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Q-CURVATURE AND SPECTRAL INVARIANTS

THOMAS BRANSON

The concept of Q-curvature was introduced in [8, 19, 9, 10], and has since been seen
to be a central object in conformal geometry and geometric analysis; see for example
(22, 21, 23, 24, 25, 31, 32, 39, 41, 42, 43]. The Q-curvature in large part governs the
movement within a conformal class of the functional determinant of positively elliptic
operators with reasonable conformal properties; in particular the conformal Laplacian.
It also governs the movement of the Cheeger half-torsion and related detour torsion
quantities which we shall examine in detail below, reporting on recent joint work with
Rod Gover. Closely related to this is a natural, geometric expression of Beckner’s
higher dimensional Moser-Trudinger-Onofri inequality in terms of Q-curvature. Gra-
ham and Hirachi [39] have recently shown that the Q-curvature also provides a natural
higher-dimensional generalization of Weyl relativity, in that its total metric variation
is the Fefferman-Graham obstruction tensor, itself a higher-dimensional analogue of
the Bach tensor. The original construction of the Q-curvature was based on the GJMS
operator series constructed in [40], but in the other direction, the Q-curvature implic-
itly contains within it enough information to construct the critical GIMS operator P
via conformal variation.

This material was the subject of 3 lectures presented at the 24" Czech Winter School
on Geometry and Physics held in Srni in January 2004. These notes draw on recent
work with Rod Gover and with Mike Eastwood. The author would like to thank Pierre
Albin, Alice Chang, Mike Eastwood, Rod Gover, Robin Graham, and Paul Yang for
enlightening discussions on this material.

1. INTRODUCTION TO Q-CURVATURE

We begin by describing the vacua that Q-curvature is meant to fill.

The Einstein tensor, or divergence-free Ricci tensor E := r — %Kg (where g is a
pseudo-Riemannian metric, r is its Ricci tensor, and K is its scalar curvature) is the
total metric variation of the scalar curvature in dimensions n > 2. This means that if
we take a smooth curve of metrics g(¢), denote (d/de)|.=o by a e, and suppose that

g(O)"—‘g) g°'=h,

This paper is in final form and no version of it will be submitted for publication elsewhere.



12 THOMAS BRANSON

then

Q) ( f Kdvy). = / h®E v,

for compactly supported h, where dv, is the pseudo-Riemannian measure. The indices
on the right in (1), and whenever indices are used below, are abstract ones; in particular
no choice of frame is implied. An index appearing twice, once up and once down,
indicates a contraction. (1) shows how the Einstein-Hilbert action [ K leads to the
Einstein equation.

In the first half of the last century, some mathematicians and physicists considered
alternatives to the Einstein-Hilbert action in dimension 4 that are invariant under
uniform scaling § = a?g, where a is a positive constant. The most famous of these is
the action of Weyl relativity,

W)= [ IcPd,,

where C is the Weyl conformal curvature tensor of g (see (45) below for a formula).
Since uniform scaling by  induces the response W(g) = o *W(g) in this functional,
it is scale-invariant in dimension 4. Moreover, the Weyl integrand is conformally
invariant in dimension 4: if § = Q2g for Q a smooth positive function, then (|C|*dv); =
(IC|*dv)g. Thus instead of critical metrics for the Weyl functional, one has critical
conformal classes

9] = {Q?g |0 < Qe C*(M)},
where M is the underlying manifold. To further specify a metric within a conformal
class, one might try to use the scalar curvature prescription equation

(@) (A+1K) Q=K (n=4)

and demand, for example, that K be one’s favorite constant (usually %1 or 0).
The total metric variation of the functional W(g) is called the Bach tensor:

( / |C|2dv,). - / KBudu, (n=4).

Note that this defines B uniquely, and that as the total metric variation of a con-
formally invariant quantity, the Bach tensor must be conformally invariant. The cal-
culation corresponding to this last-mentioned property goes as follows. Let €™ be a
1-parameter group- of conformal factors; here the parameter 7 runs through R, and
w is a smooth function. Let g(e) be the one-parameter family of metrics above, and
compute

62
A W(e*™g(e))
06| (¢ ny=(0,0)

in two ways, using the fact that the mixed partials in different orders coincide. Differ-
entiating first with respect to €, we get

!
( / (6—2"%“")(Bgzzug),,,,ewdug) =2 / wh®B(g)apdv, + / heB.,d, ,
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where the prime denotes (d/dn)|q=0. But differentiating first with respect to 7, we get
0. The conclusion is that

«lzb = —2wBu (n=4),

since h was arbitrary. This shows that B, is a conformally invariant section of
E(at)[—2], the symmetric 2-tensor densities of conformal weight —2. (See the lectures
of Rod Gover at this conference, [36], for notational conventions on conformal tensor
density bundles.) In addition, B must be trace-free, since if A is a function times g,
the variation in the A direction is a conformal variation. This gives

Bab € g(ab)o [—2] (n = 4) ,

where the subscript 0 on the indices means “trace free”.

In higher even dimensions, there is an established generalization of the Bach tensor,
namely the Fefferman-Graham obstruction tensor A,z [30]. The Feflferman-Graham
ambient metric construction starts with a conformal structure of signature (p,g) on
an n-dimensional manifold M, and attempts to construct, on a collar M of the con-
formal metric bundle @ over M, a Taylor series for a pseudo-Riemannian metric h of
signature (p + 1, ¢+ 1) with vanishing Ricci tensor. In even dimensions, the recursion
for this Taylor series is obstructed at finite order, and one cannot continue without the
vanishing of Ag. The tensor A, is conformally invariant when viewed as an element
of Eas),[2 — n]. (Note that since we start only with a conformal structure on M, the
obstruction to the ambient metric construction must be a conformally invariant object
of some kind.) In dimension 4, A coincides with the Bach tensor.

Robin Graham has pointed out that one way to predict several properties, in par-
ticular the conformal weight, of A is to look at the linearization D of the nonlinear
operator carrying g to A(g). If hay € Eay)o[2], 50 that A% € £(@)0[—2], then

Dh= A", where ¢*=h.
Thus if we know that A, is conformally invariant, say as an element of £(g),[w], then
D : Eqaryo[2] = Eayo[w]

is conformally invariant. A qualitative inspection of the way in which the obstruction
arises shows that D is nontrivial in the conformally flat case. Thus we may consult
the classification of conformally invariant differential operators on the sphere in [5] to
find that the only possibility is

(3) D : Eans[2] = Eqaryo[2 — 7]
In fact, Weyl group considerations in the conformally flat case force the weight 2 — n

in the target even if D is not known to be differential.

Question. Is there a quantity which generalizes the Weyl action to higher even
dimensions, in the sense that its total metric variation is Ag?

Answer. Yes, the Q-curvature, according to a recent result of Graham and Hirachi

[39]. That is, .
(/ deg) = /h“b.Aabdvg.
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How does this fit with the above 4-dimensional discussion? In dimension 4,
Q=3 (8K~ K2~ 3)f?)

is a linear combination of the Pfaffian (or Euler integrand) Pff, |C|%, and the exact
divergence AK. Since the integral of AK is identically zero, and that of Pff is inde-
pendent of the metric, the total metric variation of @ is (up to a constant factor) the
same as that of |C|2.

This indicates that the way to generalize the phenomenon exhibited by the pair
(IC|%, B) is not, for example, to look at |C|* in dimension 8; such things will produce
zero in the conformally flat case, rather than an operator like (3). The 6-dimensional
case is illuminating in this regard; see Sec. 4 below.

In addition to its interesting total metric variation, the Q-curvature has as its con-
formal variation the critical GJMS operator P (see Definition 2 and Remark 4 below).

Note that A, like any total metric variation, is divergence free. Indeed, to take the
variation in the direction of a one-parameter family of diffeomorphisms, one just takes

h® =VeX® + VP X°
for some vector field X. Integrating by parts in the diffeomorphism invariance condi-
tion for @, one obtains

0= / (VeXb + VP X% Ag = —2 / XV A

Since X was arbitrary, V2 Ay, = 0.

The Q-curvature turns up naturally from an approach in an apparently unrelated
direction. The Moser-Trudinger inequality (44, 4] says that for a suitably differentiable
function w on the sphere S?,

(4) log / eXw-9)de < / w(Aw)dE,
S§2 S§2

where d¢ is normalized round measure, and @ := [, g1 wd€ is the average value of w.
Furthermore, one has equality in (4) if and only if w is the conformal factor of a
conformal diffeomorphism h; that is,

(5) (h™1)*go = e*gq,

where go is the round metric.
In [4], Beckner generalized this to higher dimensions (see also Carlen-Loss [20]).
Looking at even dimensions for simplicity, Beckner’s inequality says that

n(w-a) n
(6) tog [ ene-0ag < s [ w(puae,
where

()  P=A{A+n-2H{A+2(n—-3)H{A+3(n—-4)}...{A+2(2-1)},

with equality if and only if w is a conformal factor; i.e. iff (5) holds.

Inequalities closely related to Beckner's play roles in recent work on important
problems; for example, de Branges’ resolution of the Bieberbach conjecture (via the
Lebedev-Mihlin inequality), and Perelman’s work on the Poincaré conjecture (via
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Gross’ logarithmic Sobolev inequality). All these inequalities are endpoint derivatives
of sharp borderline Sobolev imbedding inequalities, or duals of such.

Question. Is there an expression of Beckner’s inequality in terms of some local in-
variant? | ‘l /

Something of a template for such an e{tpres;sion may be taken from the Yamabe
problem of prescribing constant scalar curvature! In dimension 4, this problem is

governed by equation (2) above; in dimensions n > 3,/th‘é generalization is

=y
The Yamabe problem is attacked (51, 50, 3, 48] by looking at the Yamabe gquotient
(Yu,u):

”"”12,2»/(7-—2) ’

which encodes information about the borderline Sobolev embedding L? « L?/("=2),
According to the Yamabe equation (8), the Yamabe quotient is

n-—2 =
4__(n— 0 /Kd’l)g,
provided § = Q2%g has total volume 1. Thus the Yamabe problem is closely related to

the search for critical points of a locally defined functional, namely [ K dvg.

Answer. The Q-curvature describes Beckner’s inequality, though in a somewhat
different way from that suggested by the Yamabe template above. Suppose § = e?’g
is a metric conformal to the round metric g, and with the same volume. Let Q denote
the (—n)-density version of the Q-curvature. This is akin to always considering Q,dv,
instead of ;. Then Beckner’s inequality says exactly that

0< [ w@+a),

with equality if and only if (5).

This may seem a little unsatisfying, as it mentions the conformal factor, measured
from the round metric, explicitly. A more invariant way to describe this is to look at
cocycles on the conformal class [g] := {e*g | w € C®°(M)}. The conformal factor

w=w(g,g) = ;10g(3/9)
is one such cocycle, since it satisfies the condition
9) g=e"g, §=¢€"7 = w(g,9) =w(9,9) +w(g9).

(Each side of (9) is an expression for w + 7.)
A more subtle cocycle, valued in R rather than (as w is) in C®(M), is

(10) G0 = [ w@+Q).
Because w is alternating, i.e. w(g, 9) = —w(g,9), so is #. The cocycle condition on H,
H(G,9) =H@.9) + 1@, 9),
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is not at all obvious, and is intertwined with the other properties that make Q what
it is; see Remark 8 below.

2. INEQUALITIES

Pending a detailed discussion below of the cocycle property of (g, g), let us assume
it, as well as the related conformal change law for Q,

Q=Q+Puw,

where P is the critical GIMS operator. There is some ambiguity, for general conformal
classes, as to what should be considered the “best version” of Q, but in the conformally
flat case (the backdrop for all the sharp inequalities on round S™ that we shall discuss),
Q is unique.

One aspect of the cocycle (10) that is quite relevant to its appearance in determinant
and torsion quantities is its lack of scale invariance. If we change § to €23, then Q
and Q are unaffected, but w changes to w+c. This adds 2a [ Q to #(g, g), since [ Q
is conformally invariant. (See Remark 6 below.) One cure for this is to add a volume

penalty:

(11) 7(9,9) = / w(@+Q) -

or simply to restrict to a slice in the conformal class consisting of metrics of a fixed
volume. Our volume penalty is clearly also a cocycle, so H is a cocycle.

There is now some prospect of getting a minimal metric g for this cocycle; that is,
a metric g in the conformal class satisfying

0<H(Gg), allgelg.

Beckner’s exponential class inequality identifies the minimal metrics for the round
conformal class as the round metrics:

fQ vol§
n gvolg’

Theorem 1. [Restatement of [4], Theorem 1] In the round conformal class on S™ for

n > 2, the minimal metrics for ﬁ(ﬁ, g) are ezactly the positive constant multiples of
the h*go, where h is a conformal transformation and gy is the standard round metric.

Another way of writing this is as follows. Let £ = (1/w,) [, where wy, is the volume
of round S™. Then

<AG.0) = [u@+Q) - g L7
= fol@:9) - % (fa) s fe
2Q+Pw

=2(n—1)wp,o + w,.][wa - 2—“;:—Qlog][e"“’

—1)! -
=Wy { ][wa - Mlog fe"(“"“’)dvg} .
n
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where @ is the average value of w, since @ takes the constant value (n — 1)! at the
round metric ([9], Theorem 2.8(f)). Since P has the form (7) on S™, we have arrived
at (6).

Prospective generalizations of the Beckner-Moser-Trudinger inequality to more gen-
eral manifolds are Adams-Fontana type inequalities [1, 33). These take the form (on a
compact Riemannian manifold (M, g))

1 Blu—a)?
- P ) <
12) i Lo (llV"ﬂuH% <

where (3 is a positive constant, and cs is a positive constant depending on 3. The
form of this inequality that may be readily compared with a Beckner-Moser-Trudinger
inequality is
(13) —1—10g/ e"®=% < logcs + n—2||V"/2uH2.

vol g M =0T g 2
Indeed, by the Schwartz inequality at each z € M,

2
. — 7). o pon/zy)2 < 2 T ons2, 4
2:VB(u=1)- 5 IV"ully < Blu—a)* + 751V ull,

SO
- Blu — ﬁ‘)2 n? n
19 nlu=1) < Som + I,
’ t
and

og (- [0 <tog - [ exp(its(ean. 10)

vol g
2 —=\2
= o2y 41 1/ Blu — )
v ““2+°g(volg P [verzulg)

Assuming the Adams-Fontana inequality (12), this is <RHS(eqn. (13)).

To assess the meaning of the Adams-Fontana inequality for the round conformal
class on S*%, note that [1, 33] allow us to take 8 = 327% +¢, where € > 0, in dimension
4, so that

n? 1 ,
—_— = —— = ,
46  8n?
where €’ is any small positive number. On round 54,
1 3 1
— = o,
8 8w 3
WSt mEe

so qualitatively we have reached the Beckner-Moser-Trudinger form. The various
sharpnesses (the best constant, extremals, and the operator P) still require substantial
work to achieve.

Inequalities and cocycles involving subcritical Q)-curvatures also turn up in the prob-
lem of estimating determinant and torsion quantities. The idea here (first taken up
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in [6]) is that a GIMS-type operator P,, = A™2 + LOT for m < n (where here and
below, “LOT” means “lower order terms”), since it takes the form

(15) s(am-

P,
for some local invariant Qp, and is invariant £[(m — n)/2] = £[(—m — n)/2), gives
rise to a Yamabe-type prescription problem

(16) (P,‘,’, +Z
In fact, the Yamabe problem is the m = 2 special case of this, with @Q; = J. (Jisa

normalized scalar curvature; see (44) below for a formula.) Let

[ uPnu _ 2

wo uz ' 1T aTm

) u= n_;ﬁ@mu(ﬂ-{»m)/(n—m) , U= e(ﬂ—m)w/2 .

Il,:

The quotient under the infimum is the Q,,- Yamabe quotient, governing the borderline
Sobolev imbedding L2 2 L9. By Holder’s inequality,

JuPmu [P |Poufu] _ |[6?]lnjn-m) || P/l /m
p< < <
I [ ]/ — [[ull

= || Pnu/ul|

={s @ml"/"‘dva}wn ,

n/m njm

using the prescription equation (16). Thus

1) ()" s [1@urmas.

This looks particularly nice when n/m is an even integer; in this case we may remove
the absolute value signs from (17).

On the other hand, Beckner’s sharp form of the Sobolev imbedding inequality on
S™ [4), says (when rewritten in the language above) that in normalized round measure
on S*,

12 < G (P26, D

where Qrou*d = I'(24™)/I(2=242) js the value of Qm and Pr™d is the (subcritical)
order m GJMS operator on round S™: by (7], Remark 2.23,

PR = {8+ (50 = 1) 55} (A (252 =) (54 1)}
A% G+) (-2} {8131}

That is, we take the final m/2 factors in the expression (7) for the critical GIMS
operators.

Furthermore, Beckner’s result gives the case of equality: exactly if f is a nonzero
constant multiple of e ™w/2 where e*g, is related to the round metric gy by a
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conformal diffeomorphism. This tells us that y is attained, in particular, when f is
the function 1. Because of the form (15),
((n+m —2)/2)!

N =T round _
= " w2

In particular, with m = 2,
0< [ {(dv)s - (P, }
Sn

where g is the round metric, with equality iff * is a conformal diffeomorphism factor.
Beyond the sphere, because of Schoen’s solution of the Yamabe problem, we can say
that if g minimizes the Yamabe functional in the conformal class [g] on the compact
manifold M, then J is constant, and

_ Ju "5 ddy, _n-2 2/n
H = (VO] g)(n_g)/n - ) J(VOI g) )
(21/(n = 2)))™* = J*/2volg = [ J"dv,,

0 < fM {(|J|"/2d”)§ - (J"/Zdv)y} :
More generally, if n/m is an even integer, we have an invariant problem about a
cocycle, ’

Hn(6,9) = [ {(@uimav), - (@mav), } = [ {@oim - qzin}

where Q,, is the £[—m] version of @,,. The problem is to find a metric g for which
Hm(7,9) is always nonnegative. Because of Schoen’s solution of the Yamabe prob-
lem, this is solved for m = 2; because of Beckner’s inequalities, this is solved for all
admissible m on the sphere S™. This solves the higher-order Yamabe problem on the
sphere, in the sense of finding the metrics that provide the infimum of the higher-order
Yamabe functional. What it does not do is to rule out other metrics in the conformal
class which might have a constant (but higher) Q.

Remarkably, for torsion and determinant quantities in dimension 4, the local term
in the conformal change law for the scale-invariant functional is always described by a
linear combination of the functional H of (11) above, and the functional H, described
just above. (The ambiguity in Q is just addition of a multiple of |C|2.) On the sphere
S*, this settles the extremal problem for this local term, provided the coefficients on H
and H, have the same sign (since they have the same extremals); see [12]. Moreover,
many of these quantities have only a local term generically. A prospective global
term arises when the conformal class admits a nontrivial null space for the relevant
operator; for example the conformal Laplacian or Dirac operator. In particular, in
the standard conformal class on S*, the scale-invariant determinant quotients for the
conformalALaplacianAa.nd the square of the Dirac operator are linear combinations of
Jw(Q+ Q) and [(J2 — J*). (Since this is a conformally flat situation, there is no
ambiguity in Q.) It is verified in [19] that the coefficients have the same sign for either
the conformal Laplacian or the square of the Dirac operator. In [9, 10] it is shown
that we may similarly extremize for these two operators in the standard conformal
class on S®, even though additional functionals appear. An invariant-theoretic result
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about general 6-dimensional manifolds, relevant to the representation of determinant
and torsion quantities, appears below in Section 4.

Determinant quotients of a conformally invariant operator, or a power of such,
are reasonably well covered in previous expositions. Thus we shall concentrate here
on some recently discovered generalizations of Cheeger’s half-torsion, which exhibit
similar behavior. One interpretation of these quantities is that they are a kind of
determinant for a non-elliptic operator like the one that gives Maxwell’s equations. To
complete the ellipticity picture, one needs other operators from an elliptic complex in
which the non-elliptic operator lives; but to retain the delicate conformal change law,
spectral quantities based on these operators must be added according to a very precise
recipe. The global (null space) term for such quantities is important, as it encodes
topological information via cohomology.

3. DETOUR TORSION

This section describes joint work with Rod Gover.

Cheeger’s half-torsion for the de Rham complex is a special case of a spectral in-
variant, the detour torsion [17], defined on the de Rham detour complexes introduced
in [16]. The idea of detour complexes and detour torsions also makes sense for gener-
alized Bernstein-Gelfand-Gelfand (BGG) diagrams. In this section, all manifolds are
compact and Riemannian. They are also of even dimension 7 unless otherwise stated.

Though nonlocal, detour torsions have infinitesimal conformal variations in which
the main term is local. These variational formulas may be “integrated up” to provide
formulas for finite variations, in much the same way as one treats the functional deter-
minants of conformally invariant operators. Both the infinitesimal and finite conformal
variational formulas are sometimes called Polyakov formulas. In fact, these detour tor-
sions are well-chosen products and quotients of functional determinants which individ-
ually behave badly under conformal change, but which behave well in the well-chosen
aggregate. In a sense that will become apparent, the Cheeger half-torsion is a kind
of determinant for the (non-elliptic) Maxwell operator, in which terms from earlier in
the de Rham complex supply the needed ellipticity, but must be chosen with care to
preserve as much good conformal behavior as possible. When we generalize to detour
complexes, we do the same sort of thing with generalizations of the Maxwell operator;
for example, the operators on differential forms introduced in [16] and described in
[36]). The determinant of the critical GJMS operator is a half-torsion on its own - the
half-torsion of a detour complex that “detours very early”.

We first describe the Cheeger half-torsion. Working over a compact, Riemannian
manifold, let dy, dx, and

Ay = Op41di + dix—10k

be the usual Hodge-de Rham operators. The Hodge decomposition is
¥ = R(6) ® R(d) ® (N (d) NN (9))
D a—-
where A denotes the null space and R the range. The zeta functions of the complex
are

C(s, Ak) == Trpa(Aglr(ay)~° -
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By standard theory (see [49] and references therein), the series implicit in the trace
converges uniformly and absolutely on Re(s) > n/2, so each zeta function is a holo-
morphic function of s in this half-plane. Each zeta function may then be continued
analytically to a meromorphic function on C. Any poles of such a zeta function are
simple, and can occur only for s € {1,2,...,n/2}. (See (29) below for a discussion of
the nature of these poles.) In particular, s = 0 is a regular point, and we define the
functional determinant of Ay to be

det Ak = exXp ( - CI(O, Ak)) .

Another view of the zeta functions is as follows. Let A; be the eigenvalues of A,
listed as usual in increasing order. Then

((s,80) = ) X
Aj#0
for sufficiently large Re(s). The nonzero form eigenvalues split into a list of dd eigen-
values, say p,, and a list of dd eigenvalues, say v,. A key point in all discussions of
index and torsion quantities is that much information is repeated in considering these
lists for various k. Specifically, the nonzero dd eigenvalue list for k-forms is repeated
as the nonzero dd eigenvalue list for (k + 1)-forms, since d and ¢ commute with A.
This offers some scope for achieving interaction among the spectral invariants of the

various Ag.

To set the stage for this, let us enrich our supply of zeta functions by defining such
functions for the non-elliptic operators dd and dé. First, since dy and J; are formal
adjoints, the Hodge decomposition shows that

do: R(6)) © R(dp) : & bijectively.
Thus we have
((s,dod1) := Trra(dobi|r(ag))™* = Trr2(d1dolr(en) ™ = ((s, Do) -

With this in place, we may take

((s,02d1) = Trpe (S2di|re))

= C(S’ Al) - C(sa AO) .
Continuing in this way, we may define
¢(s,0k+1dx) and ((s,dk-10)

regular at s = 0, with

C(5, Ok+1dx) = ((5, dkbk+1) -

A word of caution: differential operators without appropriate ellipticity or sub-
ellipticity properties will generally not have sensible zeta functions. In the case under
consideration here, it is only the status of §d and dd as partial Laplacians of an elliptic
complex that allows us to define zeta functions for them.

A useful extension of the zeta function concept is obtained when we insert a multi-
plication operator just before tracing. If w is a smooth function, let

¢(5, Ak, w) 1= Trpz (w(Aklriay) ™) -
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Like their w = 1 special cases above, these are meromorphic in s and regular at s = 0.
In terms of kernel functions, these objects are related to their w = 1 special cases as
follows:

operator AN wA™*
kernel function | K(s,z,y) w(z)K(s,z,y)
Trys JtrK(s,z,2) | fw(z)tr,K(s,z,z)

Another word of caution: One needs to be careful in trying to use local partial zeta
functions like (s, 6d,w). Let us introduce an abbrevation in which an underline stands
for restriction to the correct range, as in

(6d)™* = (dd|r) ™" -

Because this operator is of trace class for large Re(s), the operator w(dd)~* will be
‘too. But there is no reason to expect regularity of this function at s = 0. In fact, this
caution is closely related to the rarity of good torsion quantities. Such a torsion needs
to be put together so that its conformal variation, which comes from some special
combination of local partial zeta functions, is somehow guaranteed to be regular at

s=0.
As an operator from £F to £¥*1, the exterior derivative dj, is of course independent
of the metric. The coderivative
O : EF[2k —n] = E¥ 12k -2 —n]
is conformally invariant. (Again, see [36] for notational conventions.) Thus when
viewed as an operator from £ to £¥~1, the coderivative has the conformal deformation

property
G=eMg = G =G (e
for any ¢ € E*. If we choose a scale gy within our conformal class and consider the
conformal curve of metrics
ge 1= €*go,
then
Sro = —(n — 2k + 2wy + (n — 2k) 6 (we),

where the e now denotes conformal variation.
Recall our underline notation from above; in particular

Ap = Aklray s
ddy = Opp10k|R(5041) »
dby = dk-10k|r(de_y) -

Simplifying the notation further by letting Tr = Try2, we have
TrAp* = Tr(dd;*) + Tr(dd;”) .
But, at least formally,
TH(6D)5")" = —5Tr (Su1e)*(6d)5 "

51:+1dk
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(The transition from formal calculations to rigorous ones involves the interchange of
limiting operations, and thus hard-analytic estimates. We shall suppress such consid-
erations here, but note that they are confronted in, for example, [18].)

Note that since there are now noncommuting operators involved (the variation of an
operator like dd need not commute with the operator itself), this manipulation only
works, even formally, with the L? trace out front. Continuing with the calculation,
and using an informal notation in which multiplication by w is denoted simply by w,
we have

Tr((dd);°)* = —sTr ({—(n = 2k)wlg41 + (n— 2k — 2)6k+1w}dk(6_d),:"1)
= (n - 2k)sTr (w(8d);*) — (n — 2k — 2)sTr (w(dd)i1,) -

Here, in rewriting the last term, we took advantage of the fact that dx41 : R(dx) —
R(6k+1) is bijective.

This last step is a key point: the variation of dd on k-forms leads to terms in dd on
k-forms, and in d§ on (k + 1)-forms. It is from this that the interaction of different
form orders will arise. Restating in terms of zetas and local zetas,

(18)  ((s, (6d)x)* = (n — 2k)s¢(s, (6d)k,w) — (n — 2k — 2)sC(s, (d)k41,w) .
Similarly,
(19) (s, (dO)r)* = (n — 2k + 2)s¢(s, (6d)g-1,w) — (n — 2k)sC(s, (db)k, w) .
In each formula, local partial zeta functions at adjacent orders interact.

At first glance, it might seems as though the right sides of equations (18,19) vanish
at s = 0. In fact, these expressions make elementary sense only for large Re(s), but
the s factors certainly influence how things look after analytic continuation. Recall

the perils of local partial zetas: the individual terms in (18,19), without their s factors,
generally have poles at s = 0. Certain linear combinations

(20) N(S) = COC(S: AO) + cl((si Al) +eeet CnC(S, An) )

however, may be regular at s = 0, and furthermore have conformally invariant x(0);
that is, there may be conformal indices in the sense of [18). The existence of such
a conformal index is closely related to the presence of a Polyakov formula; that is, a

determinant or torsion quantity having a variation whose main term is local.
Given £(s) defined by (20) and given k, the coefficient in x(s)* of s{(s, (dd)s,w) is

(n — 2k)(ck + ck+1)
while the coefficient of s{(s, (dé),w) is
—(n = 2k)(ck + cx-1) -

One distinguished choice for the coefficient list will thus be 1,—-1,1,-1,.... This is
no surprise, as with this choice we are detecting the conformal invariance of the index
of the de Rham complex (which has much more than just conformal invariance of
course).

A slightly more subtle desideratum for a coefficient list is that it produce only
full Laplacians in the variation; that is, that the coefficients of s((s, (6d)x,w) and
sC(s, (dd)k,w) agree. Via the above, this leads to

(21) Cky1 = —Cg—-1 — 2Ck, k > 1.
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This doesn’t produce a unique coupling, but in fact we need to demand more: that
the (s¢(s, (6d)x,w), s¢(s, (d6)x,w)) coefficient pair in the variation be proportional to
the ({(s, (dd)x),{(s, (dd)k)) coefficient pair in the original quantity,
(n - 2k)(ck + Ck41, —Ck — Clc—l) = /\(Ck, C];)
for some A. Shifting k in the equality of second components, we get the system
(n—2k— Ny + (n—2k)ek =0,

(n—2k=2cr+(n—2k-2+Ncgy1 =0,
the determinant of which is A(2 — A). The choice A = 0 gives us the coefficient list
1,-1,1,-1,... associated with the index calculation. The choice A = 2 gives the
recursion
(22) (n=2(k—-1))ex = —(n — 2k)ck-1 -
The key point is that

for this choice, ¢, may be taken to vanish for k > n/2.

If we set cqj2 = -+ = ¢, = 0, only the first half of the complex will be noticed by the
calculation; this is the origin of the term half-torsion. A convenient normalization of
the coefficient list is then n, —(n — 2),n — 4,...,F4,£2,0; that is,

| (-1)¥(n-2k), k<n/2,
C"_{ 0 k>n/2.

For this choice, if we define the local kappa function by
K(s,w) 1= col(8, Do, w) + €1€(8, Ar,w) + -+ - + cal (5, A, w)

(23)

H

we get
(24) Kk(s)* = 2sk(s,w).

In hindsight, the ambiguity in the coupling that remained after (21) was the degree
of freedom allowed in making linear combinations of the coefficient lists 1, —-1,1, -1, ...
and (n,—(n—2),---+2,0,...,0). A

Let us fix the choice of coupling described above; that is,

k(s,w) = nl(s, Bo,w) — (n — 2){(s, A1, w) + (n — 4)((s, A, w) — - -+

25
( ) + (_l)n/2—1 * 24(31 An/2—1)w) )
with

k(s) :=k(s,1).
Since only local zeta functions of full Laplacians appear in the variation, k(s,w) is
regular at s = 0, so that by (24),

£(0) is a conformal invariant.

The half-torsion is £'(0). The Polyakov-type formula will now arise upon computation

of the conformal variation of this.
Note that since the functional determinants of the Laplacians are defined as their

e~¢'() quantities, the half-torsion is

det Ap)™(det Ag)™ ...

HI(O) — —log ( 0) ( 2)

(det Al)"'z(det A3)"’_6 e ’
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where the terms abbeviated by ... involve only the A for k£ < n/2.

The interesting task is now to find £'(0)°*, the conformal variation of the half tor-
sion. By the foregoing, this will involve the ((s, Ax,w) = Tr(wA;*). The analytic
continuation of zeta functions, as well as more involved procedures of commuting limit
operations like our d/ds and e, are accomplished by looking at things on the other
side of the Mellin transform

(Mf)(s) = ﬂl—) / T ae,

where f(t) is a function on [0, 00). The Mellin transform performs the convenient trick
of carrying exp(—t)A) to A™* for positive real A. Thus it carries
(26) Tr(wexp(—t4y)) = ((s, Ax, w) -
In more detail, the kernel functions for the operators being traced are
w(z) Y eNp;(z) ® ¢} (y)
Aj#0
and
w(z) Y A7*0;i(z) ® ¥}(y)
Aj#0
respectively, where {);} is the eigenvalue list, the ¢; are the corresponding orthonor-
mal basis of eigenforms, and the ;] are the corresponding sections of the dual bundle.
The Mellin transform acts only on the factors e~** to produce the factors A;°. To
take the L? trace, we integrate over the diagonal {z = y}.
The L? trace on the left of (26) is closely related to the localized heat operator trace
Z(t7 Alww) = 'I\I(w exp(_tAk)) )
in which the A is not underlined. This latter trace has the small-t asymptotic expan-
sion
(27) 20, Apw) ~ 3 12 / WU as £40.
even i>0

Here the U; are local scalar invariants of the metric; for forms, some of these for small
i are computed in (46, 35]. The leading terms of all of the U; have been computed; see
[14]). The difference between the left sides of (27) and (26) is

(28) > /wlsojl2 :
A;=0
Note that since the Hodge projection Py, onto the null space of A has kernel function
Y vilz) @ ¢3(y),
;=0

the quantity in (28) is actually
TrwPy,
so that
Trwexp(—tA,) ~ Y t024(A,w)  as t)0,

even i>0
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where
. _ wan—’I‘er,c if 1=mn,
Ai(Ay,w) = { fwU; otherwise .

Now

rec o= 3 (s-25) Adan

(29) 0< everll i<m
+ / P10 (Hm-m /2 gy 4 / #1(Trw exp(—tAy)) dt,
0 1
so at s =0,
C(Oy Ak:w) = An(Ak)w) )

since I'(s) has a simple pole at s = 0.
By (24), we now have

k'(0)* = 2x(0,w)

=2 Z CkA"(Ak, (.d)
k
(30) =-2 ZC};TI‘ WPy + 2 /w Z CkUn[Ak]
k k
=:275;,:(g,w) ==2Tl:cr(9y“)
=: 27(g,w) .

In naming the 7 quantities, we make explicit the dependence on the metric g which
was suppressed in earlier manipulations; this will be useful just below when we think
in terms of functionals on the conformal class. If we put

(31) U =Y clUnlO4],
k

We may re-express Tioc(g,w) as [wid,. Recall also that TrwP, may be expressed
in terms of any choice of L2-orthonormal bases {1 }%_, of the harmonic space #*
(denoting the k% Betti number by &), as

by
() = = S Y [wluhl
k m=1

The goal is now to “integrate up” the variation to find an expression for £'(0)"™—«'(0);
that is, the difference between half-torsions at conformally related metrics § = /g
and g. That is, we want a conformal primitive for the variation '(0)°. The meaning
of this concept is as follows. Suppose we have a suitably smooth functional V(g,w),
where ¢ runs over a conformal class of Riemannian metrics on a manifold M, and w
runs over C*(M). A conformal primitive for V(g,w) (if such exists) is an alternating
2-metric functional 7(g, g) on the conformal class with the property that

d 26w —
E €=0’H(6 g:g) - v(grw)
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for all (g,w). Given a conformal primitive for V(g,w), we may artificially choose a
background metric go, and get a one-metric functional Gy, (g) := H(g, go) with confor-
mal variation V(g,w):

G50 (9)" = V(g,w).

Having the same variation, these one-metric functionals for different gy must differ by
a constant. That is,

H(g,91) — H(g,90) =c.

Since H is alternating, substitution of go for g yields ¢ = H(g1,90), S0 we have the
cocycle condition

%(gﬁ gO) = H(gl gl) + H(gl,go) .

Conversely, given a one-metric functional G(g) on the conformal class with variation
V(g,w), we may form a conformal primitive by taking #(g,9) = G(g) — G(g9). An
advantage of the two-metric functional is that it is unique.

The claim is that 7joc (g, w) (Which implicitly depends on g) has a conformal primitive;
this statement is sensitive to the precise coefficient list c; that defines the half-torsion.
In addition, we claim that the contribution of the k-form harmonics to 7o (g, w) for
each k has a conformal primitive. The result of combining these ingredients will be a
conformal primitive for 7(g,w).

To handle the global claim first, we adapt an argument of Ray and Singer [47]. Fix
k, and fix an arbitrary basis h = h* of the k% real cohomology H*. (Note that the
0,...,m/2 — 1 form bundles admit distinguished real forms.) The de Rham map at a
metric g is a natural isomorphism taking the g-harmonics H} to H*:

D, : HE s HE

If ¥ = {¢} is an orthonormal basis of #{, let [¥/h] be the determinant of the basis
change from DV to h; that is, det B, where h = {h,,} and

Dpm =D _ Buphy.
p

Since the basis change in ’H’; between any two orthonormal bases is an orthogonal
transformation, the quantity [¥/h] does not depend on the choice of the particular

orthonormal basis, so we may also give it the name [g : h].
We would like to compute the conformal variation of [g : h]. To this end, let

fm(9) = D7 (hm): Let w € C®(M), and let
9e=€*"gy, €€R

be a one-parameter conformal family of metrics. Consider the change of basis matrix
Bmp(€) from {fm(ge)} to a g.-orthonormal basis ¥, (ge):

'¢'m = Z Bmpfp )
p
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we have det B = [g : h]. Since {¢n,} is orthonormal,

= (tbu, ) = (}:Bupf,,,ZBvqfq)

= ZBupBuq fp)fq) = (BCBT)UU )
P9 =:Cpq
so that
(32) I=BCBT, (det B)? = (det C)7!.
Clearly C varies smoothly with g, so that det B will also. So it will be enough to
compute (det C)°.

Since f,,(€) and f,,(0) are cohomologous, we have forms ¢y, (€) with fi,(¢) = f.(0)+
dipm(e). Thus

g(€)(fm(€), fo(€)) = 8(€) (fm(€), £p(0) + dipp(e)) = &(€) (fm(€), f(0)) ,

where g is the form metric. In the last step, we have integrated by parts, using the fact
that fp(g) is harmonic (and thus annihilated by the coderivative §) in the e-metric.

Similarly

8(0)(fm(0), £5(0)) = g(0)(fm(€) — dipm(e), £(0)) = &(0)(fm(e), f(0)) -
Subtracting these equations, we get

&(e)(fm(€), o(€)) — 8(0)(/m(0), £»(0)) = (8&(€) — &(0)) (fm(e), £(0)) -
Differentiating with respect to € and then setting € = 0, we have ’

Crp = 8" (fms f) -

Since (¢*)* = —2kwg* and (dv,)* = nwdv,, we have
(33) Cr.np = (TL - 2k)g(fm,wfp) .

Left multiplying the first equation in (32) by BT and then right multiplying by B, we
get C~' = BTB. Using this and the formula just obtained for the variation of C, we
get

—(log[g : h]*)* = —(log(det B)?)*
= (log det C)*
=tr(C~'C*) = tr(BTBC")
= tr(BC*BT)
=Y Bym{(n — 2k)8(fm,wf,)} Bop

g,m,p

= (n — 2k) Z 8 (1 wiby)

= (n — 2k)TrwPy.
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But recall from (30) that
n/2-1
Taob(W) = — Z (=1)*(n — 2k)TrwP; .
k=0
Combined with the formula just above, this gives
n/2-1
> (=1)kloglg : B | = rgon(w).
k=0
This gives us a conformal primitive in the one-metric functional sense for 7y (w),
depending on our choices h* of cohomology bases:
n/2—-1
G(g, {0*}) == Y (~=1)*log[g : b*]".
k=0
In the corresponding two-metric conformal primitive, the dependence on the cohomol-
ogy bases washes out:

n/2-1 [,g\ . hk]2
M(9.9) = 6@, (1) - 6o, (b = 3 (-1 log {5
k=0

The quotient here is the square of the determinant of the basis change from D¥(g) to
DY(3), so we are entitled to denote it [ : g]?. Summarizing,
n/2-1
(34) HG.g)= 3 (~1)*loglg : f2
k=1
is the (unique two-metric) conformal primitive of 7gop (w).

We can be more specific about what is happening with the £ = 0 term, where the
lone harmonic is (up to a nonzero constant factor) the function 1. An L?-orthonormal
basis of the harmonic space at the metric g is given by the constant vol(g)~*/2. Thus
in any eventual treatment of the extremal problem for the half-torsion, the global term
contributed at k = 0 combines with the volume penalty term in the functional (11).
In fact, this is exactly what happens for the functional determinant of the Laplacian
in dimension 2 [44, 45], which is of course the same as the half-torsion in dimension 2.

To work toward a conformal primitive of 7. (w), first note that when we scale the
metric uniformly,

g = a’g, 0<a€eR,
the Laplacians scale by Ay = a™2A;. As a result, exp(—(a?t)A;) = exp(—tAy), so
the heat expansion (27) gives Un[A]dvs = Un[A)dv,. Taking the linear combination
of U, quantities under consideration here,

Z/_I,,dvg = Updv, .
Taking the (—n)-density version of U, by using the conformal metric g, a section of

E(n)[2], and its inverse g~!, a section of £(%)[—2], to make metric contractions, we get
a quantity U, which is insensitive to uniform scaling:

U, =U,.
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4. SOME INVARIANT THEORY

Some of the invariant theory described in this section is joint work in progress with
Mike Eastwood.

Counting the number of g and g~! that must be used to contract to a scalar density,
each monomial term in any expression for a natural Riemannian (—n)-density F as a
universal polynomial in V and the Riemann tensor R satisfies

(35) Ny +2Ng =n,

where Ny (resp. Ng) is the number of occurrences of V (resp. R) in the monomial.
Looking at the conformal variations of V and of R and arguing inductively (see, e.g.,
[6]), the conformal deformation law for such an F must take the form

(36) g=e*g = ﬁ=F+X1[F](T,g,g"l,V,R)+~-+Xn[F](T,g,g"1,V,R),

where T := dw, the connection V and curvature R are computed in the metric g, and
X, is (—n)-density valued and universal, with homogeneity s in w (or Y):

X,[F)(eY,9,97",V,R) = ’X,[F|(T,9,97",V,R)
fore e R.

For ease of notation, we suppress the dependence of the X quantities on g and g~!.
As a consequence of (35) and the conformal deformations of V and R,

(37) n= Ny + Ny +2Ng =s+ Ny + 2Ny in X,(T,V,R),

using the obvious extension of the notation of (35). As a result, the highest homo-
geneity term X, (Y, V, R) must take the form c[F] - g~}(Y, Y)"™/? for some constant
c[F], as these are the only (—n)-density invariants satisfying (37).

All of the considerations of the last paragraph are valid when we set F' equal to, for
example, any linear combination of the U,[Ax]; we have not yet used the conformal
index property, i.e. the fact that [ Uy is a conformal invariant. If [ F is a conformal
invariant, the top homogeneity term ¢ - g~!(,Y)™?2 must vanish, since for any real
number ¢,

0= / (KFIEY, V, B) + -+ + Xaa [FI(€T, V, B) + ¢ - g~ (e, 7)7/2)

= [F)e" / g (L, )2 + 0™ )

as € = oo. Taking the resulting slightly simplified version of (36) for FF = U, and
with ew in place of w, we have
n—1
(Un)(e**¥g) = Uyn(g) + ZE’X,(T, V,R).
s=1
Since 7(w) and Tye(w) have conformal primitives, so does 7ioc; that is, there is a
two-metric functional Hy,.(g, g) with

d
N Hioc(€%°9, 9) = Tioc (W) = / wUn(g).
€ e=0
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Since we could replace g in this equation by e*%’g for some &9, we have

d 2ew 2ew
E'HIOC(e 9,9) = /WU (eg).

Integrating this in € from 0 to 1, we get

nl
TVR
(38) ’Hlocgg / Z s+1 );

where w = 1log(§/g) and T = dw. This somewhat brutal expression at least es-
tablishes that 7j,c(g,w) has a locally computable conformal primitive. Note also that
because of the universal nature of the calculation,

H(9,9) = —H(9,9) = f(—w)Zx :HVR) / i 1y XLV, B) ;r+v1 R)1

s=1

» /w X,(T,V, R) = (~1)° /w X,(T, V. B).

However, expressions like (38) as differential polynomials in the conformal factor sep-
arating two conformal scales are somewhat unsatisfying. For example, if we compute
several such quantities (say, one from the half-torsion together with the determinants
of the GIMS operators), it becomes clear that there are many constraints on the fam-
ily {X,}; all the apparent moving parts are in reality not free to move independently,
though the number of degrees of freedom does go up with the dimension. One would
like to regroup all the terms to form invariants of the metrics g and g, with w appearing
explicitly only without derivatives attached. If some invariant theoretic conjectures
that are currently being studied turn out to be correct, this can indeed be done. In
low dimensions, where the invariants can be listed easily, there is no problem.

What we would like to assert is that

(39) Hio(d,9) = / w(Q+Q) + / F-F),

where Q is some version of the Q-curvature, F is a local (—n)-density valued invariant

of the metric, and as usual, w is an abbreviation for the cocycle 1log(g/g). Though

the plus sign in the first term on the right in (39) seems odd at first glance, note that

w is alternating in g and g, so the integrand is also alternating. The idea of the first

functional on the right in (39) is that it is a conformal primitive for the Q-curvature:

besides being alternating, Remark 8 below shows that it is cocyclic and has conformal
da

variaton -
(5= @+ qa)) = [ e
for all n € C*°(M).

Let us immediately begin to explain the phrase “some version of the Q-curvature”
used directly above.




32 THOMAS BRANSON

Definition 2. Let Z be the space of Riemannian invariant (—n)-densities in even
dimension n. Given F' € Z, let bF be the universal linear operator defined by the
linear term in the analogue of (36) (replacing U, by F):

(bF)w = X, [F](dw,V, R).
Let IS4 be the subspace of Z consisting of invariants F' for which bF is formally
self-adjoint. Let Z° be the subspace of Z consisting of invariants F' for which X,[F]
vanishes universally for ¢ > s. Let

I°0:=T'NIFsA,

A Q-curvature is an element of ZQ for which bQ has the form A™? + LOT. A P-
operator (or critical GJMS operator) is an operator that appears as bQ@ for some
Q-curvature Q.

Theorem 3. There exists a Q-curvature.

Remark 4. A Q-curvature in general even dimensions was first constructed in [9]
(see also [10]); this construction uses properties of the GIMS operators which were
completely verified in published form only later. More recently, Graham has shown
that the original construction of the GJMS operators produces operators that can
be written purely in terms of the ingredients g,g~!, V,r. (That is, the Weyl tensor
need not be used, if one writes things in just the right way.) As a result, the original
construction of the Q-curvature also produces something built out of just these ingre-
dients. It may be reasonable to conjecture that having a formula omitting the Weyl
tensor pins down unique GJMS operators, and a unique curvature, but at present this
is an open question.

Remark 5. Given F € Z, if X,[F] vanishes universally, then so do the X;[F] for ¢t > s.
Thus to check for membership of F in Z° one only needs to know that X;[F] vanishes
universally; Z° is the space of local conformal invariants. To check for membership
in Z', we just need X[F] to vanish universally. Indeed, the vanishing of X,[F] is
equivalent to the vanishing of (d/de)®|c—oF(e%“9) for all g and w. Taking advantage
of this universality to change g to e*%“g, we find that (d/de)*F(e?*“9) vanishes for all
(9,w,€), so all higher derivatives vanish also.

Remark 6. For any F' € Z, the operator bF' has the form Td, since w appears in
Xi[F] only through dw. If F € T2, then bF must also take the form §Sd. (This is
not immediate, but follows from the canonical form of [26] and [37], Sec. 2.2.) If Q is
a Q-curvature, the principal part of P := b@Q is A™2, so

P has the form §((d6)"/*"! + LOT)d.

Since under the usual conformal change @ = @ + Pw, this shows in particular that
@ is conformally invariant modulo exact divergences, so that the integral of @ is
conformally invariant.

Remark 7. If Q € Z%, then the operator P := b() is necessarily conformally invariant:
Q+Pw+n)=0=0Q+Pnp=Q+Puw+ P,
in the notation of (9). Thus Pp = Pp for all 7.
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Remark 8. Given Q € ZI? and P = bQ), the quantity

(40) 0@,9) =4 [w(@+0)

2Q+Pw
is a cocycle on the conformal class [g]. As noted in connection with (10), it is alter-
nating. For the cocycle condition, put P = b@Q; we compute that

0G,9)+0Grg) = 1 / n (20 + Pr) +1 / w(2Q + Pw)
(41) 2(Q+Pu)+Py

- %/(w+n)(2Q+P(w+ﬂ)) =0@.9).

Note that in the last step, the formal self-adjointness of P is used in equating 2 [ nPw
to [ nPw+ [ wPn. The quantity Q(g, g) above has conformal variation [ w@. In fact,
the variation of Q(g,g) at the metric g in the direction n € C* is the first-order (in

7) term in (41), namely [ nQ, as desired.

Definition 9. The total conformal variation of F € T is
OF := (bF)'1.
The null space of 8 : T — Z is I'*, the space of conformal indez densities. T is the

subspace of Z consisting of univeral exact divergences; that is, invariants of the form
8¢ for some univeral element of £,[2 — n].

Remark 10. The idea of the total conformal variation is as follows. Suppose we
take the conformal variation of [ F, and integrate by parts in the result until only
undifferentiated occurrences of the conformal factor w remain:

(/F).=/F'=/(bF)w=:/wG.

In the last step, the integration by parts is

/1 : (bF)w=/(bF)‘1 .,
so that G = (bF)*1.

Remark 11. If F € Z, then bF has the form Td, so 0F = (bF)*1 = éT*1 is a
universal exact divergence. Thus 6T C Z9". Since exact divergences integrate to 0
universally, they are annihilated by 8; in particular, 90 = 0.

Remark 12. Z™ consists of the F € T for which [ F is conformally invariant; i.e. is a
conformal indez [18]. T is strictly larger than 74V, since the Pfaffian Pff is a conformal
index density, but not a universal exact divergence (there are compact manifolds with
nonzero Euler characteristic in even dimensions). ZF5A is contained in Z'*, since for
F € I'SA| the operator bF is of the form §5d, so that ([ F)* = [ F* = [§Sdw = 0.

The formal self-adjointness requirement on the P-operator associated to a Q-curv-
ature is suggested by functional determinant and torsion problems, by way of the
following considerations. Suppose U € I arises as the conformal variation of some
(not necessarily locally determined) quantity D; that is, D* = [wU. The second
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variation of D in the direction pair (w,7) then needs to be symmetric in w and 7. But
this second variation is
/ w(bU).

Thus the linear operator bU needs to be formally self-adjoint.
If G = OF, then a conformal primitive for G is

(42) u@m=/@—m.

This is clearly antisymmetric and cocyclic. G arises as a conformal variation, so by
the argument just above, bG is formally self-adjoint, and G € IF5A,
Summarizing, we have:

Proposition 13.
0L c I cI™*, I%+0ICIFScT™.

In particular, the natural (—n)-density U, corresponding to the quantity in (31),

namely
n/2-

Z (=1)%(n — 2k)Un(A),
k=0
lies in IFSA,

The statement strong enough to guarantee the form (39) is thus:
Conjecture 14. I% 4 0T = IF5A,

We immediately have C; the question is whether we have D. To paraphrase, the
conjecture says that each special conformal index density is the sum of something
which is known to have a conformal primitive of the form (40), and something with a
local conformal primitive (42).

Another invariant-theoretic statement, which S. Alexakis reports will be proved in
his PhD dissertation [2], has something of the same flavor:

Conjecture 15. T = R - Pff + 79V 4 70.

The impact of the truth or falsity of this statement on the status of Conjecture
14 is not immediately clear. One thing that it would imply is an analogue of the
4-dimensional statement that the total metric variation of |C|? is the Bach tensor, by
insuring that in even dimensions, some local conformal invariant has the Fefferman-
Graham tensor as its total metric variation. Indeed, if we can write Q in the form

Q=aPff+6n+S,

where S is a conformally invariant (—n)-density, then the metric variation of [ S must
be A, since the metric variations of [Pff and [dn = 0 vanish. But, as remarked
earlier, the presence of high-order derivatives in 4 insures that for n > 6, such a S
is not just a polynomial in C. In fact, Remark 17 below is a quantitative statement
about just how far from a curvature polynomial S would have to be.

Perhaps more importantly, the verification of Conjecture 15 would provide a dif-
ferent route to (39), via a dimensional continuation argument, for quantities like the
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functional determinant of the Yamabe operator. Here one has a U, analogous to that
in Proposition 13 which extends to higher dimensions NV and satisfies

(/U,,).=(N—n)/wUn, N>n.

The Q-curvature also has such an extension, since the subcritical Q-prescription equa-
tion in dimensions N > n, together with the critical prescription equation, imply that

(tr Q=) ,
(/Q) ~w-m v, Nz

By [9], Corollary 1.6 and the discussion preceding it,

f(Q'—Q) =%/W(Q+Q)

(43) N—n

N=n
Given Conjecture 15, we may write

/Un = b/(Q +L)  in dimension n,

where L is a local conformal invariant. Letting Q := Q + L be our alternative Q-
curvature, we extend to dimension N > n, and have

/(U,,—bgn)=(N—n)/F -

(/(U,.—bg,.))‘ _ (N'")/W(Un—bgn): N>

where we use the subscript n on Q to emphasize the fact that it is a subcritical Q-
curvature for N > n. Implicit in this is a rational-in-N extension of L, as well as the
natural extension of Q,. Thus

an/ n=0Q ) Nl_ {/(&.—Un)—b/(g,—gn)}+/(1’A’-F)

in dimension N > n. Going to dimension n and using (43), we get

mm/mh=;/m§+@+/@—m

in dimension n, as desired for (39). The dimensional continuation is justified by
taking the product of the original manifold M with flat tori, using conformal factors
that depend only on the M parameter, and deriving identities (one for each N) on M
itself. These identities are then rationally continued in the parameter N.

In preparation for some explicit calculations, let

K I_.’:=r—Jg

(44) J= oy n—-2"

P is the Schouten tensor, and
J=P%, Jja =Py
The Weyl conformal curvature tensor is
(45) Clyea = R%cq + 2Pb[c50¢i] - 2Pa[cgd]b .
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All computations of conformal change laws for local O(n) invariants maybe done
using just the conformal change laws for J, P, C,

C%%ea = C%cd,

1
(46) Pab = Pap — Wiap + wiawpp — §w|cw|°gab,

J=e (J = wa® = 22wiaw)
together with the conformal change of the Levi-Civita connection on vector fields,
(V V) Xd (2w|(a55) — W gab)Xb

and the fact that (V — V), is a derivation over tensor product which commutes with
contractions.

In dimension 4, a basis for Z is J%, |P|%, |C|?, AJ. The Q-curvature used in [19] to
study the determinant quotient is

Q=AJ+2(S-|PP),
and the associated P-operator is
P=46(dd+2)-4P)d,

where P- is the natural action of a symmetric 2-tensor on 1-forms. This is manifestly
formally self-adjoint. In addition,

32n?Pff = |C|* + 8(J2 - |P?),
T* = span{Q, AJ, |C|*} = span{Pff,AJ, |C|?},
I°=R-|C?,
% =R-AJ,
% =span{Q, |C[},
0L =R-0lJF=R-AJ.

Since Z® + 0T agrees with 7', the space Z'5A wedged between them by Proposition
13 must also agree, verifying Conjecture 14 in dimension 4. It is also immediate to
check Conjecture 15.

In dimension 6, the space Z of local invariants of the correct homogeneity is generated
by the following 17 quantities:

A = 1,%0 =A%),
Bl = JJ]a = —JAJ Dl = J3,
B; := Poydy® = (P, Hess)), D; := PoyP®) = |P[2J,
By := PP = —(P, V*VP), Dj i= PoyP?.PY = tr(P3)
(47) By = PoyeaCo® = (VVP, C), Dy = PyPoC*¥ = (P®P,C),
C1 = Jd® = |dJP?, Ds := CapeaC®4) = |C[2J,
Cy = Pab|cpab €= |VPI2 Dg := Pabcacdecwe:
Cy = Pab cP Cb = (VP VP) D7 := CadeC“”efC"‘ef = tr(Cs),

C4 = Cabcd| Cade €= IVCP Dg = Cabcdcaccfcbedf .
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Here, given any tensor (s« With three or more arguments, Poper = Pach- In tr(C3),

the trace is as an operator on the two-forms £2.
D7 and Dg are manifestly conformally invariant (when viewed as (—6)-densities). A
more subtle local conformal invariant is

I=|W|*-16(C,U) + 16|A)?,

where A is the Cotton tensor, Agse := 2Pqpjq,

Wabcde = Cabcd[e + 2ge[aAb]cd + 2ge[cAd]u.b )
and

Usbea = Abcd]a — Pa®Cebea -

In terms of our basis, this expands as

I =232B4 + 32C, — 32C3 + C4 + 16D .
This invariant is described in [30]; see [38], Sec. 3 for a detailed formula. The invariants
Dy, D, I form a basis of the local conformal invariants Z°.

The question now arises of which invariants in the quotient by the local conformal
invariants have linear conformal change laws; that is, of identifying 7! /Z° within Z/Z°.
One such is the Q-curvature computed by Gover and Peterson [37]:

Q := 8|VP|? + 16Py,P%|c° — 32P,,P°.P* — 16J|P|* + 8J% — 8JJ)°
+ A%+ 16Pabpcdcubd
= A — 8B, +16B3 + 8C; + 8D; — 16D, — 32D3 + 16Dy .

The conformal deformation of Q takes the form

Q=Q+Puw,
where P is a formally self-adjoint operator of the form §(d§ + LOT)d. A formula for
P is given in [37], Sec. 2.2.
Additional terms with a linear conformal change law were found by Gover-Peterson
[37] and Fefferman-Hirachi [32]. Gover and Peterson note that G := A|C|? admits a
linear law; this is apparent from the facts that |C|? is an invariant (—4)-density, that

d:E[—4] = &[-4]  changes by d = d+4e(dw),
and that 6 : £,[—4] — £[—6) is conformally invariant; thus
G = G +40¢(dw)|C|* = G + 46(|C|dw) .

That is, G changes by a linear, formally self-adjoint operator. Expanded in the basis
above,
G = -32B4 — 2C4 — 4Ds — 16Dg + 2D; + 8Dg .

Gover and Peterson also give a general machine for manufacturing additional terms
with a formally self-adjoint linear change law in [37], Proposition 2.8, and remarks fol-
lowing this proposition. Fefferman and Hirachi [32] used an ambient space construction
to produce another Q-curvature modification in dimension 6. They consider

H:= _Cabcdcabcepde + |A|2 + %ICPJ,
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which in the basis above is
H = 2C; — 2C;3 + ;D5 — Ds.
The conformal change of H is by

H=H+ (3|CPA + 4P, C**V; + (%0 C%V, V) w.

bH

Direct computation shows that the operator bH is formally self-adjoint; in particular,
it can be written in the form §Sd.
The matrix giving the ordered list

(18) I,Q H :=H+1il, G':=G+],
D81 D71 DS, D47 D3; D2) DI; CS; C2:Ch B37 B21B1

in terms of the ordered basis

D6’ A; B47 C47
D8) D7y D5: D41 D31 D2’ Dl, C3) C2:CI, B3) B21Bl

is triangular (independent of the ordering of the invariants on the second line of each
list). Thus (48) is a basis of the space of invariants Z, with D7, Dg, I forming a basis
of I° and the classes of Q, H', G’ spanning a 3-dimensional subspace of Z!/Z°. To
find out whether Z'/Z° has dimension exactly equal to 3, it is sufficient to test an
indeterminate linear combination of

(49) Bh BZ’ B3; Cl) C27 C3) Dl) D27 D3a D4) D5 .

Straightforward calculation shows that no nontrivial combination of these has a linear
conformal change law.
To summarize,

Proposition 16. In dimension 6, I° has {I, Dg, D7} as a basis, and I® has
{Q,H',G",1,Dq,D7} as a basis. The affine space of Q-curvatures is

Q + spa,n{H', G’, I, Ds, D7} .

Let us now compute 9Z. It is sufficient to consider the list (47) modulo I, so a
fortiori (by Proposition 13), it is enough to consider the list modulo Z9v_ Tt is not
hard to see the classes of C;, C,, and the D; form a basis of Z/Z9", so that

dimZ% =7.

Since @ annihilates D7 and Dg, we can find all integrated conformal variations by
processing

Cy, Cz, Dy, ... Dg.
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We have:
0C, = 2A — 4B, — 4C;,
0Cy = 2A + 2B, + 40B, — 8B; — 4B4 + 18C; — 20C; + 36C;
— 24Dy + 144D; — 24Dy,
6D1 = —6B1 - 601,
0D, = —2B; — 2B; — 2B; — 4C, — 2C,,
0D3 = —6B; — 3C; — 3C;3 + 3Dy — 18D3 + 3Dy,
6Dy = 6B, — 6B3 — 2By — 12C, + 12C3 — 6D, + 36D3 — 6Dy,
0Ds = G = —32B4 — 2C4 — 4D5 — 16Dg + 2D7 + 8Ds,

1 1
0Dg = —12B4 — 12C; + 12C5 — §C4 — Dg —4Dg + §D7 + 2Dsg.

These total variations span a 6-dimensional space, one basis of which is
(50) 301, 6D1, 6D3, 6D5 = G, 6{02 - Cl + D1 + 2?0133 - %D52, 6£D6 - gD5Z .

-~

:=Cj :=Dj

Among the linear combinations of C;, Cy, and D, through Dg, those annihilated by
0 are spanned by
D1~3D2+2D3+D4+§D5~ 1Ds,
C,—C;-D; - ¥D3+3Ds — 5Ds5 + 3Ds.
In particular, the Pfaffian must agree, up to a nonzero constant factor and a linear

combination of D; and Dg, with the first of these.
The list (50) may be continued to a linearly independent list by appending

(51) H" = H + %6Dg y Q’ = Q + 6(—%01 el Dl + 20’2 -— gDa) + 4H”, D7, Ds .

Each expression in (50,51) is in ZFSA. The invariant I is linearly dependent on these:
(52) I+ 8(Ds + 3D§) + 8H" = D7+ 4Dg..

Another basis of 9Z, of course, is C;, 8D, 0D3, D5, 9C, dDs. We may continue
this to a linearly independent list in ZFSA by appending H, Q, D7, Dg. Though this
is simpler to write down, the previous list (50,51) has triangularity properties with
respect to the original list (47) that make it convenient for computation.

Collecting some information, in dimension 6 we have:

dimZ* = dimZ - dimdZ =17 -6 =11,

IO = span{D7, Ds,I} y

I% =span{Q,H',G'} +I°, dimI% =6,

dimZ% =7,

dim(ZT4v NIQ) > 1.
By the validity of Conjecture 15 in dimension 6 (which may be checked directly) and
a dimension count (in [-] in the underbraces below), the sum

LR T L
1] (1 (7) [3]
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must be direct:
I*=R-PfoIT%aI°.

The dimension count for our conjecture goes as follows:

[11) [10}
~=~
ix FSA 2 77Q
I* >I" = TI% + 0T ..
(6] (6]

The reason for the 10 in the overbrace on the right is that G € Z2 N 0Z, and there
is the additional linear dependence (52), so the number in the overbrace is < 10. On
the other hand, the linear indepencence of the list given by appending (51) to (50)
establishes > 10. Since Z¥5* 5 I?+0Z, the conjecture will survive through dimension
6 if and only if dimZ"SA = 10, if and only if 7 \ ZF5A is nonempty. For this, note
that By + C; € I9V C . If b(B, + C,) =: T, then

(T - T"w = Jj.*Aw + 2J14(Aw)|® + 2|P?Aw — JJjaw)® + 2J}aP%w)’
(53) + 8PaP%fw|® — 4PayP® cw|® + Papicw)®
+ 12P P )" + 2P 1ot — 2P0 C*P ey .
In particular, if w is chosen at a point z to have (Vw), = 0, (VVw),; = 0, then the
above becomes
(54) 2Jja(Aw)® + 2P e

Note that this shows that even if we pursue this invariant theory in the conformally
flat case only, there will be a nontrivial difference between Z* and ZFSA,

Since Z¥5A has codimension 1 in Z'*, the bF — (bF)* computed from any F €
must be a constant multiple of the one in (53). Indeed, doing the same calculation for

B + C2 = V°(PayP®) € % Cc T*

yields —1 times the expression in (53). The same calculation on the exact divergences
A and B, + C; yields 0, so
A, B; +C; € T4,

It follows from (46) that any of the cubic curvature polynomials Dy,...,Dg have
bD; of order at most 2 as a differential operator; thus (bD;)* and bD; — (bD;)* also
have order < 2. Thus by (54), for any linear combination D of the D; lying in Z'*, the
constant multiple of (53) given by bD — (bD)* is 0, so that

T* Nspan{D;}5_, c ITFA,

In particular,
Pff € IS4,

Remark 17. One concrete way in which Q-curvatures are very different from Pff is
in the filtration of Z by homogeneity degree in V (the quantity Ny of (35)). Let Iy
be the subspace of polynomials in Z which are writable as a linear combinations of

monomials with Ny < k; then

LcL,C--CIyoCT .
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In this filtration, the Pfaffian lies in the most elite space Zp, while a Q-curvature (in
order to get the leading A™2w term in its conformal variation) lies in the same class
in Z,,_5/T,-4 as does A™?~1). Further conditions on the behavior of Q with respect
to this filtration are implied by the fact that the total metric variation of Q is the
Fefferman-Graham tensor. Let J; denote the natural one-form (2 — n)-densities with
expressions having Ny < k; then the exact divergences within Z;, are 6 J;—;. Since
8 Jn—3 = I, the leading term when we work modulo divergences is in

(55) Tn-1/(Tn-6 + 0Tn-s) -
If n > 6, this is one-dimensional, and generated by the class of
2
(56) 2. VI
(n—4)/2

In order to produce the Fefferman-Graham tensor A as its total metric variation, the
class of Q in (55) must be nonzero, so a nonzero multiple of the class of (56). (This may
be computed by looking at the corresponding leading term of A; see [39], equation
(2.2).) The same must be true of the putative S discussed above. In dimension 6
(where we know Conjecture 15 holds), this means that in the linear combination

S =aD7+bD8+cI,
we must have ¢ # 0.

Remark 18. A smaller 6-dimensional invariant theory may be realized by restricting
to flat conformal classes. Besides the vanishing of the Weyl tensor, such classes have
Pasjc symmetric in the last two indices, by the contracted Bianchi identity

Cased)* = 2(n — 3)Ptjaiq -
As a result of this, the list (47) may be replaced by the list
A, By, By, C,, Cy, Dy, Dy, Ds.
Specifically, the other 9 quantities are eliminated because
B; = By + 6D; — Dy, C; =C,,

and By, C4, and the D; for ¢ > 4 vanish. Modulo exact divergences, we have only C;,
D,, D,, and D;. The exact divergences are spanned by

A=V,
B, + Cy = V),
B;+C, = Vb(PabJ|a) )
By +Cy — Dy +6D;3 = Vc(Pab|cPab) .

The range of d is 3-dimensional; a priori it is spanned by
oC, = 2(A - 2B, - 2C,),
dD; = —-6(B, + Cy),
0D, = —2(B; + 2B, + 2C, + C; — D2 + 6D3),
0D; = —3(2B; + C; + C, — D2 + 6D3).

(57)
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However the Pfaffian is a constant multiple of D; — 3D, + 2D3, so there is one linear
relation among the four quantities in (57). We have

I* = N(0) =% + R - Pff.
By the discussion around (53,54), Z"* will be 4-dimensional inside the 5-dimensional
T'*; in fact a basis is Q, 8C,, 0D;, OD,.

Remark 19. Another reasonably small invariant theory is that of 4-dimensional con-
formal structures with boundary; this is developed in [13] and used in [21].

A conjecture related to the above machinery, and suggested by the original con-
struction of Q-curvature by polynomial continuation in the dimension is:

Conjecture 20. dim ZF54 4+ dim 79" = dim Z.

Note that ZdV ¢ ZFSA, 5o this is more subtle than a conjecture about decompositions
of Z.

5. DETOUR TORSION (CONTINUED)

Again, this is joint work with Rod Gover. The list above in (50) gives us conformal
primitives of the type we want for a 10-dimensional space of invariants, which must
coincide with ZFSA, A combination

g = lIQ + hH + d7D7 + ngg

has the conformal primitive [ w(@_ + Q), while a combination
OF := 01301 + c23C2 + dlaDl + d33D3 + d56D5 + dﬁaDs

has the conformal primitive [(F — F).
What we have established is:

Theorem 21. In dimension 6, Uy has the form Q+F, where Q and F are as above.
Correspondingly, Hioc has the form

Hioc9,0) = [0(@+ Q)+ [F-F).

Note that there are variations on this particular way of writing things which are
still of the form (39). First, any conformal index density may be added to F without
changing the quantity [(F — F). The 11-dimensional space Z™* of conformal index
densities is spanned by the 7-dimensional space of exact divergences, together with D;
and Dg, together with

D, —3D2+2D2+D4+§D5—%D6,
Cy—Cy— Dy — ¥D3 + D4 — $5D5 + 3Ds .
The invariant on the first line just above is, modulo a linear combination of D7 and

Dsg, the Pfaffian.

Second, we can change our way of writing things by viewing G as a Q-curvature
modification rather than as something with a local conformal primitive, since it has
both properties. Thus we can subtract aDj, for any constant a, from F, as long as we

add aG to Q.
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The half-torsion calculation is related to the detour torsion introduced in [17]; this
detour torsion is a quantity attached to the detour complezes introduced in [16]. For
k < n/2, let & = E¥[2k — n]. As a conformally invariant operator, the coderivative
d carries & to &_;. If M is oriented, the Hodge star operator implements an iso-
morphism (as bundles for conformal structure) between & and "%, but we do not
wish to assume orientability. In [16], it is shown that there are conformally invariant,
formally self-adjoint differential operators Ly : £F — &, with the property that

(58) Ly = 6 {(6d)"**! + LOT}d.

It follows that the sequence of operators formed by the beginning of the de Rham
complex, followed by Ly, followed by the end of the de Rham co-complex (formed by
taking the formal adjoint of the de Rham complex) is an elliptic complex:

(59) goi}gl'ﬁ)"'_d)gk—l_d)gkﬂ)gk—6')8);..1—6)"'—6)51i)go.

We shall call (59) the k2 de Rham detour complez. It is worth emphasizing that
this complex depends only on conformal structure, and not on the choice of a metric.
The existence of this complex is not just a formal fact, but depends on the subtle
construction in [16] of the Lj as operators with the factorization (58). In case the
underlying manifold is orientable, a choice of orientation determines an isomorphism
of (59) with

94 1 4. G k1 G gk 2k pnk d pnoki1t 4 4 pn1 4 on

The cohomology group of the k% de Rham detour complex at £P (resp. &) for
p=0,--+,k <n/2 will be called H}, (resp. H},?). If k has been fixed, we shall use
the notations Hf and H; 7. Let us fix k. Note that if p < k, then H} = HP, and
H}™" is the degree n—p cohomology of the de Rham co-complex. By the factorization
property d(e)d of L, the cohomology H* naturally injects into H¥, and H}~* naturally
projects onto H™*. Since a choice of metric within the conformal class sets up a
vector space isomorphism of HY with the corresponding harmonic space (the joint
null space of d and § unless p = k or n — k, in which case it is the joint null space
of L and §), all terms in the computation of the index by the alternating sum of
cohomology dimensions cancel identically; that is, the index of a de Rham detour
complex vanishes. One might conjecture that generically (in some sense of “generic”
yet to be fully investigated), dim H} = dim H*; this question generalizes one posed in
[28]. A detailed discussion of the relative size of the detour and ordinary cohomologies,
as well as some relevant estimates, are given in [16].

In introducing a torsion quantity for these complexes, one issue to be confronted
immediately is that the coboundaries have different orders (1 for d and n — 2k for
L). We can compensate for this, in the definition of the various zeta functions, by
replacing (6d), (for 0 <p < k—1and n—k+1 < p < n) with (6d)?~%*, and similarly
for (dé), (for 1 <p < kand n—k < p <n-—1). For any zeta function made purely
from & and d under this scheme (including local and partial ones),

¢ (s) = ¢*U((n — 2k)s) .

In particular, the regularity (and in fact the value) at s = 0 is unchanged by this
device, while the ¢’(0) quantity gets multiplied by n — 2k. The zeta function being
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considered at the bundle £* of (59) is that of
(d6)""%* + L = A" %* + LOT,

since L is formally self-adjoint.
In analogy with (20), we consider linear combinations

Go¢ (8, AF )+ G, ARTE) + &G (s, ((dO)e)" + L)
+ GakC(s, (dO)R)™% + L?) + G, £+1C(8, ATT2) o G C (s, AR,
Because of the repetition of terms, we may condense this to
cof (5, A7) + -+ ce1( (s, ART) + e (s, (d6); 7 + IP)
then expand to
co¢ (s, (6d)5 ™) + e1{¢(s, (b)) + (s, (8d)7 )}
+ ot e {C(s, (dO)F23) + (s, (6 “2'°)}+ck{C( (d6)e™™) +¢(s, L)}

k-1
= cx((25,L) + Y _ cp¢((n — 2k)s, (8d) ,,)+Zc,,c n — 2k)s, (d6),) := rx(s) .
p=0 p=1

Since L carries £¥ to £¥[2k — n] in a conformally invariant manner, the conformal
variation of L (viewed as an operator £ — £*) in the direction w is (2k — n)wL, so
that

Tr(L™*)* = (n — 2k)sTr(wL™?).

By this, (18), and (19), the conformal variation of ki (s) in the direction w is

k-1
(v = 20s{ X r{ = 20 (= 2815, ()0

~ (n=2p ~ 2)s¢((n ~ 2K)s, (dB)pu1,10)}
+ Z CP{(n -2p+ 2)(((" - 2k)37 (Jd),,_l,w)

- (= 3K~ 2, (D)}

+2(n — 2k)sci(2s, L,w)
k-1

= (n—24) {Z<cp+cp+1><n 2)C((n — 2K)s, (6d)po10)

p=0

k
Z cP + CP 1 'I'l 2]7)(((77/ - 2]0)5, (dé)l”w) + 2CkC(2S, L,W)} .
p=1

If we choose cy, . . .,ck according to (22) (with p in place of k), then
(n—zp)(cp+cp+l) =2, (n_2p)(cp+cp—l) =-2,
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so the above becomes

k-1
2(n — 2k)s {ckC((n — 2k)s, (dd)k, w) + 2¢x((2s, L,w) + Zcp(((n — 2k)s, Ap,w)}

=0

k-1
= 2(n — 2k)s {ck(((dé)k'% + L% w) + E cp( (s, A;"zk,w)}

p=0
=: 2(n — 2k)skx(s,w),

where £i(s,w) is the local quantity corresponding to xx(s). (In particular, xi(s,1) =
rk(s).)

Comparing with (24), the extra factor of n — 2k has appeared because the orders
of all the Laplacians have been “pumped up” to match that of L2. We could actually
have used the (n — 2k)/2 powers of the partial Laplacians, and L!, but L? is what
appears naturally as a partial Laplacian at &£*.

In fact, the quantity ,—g)/2(s) (or its local generalization) is essentially Cheeger’s
k(s) quantity (or its local generalization). Since L(,_3)/2 is the Maxwell operator
(éd)(n_z)/g, we have

K(n-2)/2(8,w) = K(2s,w) .
For k < (n — 2)/2 however, the Ly carry more subtle geometric information than
just their principal parts (6d)™~2%)/2, At the other extreme, L is the critical GJIMS
operator P. This means that y(s,w) is just {(2s, P,w).

Let
¢ = (-1(n—-2p), p=0,...,k.
We now harvest the analogues of the conclusions we made above for the Cheeger «(s)
quantity. First,
kk(0) is a conformal invariant.

Second, the generalization of the heat expansion (27) to positively elliptic operators
D of order 2{ is .

(60) Z(t,Dyw) ~ Y / wU;[D].

even t>0
Note that via the Mellin transform, these still correspond to zeta functions that are
regular at s = 0, and that furthermore the behavior at s = 0 is still related to the ¢°
coefficient, and through that to the U, local coefficient. The harmonic spaces of the
detour complexes still make a global contribution as in the calculation starting with
(28). Following the calculation through, we get

K4 (0)" = 2(n — 2k) (7 (g, w) + £ (g, w)) =: 2(n — 2k) 7k (g, w),
where
k k
(g, w) = / WY UnlBrgl,  EP(g0) == c(-1)F(n - 2K)TrwPy,,
p=0 p=0

where Ay is the p Laplacian of the k% detour complex, and and Py, is the projection
onto the corresponding harmonic space N'(Ag,). (Note that the U, quantity and this
projection are insensitive to the powers used to level the orders of the Laplacians.
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Recall that the harmonic space coincides with the de Rham harmonic space for p <
k—1, and is the joint null space of § and L for p = k.) All considerations on finding
a conformal primitive of 7/°°(g,w) are exactly as before. In particular, we may assert
that this conformal primitive H}°°(g, g) has the form (38). By our invariant theory
above, we also have the right to assert that in dimensions 4 and 6, H}°°(g, g) takes the
form (39).

For the global calculation, we still have a de Rham bijection

Dg ZN(Ak,p) — sz

of harmonics with cohomology for the detour complexes. The calculation goes through
as before, yielding a conformal primitive

k

HE(5,9) =Y _(-1)"logl§ : gl3, -
=0
Note that [§ : g]k, is the same as the [§ : g], of (34) as long as p < k, but that [§: g x
depends on the operator Ly.
We have proved:

Theorem 22. The log of the detour torsion,
k-1

7(9) = (=1)*¢'(0, (d8);™* + L) + D (=1)°(n ~ 26)¢'(0, 8),

p=0

has
Tk("q\) - Tk(g) = ’H}?c(.’q\’ g) + Hl%mb(a: g) )
for Hioe and Hgop as above. The special case T(n—2)/2(9) is the Cheeger half-torsion.

Remark 23. As shown in [16], there is also an elliptic complex

L, -
O A A Ly R N e L S - -

the middle operator of which is conformally invariant, and is constructed in much the
same way as Ly. This co-detour complez is not generally isomorphic to the detour
complex (59), as is evident by taking the cohomology at the initial bundle: Take M
to be compact and Riemannian conformal; then for the detour complex (with & > 0),
dim HO is the number of connected components, while for the co-detour complex,
dim H° is the number of orientable connected components. (See [16], Proposition

2.15.)

The fact that the main issues in the above are the Hodge decomposition in an
elliptic complex, together with a specific form for the conformal variations of the oper-
ators involved, suggests that a version of the detour torsion might exist for generalized
Bernstein-Gelfand-Gelfand (BGG) diagrams. In the even-dimensional Riemannian
conformal case, these are diagrams of differential operators on S™ which are intertwin-
ing for representations of the conformal group SOy(n+1,1), or its cover Sping(n+1,1).
The representations involved are induced from representations of the maximal para-
bolic subgroup M AN for which the nilpotent part IV acts trivially. The representations
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are parameterized by an M weight and an A weight. Since m = so(n), the M pa-

rameter takes the form [A,...,An/2], where all A, are integral, or all are properly
half-integral, and
(62) AL2 XA 22 Ajant 2 |Angal-

The tuple A (which is said to be dominant if (62) holds) gives the coefficients in the
expansion of the highest weight of the m module in the basis consisting of the positive
weights of the defining representation of so(n). The a-weight can be any complex
number; but according to the classification of invariant differential operators [5], only
values in %Z can occur in the source or target for invariant differential operators.
Furthermore, the (a, m) weight [Ag|Ay, ..., An/2] cannot occur for a differential operator
unless Ao — )\ EZ.

The (a,m) weights arrange themselves into orbits under the affine Weyl group as
follows. The rho-shift of [Ao| Ay, .. .,/\,,/2] is

4

<A0+ ]/\1+ .,/\n/2+1,/\n/2) .
We shall use the difference between the round and square parentheses to indicate
whether or not a weight has been rho-shifted. Two rho-shifted weights (uo|r) and
(volv) are affine Weyl equivalentif the (n/2+1)-tuples involved differ by a permutation
and an even number of sign changes. An affine Weyl orbit (equivalence class) is regular
if the absolute values of the n/2 + 1 entries of the tuple are distinct.

It is easily seen that a regular affine Weyl orbit may be arranged into a diagram

/\

o — @ e ° —_— oo e —» @

~M|;

in a unique way so that the dots (n+2 of them in all), representing rho-shifted weights
(polp), are in decreasing lexicographical order as we move to the right or down, and
all tuples to the right of the bar are strictly dominant (the property of (62), but with
> signs).

By a theorem of Harish-Chandra, all intertwining operators (for principal series
representations of Sping(n + 1,1)) must pass between bundles in the same affine Weyl
orbit. The Boe-Collingwood classification says that all differential intertwinors in a
regular orbit pass between the bundles in the positions indicated by the picture above;
and furthermore, there is a unique (up to constant multiples) nonzero differential
intertwinor corresponding to each arrow. In addition, any composition of two arrows
(with the exception of one linear combination of the arrows around the diamond,
corresponding to the shortest long operator) vanishes, and the leading symbol complex
at any such composition (including a the composition of a long and short operator) is
exact.
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These facts are readily generalized to general conformally flat metrics [29], to give
conformally invariant differential operators in the positions indicated, between bundles
induced by a so(n)-type (realized by a tensor-spinor bundle), and an a-weight (realized
by a conformal density weight). The simplest example is the de Rham complex, which

begins with
—2
[0lo,...,0] = (g]ﬁ-z—lo) .

The long operators are the conformally flat special cases of the operators Ly of [16].

Beyond the conformally flat case, one knows that there are curved generalizations
of each operator — natural, conformally invariant operators, except possibly in the
case of the longest operator [27, 29]. However, with the exception of the de Rham
complex, there is no longer any reason to expect that compositions of these operators
vanish. Though there is some scope for constructing different curved generalizations,
there is still no reason to expect that one can find versions for which compositions are
identically zero. What one does know is that because leading symbols are determined
by the conformally flat case, the composition of two adjacent operators has order lower
than the sum of the orders of the two operators.

That the factorized form dQd can be asserted in the case of the long de Rham
arrows, even in the conformally curved case, is quite unexpected, and is one of the
major implications of [16].

To make our weight conventions completely clear, let us work out the weights of the
de Rham complex in detail in dimension 6. In rho-shifted form, they are

’ (013,2,1)
(3]2,1,0) = (2[3,1,0) = (1]3,2,0) — (0] - (-1/3,2,0) = (-2J3,1,0) = (=3|2,1,0).
(0131 2, _1)
In unshifted form, this is
[—3111 11 1]
[0]0,0,0] - [-1]1,0,0] = [-2|1,1,0] = @ - [-4,1,1,0] = [-5(1,0,0] = [-6]0,0,0].
[—3117 1, "1]

When we realize these as tensor-density bundles, we encounter the fact that the
tangent and cotangent bundles carry internal conformal weights. The effect of this is
to raise the weight given just above by 1 for each down index, and to lower it by 1 for
each up index. Since £¥ carries k down indices, we get

&
a8 580 @ s 555 £5.
£3
The bundles in the middle are the middle-forms of the two dualities; since n = 6
is of the form 4k + 2, these are the y/—1-dual and (—/—1)-dual 3-forms. A special
feature of the de Rham BGG diagram is that it survives, as an elliptic complex of short
operators, in the conformally curved case. The results of [16] show that (somewhat
surprisingly) all the important properties of the long operators relevant to the current
discussion also survive.
Another interesting example is the deformation complez, which we shall write out
explicitly only in dimension 4. This is the complex whose initial short arrow is the
conformal Killing operator S, which carries a vector field X to the trace-free part of
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Lxg, where L is the Lie derivative. The kernel of S consists of the conformal vector
fields. This complex is constructed in the conformally flat case, and studied in detail,
in [34]. Some of the deeper structure of this complex, involved with gauge companion
operators, is explored in [15].

In terms of rho-shifted weights, the corresponding BGG diagram is

(0[3,2)
(32,0) = (2]3,0) - @ = (-2[3,0) — (-3|2,0).
(013, -2)
The unshifted weights are thus
[—2|2a 2]
(1]1,0] — [0]2,0] = @ — [—4]1,0] — [-5]1,0].
(-2[2, 2]
A tensor-density realization is
w+

E® = Ean)o[2] Ve\}})_ = Ea)o[—2] = Eal—4].

The bundles W* are those of (self- and anti-self-dual) algebraic Weyl tensors; this is the
totally trace-free subbundle of £%.4 with Riemann tensor symmetries. As mentioned,
the first short arrow is the conformal Killing operator X* — V(4Xp),. The short
arrows directed at W* give, in the conformally flat case, the linearizations of the maps
carrying a conformal structure (represented by the conformal metric g) to its Weyl
tensors C*; note that a generic section of £(4),[2] may be viewed as a perturbation of
conformal structure. The long arrow E(s),(2] = E(as)e[—2] is the linearization of the
(conformally invariant) Bach tensor, in the same sense. In higher dimensions, when
we form the BGG beginning with the conformal Killing operator, the second-longest
arrow gives the linearization of the Fefferman-Graham obstruction tensor (recall (3)).
Back in the 4-dimensional case, the deformation complex provides a good example
of how some of the properties of a complex may persist beyond the conformally flat
case, while not necessarily persisting for general conformal structures. Suppose [g] is
a Bach-flat conformal structure, and let B be the operator giving the Bach variation
described above. We claim that BS = 0, where S is the conformal Killing operator.
First, we extend the Lie derivative from functions to densities by requiring that

(63) Lxf=Xf-wdivX)f/n, fe€Eu],

where div X := V,X®, and then extend on to tensor densities by requiring £x to be
a derivation. In these terms, the infinitesimal conformal diffeomorphism invariance of
(for example) the conformal Laplacian Y : £[(2 — n)/2] — £[(-2 — n)/2] just reads
YLy = LxY. In fact, a finite version of (63) may be used to define the concept of a
w-density without reference to conformal structure, as a quantity which responds in
a certain way (specifically, by acquiring a factor of a power of the Jacobian) to local
diffeomorphisms; in particular, to coordinate changes. Now by a conformal analogue of
the calculation that shows that the variation of the Riemann tensor R in the direction
Lxg is Lx R, we may compute that the variation of the Bach tensor B in the direction
of the variation Lxg of conformal structure is £xB. But now note that L£xg is
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automatically trace-free, and in fact is SX. This says exactly that BS = 0 at conformal
structures where B = 0.

For the same reason, at half-conformally flat structures (where C* = 0 or C~ = 0),
the composition of S and the appropriate short arrow on the left half of the BGG
diamond vanishes.

We now give the construction of detour torsions for BGG diagrams at conformal
structures where the appropriate compositions vanish (in particular, for flat conformal
structures).

Consider a regular BGG diagram, which, for convenience, we “flatten” by direct
summing the bundles at the zenith and nadir of the diamond. Focusing the picture
near the bundle Ej,

Dy D,
. — Ep4 L)IE]C a2 EIH-I_)---;

the assumption is that DyDy_; = 0, and the leading symbol complex is exact. (The
additive normalization of k is such that the initial bundle of the diagram is Ep, and
the final one E,.) Here any one of the operators, or none, may be a long operator;
that is, we may or may not be looking at a BGG detour complez. In the conformally
flat case, classical theory guarantees only that the short arrow diagrams are locally
exact. But one may compute by spectral methods like those in [11] that such detour
diagrams are complexes when their coboundary compositions vanish. Mike Eastwood
has pointed out that one may also get this from the fact that the local exactness
property is preserved by Jantzen-Zuckerman translation. In any event, the exactness
of the leading symbol complex may be observed, for arbitrary conformal structures,
by looking at the conformally flat case.

There is a technical point that must be addressed before discussing the formal
adjoints Df. Given bundles E and F and a differential operator D : E — F, the
formal adjoint of D carries F* to E*. For our regular BGG diagrams, two things
can happen with respect to dual bundles and formal adjoints: those made from the
bundles and operators in the first half of the diagram lie in the second half of either
(1) the same diagram, or (2) a different diagram. In fact, the dual of the bundle (A|))
is (—=Xo|At), where Al is the strictly dominant weight in the affine Weyl orbit of —).
Thus Mt = )\ unless

(64) n=0(mod4) and A, #0.
For example, in the 4-dimensional diagram
(1[3,2)
(312,1) = (2[3,1) — o - (-2[3,-1) = (=3[2,-1),
(=113, -2)

the m-bundle (2,1) is its own dual, and similarly for the rest of the diagram; so the
dual objects to those from the first half of the diagram live in the dual diagram

(113,-2)

@B2,-1) = @2B,-1)» & - (-23,1) > (-3[2,1).
(-13,2)
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On the other hand, the 6-dimensional diagram
(114,3,2)
43,2,1) » (3]4,2,1) » (214,3,1) = & - (=2/4,3,-1) = (=34,2,-1) - (-4]3,2,~1)
(_1|41 31 -2)

is self-dual, as (for example) the m bundles (3,2,1) and (3,2,-1) are dual. The
4-dimensional deformation complex above is also self-dual, since (for example) the
m-bundle (2,0) is its own dual. The de Rham complex is self-dual in any dimension.

In the following discussion, we assume that we have a self-dual regular BGG; that
is, we are not in the case (64). The coboundaries D have formal adjoints D}, and (at
each conformal scale) we have a Hodge decomposition

C*(E}) = R(Dx-1) © R(Dy) ® HF,

where the harmonic space HF is the joint null space of Dj_, and Di. As for the de
Rham case, we have the partial zeta functions

(65) (s, D;Dx) = Trp2(DyDxlr(p;))~* = Tr((DxDi)™*) ,
(s, DxDy) = Trpa(DieDylr(py))™* = Tr((DeD) ™),

and in fact these two are equal, because of the bijection
Dy : R(D;) & R(Dy) : Dj.

A difference between this general case and the de Rham case is that we must confront
differing orders for the Dy, even if long operators are not involved. In fact, orders may
be computed by observing the drop in the weight to the left of the bar (in either
the rho-shifted or unshifted regime). For example, the short operator orders in the
4-dimensional deformation complex above are 1,2,2/1, and the long operator giving
the Bach tensor variation has order 4. We can handle this by letting P be a common
integer multiple of all the orders p; of D, and set the k2 Laplacian of the complex
equal to

Ay := (DyDy)"/? + (Dg-1 Dy _y) /741

Each of the operators Dy has order 2P. The generalized heat expansion (60) with £ =
P implies that the partial zeta functions (65) and the local zeta functions (s, Ak, w)
are regular at s = 0. Our levelling of the orders just above has the effect

C(O’ Ak) = %01 D;Dk) + C(O: l}))]:—le-l) )
¢'0,A¢) = ;;C'(O, D;Dy) + EC(O,Dk—lDZ-n)

on the important spectral quantities.

Recall that the half-torsion and detour torsions of the de Rham complex are not
conformally invariant, but are functionals on a conformal class that can be “tracked”
via Polyakov-type formulas. This implies in particular that we are doing a calculation
that cannot be made fully conformally invariant; in particular, Dy Dy and Dx_,Dj_,
are not conformally invariant operators. Thus, just as in the de Rham case, we make
a choice of conformal weights that is artificial for some of our operators; to harmonize
with our treatment of that case, we may as well choose to have the D; invariant
in the chosen weights. Now if D : (uo|u) = (w|v) is conformally invariant, then
D* : (=ip|vt) = (—po|ut) is conformally invariant. However, in the compositions
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D*D and DD*, performed at a conformal scale, we view D* as carrying (w|v) to
(polp) conformally covariantly. Specifically, for this version of D*,

(D*)*¢ = 2y D*(wyp) — 2powD*p.
Applying this to our BGG diagram,
*\0 k
(D)= ( +1)Dk(wga) 2#0 WDW,
where p(k) is the rho-shifted conformal weight of Ej. (Note that if no D, for p < k <

n/2 is a long operator, then p{f = (0).)
The analogues of (18) and (19) are thus

¢(s,(D*D))* = 24 5((s, (D* D), w) — 2 VsC (s, (DD*)i1,w),
¢(s,(DD*)i)* = 215 V5((s, (D*D)g-1,w) = 2415 5C (s, (DD*), ).
We now choose a linear combination of zeta functions,
K(n-2)/2(8) = coC(s, Do) + c1(5, A1) + . .. ¢(n-2)/2 (8, D(n-2)/2)

if no Dy is long, or

(66) Iik(b') = COC(S’ AO) + CIC(S: Al) +... ckC(ss Dk)
if Dy, is long. The analogue of (23) is

_ [ (-2, p<k,
(€7 c” { 0, P>k,

where we set k = (n—2)/2 if no long operators are used (so that (66) may be considered
a unified formula for the two cases).

Note that this specializes to our previous choices for the de Rham and de Rham
detour complexes. For the other example considered in detail above, the 4-dimensional

deformation complex, it gives
6¢(s, (5*5)%) — 4¢(s, (S5°)* + W*'W),
where W is the linearized Weyl tensor operator.
Most importantly, the conformal variatign of k(s) is given by
ki(s)® = 2Pski(s,w),

where (putting o, = u{)

ki (s) = 200( (s, Ag,w) — 201( (s, Ay, w) + - -+ + (=1)F - 204 (s, Ap, w)
After application of the Mellin transform as in (29-31), we get

k
K, (0)* =2P {L{n - ZapTrw'Pp}

p=0
= 2P{Tloc(g;w) +Tglob(g’w)} = 2PT(gr w) )
where U, is a natural (—n)-density in ZFSA, and P, is the Hodge projection onto the

harmonic sections of E, (the joint null space of D, and Dj;_,, or alternatively, the
null space of A,). The local part has a conformal primitive of the form (38), and
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conjecturally, of the form (39); we are guaranteed the form (39) in dimensions 4 and
6. The global part has the conformal primitive ‘

k

HKlob(.’q\: g) = Z(_l)p 10g[§ : 9]1217

p=1

where [§ : g], is the basis change determinant connecting the images in the BGG
diagram’s cohomology under the de Rham map of g- and g-orthonormal bases of 4,
and 5,,.

Remarkably, once again the sequence of coefficients in this global termis 1, -1,1,...
in the conformal primitive, despite the coefficients in its variation, the kappa quantity,
which depend on the particular BGG. The reason for this is that the conformal weights
o, are telling us about the conformally invariant global (L?) inner products on the
bundles in question. Going back to the half-torsion calculation, note the mechanism
by which the coefficients n — 2k were produced in the variation: we set the conformal
weights to be the natural weights carried by £*. The pointwise inner product contracts
two k-forms with

9'® 097,
k
which carries a conformal weight of —2k (as well as carrying 2k indices). But the
conformal measure dv, corresponding to g carries the conformal weight n. (This is
just the Riemannian statement § = e*’g = dv; = €*“dv, made intrinsically in terms
of conformal structure.) The (a,m) weight of £* is

[~k|1,...,1,0,...,0].
k

More generally, it is clear that for any bundle of the form [A...], the conformally
invariant pointwise inner product will carry the weight 2), so that the conformally
invariant integrand for the global inner product will carry the weight n+2X = 2(Xo+
n/2), the leftmost entry in the rho-shifted weight (Ag+n/2|...) of the bundle. But the
key step (33) in the argument giving the global part in the case of the half-torsion is
clearly dependent exactly on identifying the conformally invariant global inner product.
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