

which is equivalent to the elementary rule 

q sinh 2q = — p sin 2p. 

Its numerical solution has been discussed elsewhere [4]. Still, without any detailed 
numerical computations one can fairly easily see that in the two-dimensional p — q 
plane, the left-hand-side function forms a valley with zero minimum along the line 
q = 0. The right-hand-side periodically oscillates with an increasing amplitude. One 
can conclude that the positive solutions p(q) > 0 of the latter equation form an 
infinite family of ovals which are symmetric with respect to the p-axis. The n-th 
oval is confined between the zeros of the sine function, i.e., between the two lines 
p = (2n + 1)TT/2 and p = (2n + 2)ir/2. With the growth of n = 0 ,1 , . . . . the ovals 
are longer as their ends move farther and farther from the p—axis. In the n ^> 1 
asymptotic region, we get the estimate pend « (n + 3/4)7r and qen^ « Inn. 

As long as the definition of p and q implies that p = T2/(2q) we get the second 
curve which is a plain hyperbola in p — q plane. The final solutions (i.e, intersections 
of this hyperbola with all the ovals) move close to the standard square well solutions 
in the quasi-Hermitian limit where n > T 2 . 

At the opposite extreme, the two lowest real energies determined by the lowest 
oval cease to exist for the sufficiently strong imaginary part of the force, i.e., for 
T 2 > T2

r i t « 2pend<7end- In the light of the previous estimates, the values of these 
critical points will grow with the number n of the oval in question. At n = 0 one has 
22**4 .48 [4]. 

3. MODELS WITH UNBROKEN VT SYMMETRY 

We can summarize that the elementary and exactly solvable PT-symmetric square 
well model has a spectrum En which remains real in a certain non-empty interval of 
couplings T G (0,T0). At the boundary T = T0 with certain exceptional features 
[25], the lowest energy doublet E0 and E\ merges into a single state. The most 



214 MILOSLAV ZNOIIL 

immediate fructification of this experience lies in the possibility of its transfer to the 
VT symmetric potentials on a "more realistic" infinite interval of coordinates. 

3.1. VT symmetric harmonic oscillators. A nontrivial example which is solvable 
on the full real line is the VT symmetric harmonic oscillator described by the differ­
ential Schrodinger equation of ref. [5], 

(3) 
d2 G 

dx2 (x — iS)2 фn(x) = En фn(x), фn(x) Є F2(-oo, oo). 

This equation with G > -1/4 can be interpreted as a confluent hypergeometric equa­
tion where an elementary change of the coordinate x = r+i S eliminates all the unusual 
imaginary terms. At the same time, due to the analyticity of such a transformation, 
one can simply keep r on the real line with a small complex half-circle circumventing 
the singularity in the origin (r = 0). Without any loss of generality we can then work 
with the complex general solution of our equation. It is available in closed form, 

i>(x) = o(+)r
1/2-aer2/2 i^i [j(2 -E- 2a), 1 - a;r2] 

+ CHrl'2+aer2'2 & [i(2 -E + 2a), 1 + a; r2] . 

This facilitates the use of the asymptotic boundary conditions. In the standard way 
described in any textbook [26] the idea works without alterations since the general so­
lutions grow exponentially unless one of the confluent hypergeometric series terminates 
to a Laguerre polynomial. This gives the compact wave functions 

^N(r) = yVV'2"^ e"r2/2 L<TQQV) 

with the quasi-parity Q = ± 1 , main quantum number n = 0,1, . . . and subscripted 
index N = 2n + (1 - Q)/2. The energies 

(4) EN = 4n + 2-2Qa, a=\jG+^, G > ~\ 

remain real for the positive centrifugal-like parameters a > 0. These energies de­
crease/grow with G for the quasi-even/quasi-odd quasi-parity Q of the state, respec­
tively. 

If necessary, we can return to the Hermitian case and reproduce the usual radial 
harmonic oscillator solutions, provided only that we cross out the "unphysical" quasi-
even states. These states violate the textbook boundary conditions [1]. The only 
exception concerns the regular limit (one-dimensional case) with G = 0 (i.e., a = 1/2) 
and two parities Q = ± 1 . In this sense, the full spectrum (4) of our complexified 
oscillator represents a comfortable formal link between the seemingly different one-
and three-dimensional Hermitian cases [19]. 

3.2. Scalar product and orthogonality. Let us return to a general Hamiltonian 
H = H* and assume that its spatial parity V becomes manifestly broken, VHV = 
THT 7-= H. We may define the quasi-parity as a constant integer Qn = (-l)n in the 
n—th state. This generalizes the above square well and harmonic oscillator construc­
tions and applies also to the quartic oscillator of ref. [18] in a constrained domain of 
the couplings g 6 (0, #o)-
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In the first step we introduce the indeterminate scalar product defined by the pre­
scription ((j>\V\ip) of ref. [20]. It does not possess the property of definiteness and 
defines merely a pseudo-norm. The disappearance of the self-overlap (ip\V\ip) = 0 
does not imply that the vector \tp) must vanish by itself. 

The main merit of such a definition of the scalar product lies in the observation 
that it leads to the usual orthonormality of the left and right eigenstates of the VT 
symmetric Hamiltonians and Schrodinger equations [8], 

WP|i) = ftt, m,n = 0,l,... 
The completeness relations also acquire the form mentioned in ref. [20], 

oo 

n=0 

The related innovated spectral representation of our non-Hermitian VT symmetric 
Hamiltonians can be written in a bit unusual but fully transparent manner, 

oo 

H = Y,tyn)EnQn(i>n\V. 
n=0 

This enables us to infer that the time evolution of the corresponding system is pseudo-
unitary, 

oo 

\m) = e~iHt \m) = £ IV-n) e-iEnQ"* WnW\lP(0)) , 
n=0 

and preserves the value of the scalar product in time, 

(m\-p\m) = (m\-p\m)-
We have to stress that the Stone's theorem (which relates the unitary evolution law 
to the Hermitian underlying Hamiltonians) finds the first interesting extension here. 

4 . SPONTANEOUSLY BROKEN VT SYMMETRY 

4.L Harmonic oscillator inspiration. Clear parallels between the Hermitian and 
non-Hermitian VT symmetric Hamiltonians remain marred by the possibility that in 
the latter case the reality of the spectrum could break down at certain couplings. We 
have seen that "step-by-step", at an increasing sequence of the couplings, the levels 
can cease to be real even for the most transparent square well and quartic examples. 
Here, we are going to explain that from a formal point of view, the break-down of the 
VT symmetry can still remain quite innocent in its physical consequences. 

When we return to the harmonic oscillator example (3), we can mimic the break­
down of the VT symmetry when we remove the constraint G > —1/4 which was 
inherited from the standard Hermitian quantum mechanics where its violation would 
cause the unavoidable fall of the particles into the attractive strong singularity in the 
origin [1]. 

In the present non-Hermitian context, one cannot find any persuasive excuse why 
the smaller couplings G < - 1 /4 could not be admitted as legitimate. Of course, 
they give the purely imaginary parameters a = 27 = z ^ / - l / 4 - G but the rest of 
the construction in subsection 3.1 would remain perfectly valid. In particular, the 
termination of the hypergeometric series will definitely determine the normalizable 
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solutions existing at the complex energies. This is a puzzle which is to be resolved 
here. 

Our illustrative harmonic oscillator energies form the two complex families, 

(5) £ „ = 4 n - r 2 - 2 i Q 7 , 7 = < / -G- i>0, G < ~ . 

These energies (as well as their Laguerre-polynomial wave functions) are numbered, 
as above, by the quasi-parity Q = ±1 and by the integers n = 0 , 1 , . . . in the index 
N = 2n+ ( l - Q ) / 2 . 

We are going to demonstrate now that the similar families of the complex energies 
can still be interpreted as admissible solutions. We shall see that, rather counterintu-
itively, there exists in fact no acceptable reason why the complex spectrum (5) should 
be forgotten [21]. 

We have to return to a model-independent argumentation. In the case of the broken 
symmetry, we shall only assume that the two solutions with E ^ E* have to be sought 
simultaneously 

4.2. The case of the complex conjugate pairs of the energies. In a way inspired 
by ref. [22] we may assume that the VT symmetry of the Hamiltonian becomes broken 
by a pair of the wave functions. One gets the two respective Schrodinger equations 

H\^+) = E\i,+), H\4>_) = E*\i>_). 

As long as we have H ^ H* = V HV, we may also re-write our equations in the form 
of action of the Hamiltonian to the left, 

(1>+\VH = E*(1,+ \V, (1p_\VH = E(rj}_\V. 

Out of all the possible resulting overlaps, let us compare the following two, 

(rP+\VH\i>+)=E*(i,+ \V\i>+), (xl>+\VHty+) = E(xl>+\V\i>+) 

and, in parallel, 

(iP_\V H\iP_) = E* (iP_\V\ip-), (ip_\VHty_) = E(r{>_\V\rl>_). 

These alternatives imply that for E ^ E* the self-overlaps must vanish, 

0 + | : P | V + > = O, <v-mv<-> = o. 
This leads to several interesting consequences. Firstly, we are free to employ the 
following less common normalization 

(rP+\V\i>-) = [(TP-\V\TP+)}* = c, 

and, wherever needed, re-normalize c -> ±1. This convention is less common but can 
be still interpreted as a generalized orthonormality condition in any two-dimensional 
subspace of the linear pseudo-normalized space of the VT symmetry breaking states. 
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4.3. Evolution under the broken VT symmetry. For the sake of simplicity, let us 
assume that the VT symmetry is broken just at the two lowest states. The necessary 
modification of the completeness relations adds then just the two new terms to the 
sum over the unbroken ̂ n ' s , 

1 1 °° 
/ = \«,+) - ty_\V + \i>-) - ty+\V + £ |V,„) Qn(i,n\V. 

C C n=2 

The forthcoming modification of the spectral decomposition of the Hamiltonian adds 
the similar two new terms to the sum over the unbroken energies, 

J? J?* 00 

H=\ip+)-(i>-\V + ty-) — (i>+\V + Y.\^n)EnQn(^n\V. 

Finally, the pseudo-unitary time development acquires the compact form as well, 

m))=e-im\m), 
1 1 °° 

e-im = \^+)-te-iEt(^-\V + \^.)-e-iE'\^+\V + £ ^e^^^W. 
C C n=2 

It is quite amusing to discover that the value of the scalar product is conserved, 

mmm) = mmm) • 
A full parallel to the conventional quantum mechanics is established. 

5. SUMMARY 

We may summarize that far beyond the boundaries of the ordinary quantum me­
chanics, the above-mentioned difficulties with the implications of the Stone's theorem 
in VT symmetric context were shown related to the "hidden" use of a pseudo-norm. 
Vice versa, after one admits that the vanishing (pseudo-)norm need not imply the van­
ishing of the state, a modified version of the Stone's theorem is recovered. We have 
shown that the appropriately defined self-overlaps of the states remain unchanged in 
time not only in the systems characterized by the preserved VT symmetry, but also 
in the domains of couplings where this symmetry is spontaneously broken. 

A consistent and complete interpretation of the extended quantum formalism is not 
at our disposal yet. Still, several new features of it have been revealed here. For 
example, it seems to mimic some properties of the indefinite metric which is already 
of quite a common use, say, in relativistic physics. 

Acknowledgement. An e-mail-mediated discussion with I. Herbst and G. A. Mez-
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