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1. INTRODUCTION 

Starting with a compact manifold M, or even a finite simplicial complex, one can 
consider the large time behaviour of heat on forms (or cochains) on its fundamental 

The paper is in final form and no version of it will be submitted elsewhere. 
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cover M. The large time heat decay exponents, called Novikov-Shubin numbers, are 
known to be homotopical invariants of M. On functions this exponent is related to 
the growth of 7Ti(M). Yet, in higher degrees very few is known about their geometric 
signification. 

We will consider the case of M being a graded nilpotent group G (or Carnot group), 
that is a nilpotent group with a dilation. We will show how the study on one forms, or 
even on discrete one cochains, leads to introduce differential operators of high orders, 
that fit into complexes. These constructions extend to Carnot-Carat heodory spaces, 
that is manifolds with a bracket generating distribution given in the their tangent 
bundle. The ideas and results will be precised on examples. 

This paper is based on (the two first) lectures given at the 24th Winter School in 
Geometry and Physics that held at Srni, Czech Republic, January 2004. It is a pleasure 
to thank Vladimir Soucek and the other organisers for their invitation and welcome. 

I have tried to follow an elementary and self-contained presentation, in order to keep 
it the most accessible. Related developments around the topics presented here, but 
relying on more analytic techniques, may be found in [39, 40]. 

2. SOME MOTIVATION FROM SPECTRAL GEOMETRY 

2.L Discrete groups, Cayley graphs and cochain complex. 
Discrete groups seen as graphs. The spectral geometric problem we want to discuss 
actually makes sense not only on fundamental cover M of smooth compact manifolds 
M, but on any finitely presented discrete group T. 

One says that a discrete group T has a finite presentation if 
• T is generated by a finite set S = {si, S2,..., sn}, meaning that any element of 

T can be written as a word (product) of sf1 G S U 5 ~ \ 
• any relation in T, that is any word w in the sf1 such that w = e neutral element 

of T, can be factorized as a product of elements of the form 7~1r?17, where 
the Ti runs within a finite set R = {Ti,T2. • • • ^k] of "elementary" relations. 

In other words, that means that we can identify T with the quotient of Free(S'), the free 
group on 5, by the normal subgroup of relations generated by R. The basic examples 
of such groups are fundamental groups 7Ti(M) of compact manifolds M. 

Associated to any choice of generating set S of T is a graph C, called Cayley graph, 
and defined as follows 

• vertices of C are elements of T 
• two elements 7, 7' of T are related by an (oriented) edge in C if 7' = 7s?1 for 

some Si £ S. 
Figure 1 shows two Cayley graphs associated to Z2. 
In the left one we see Z2 as generated by two elements, while three (!) are used on the 
right one. (This academic example is just here to stress on the fact that they are many 
Cayley graphs associated to a single group, and that in general there is no preferred 
presentation.) 

We observe that, given 5, relations of T appears as closed loops in C. So one can 
naturally complete C by adding two dimensional disks at any vertex 7, along the chosen 
elementary relations r. € R. One obtains then a two dimensional polyhedra V called 
Cayley polyhedra. For instance, in the left part of fig 1, one adds squares corresponding 
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FIGURE 1. Dupond and Dupont. 

to the relation ri = SiS2sJ'1s2"
1, while one the right one we have to choose two basic 

relations, for example ri = SiS2S3 * and r2 = s2SiS3x, and glue corresponding triangles. 
For a general V, the polyhedra V is simply-connected as comes from the fact that R 
generates all the relations of T. In fact V can be seen as the fundamental cover of a 
finite two dimensional polyhedra V/T where T acts on V by left translations. 

The presentation complex. We now describe two natural operators associated to 
V. Let ^2(r), £2(S) and f(R) denote respectively square integrable functions on V, 
r x S and T x R. These interpret as the £2 functions spaces on the vertices, edges and 
two cells of V (or basic loops of C). 

The first operator d0 goes from £2(F) to P(S) and is defined by 

(i) tø)/)(7,») = / (7 - ) - / (7 ) , 
this is the difference operator of the function / along the edges of V (or C). One can 
also define a circulation operator d\ : £2(S) —• £2(R) by 

(2) (dia)(7,r)= i ( 

to be understood as the finite sum of values of a encountered in the oriented closed 
loop in V (or C) starting at 7 and travelling along the elementary relation r. 

One sees that d\ o d0 = 0. Moreover one has, at least locally, kerdi = Imrfo, as seen 
using the fact that any relation in V (closed loop in C) can be solved by elementary 
relations (filled by two cells in V). The piece of complex we described 

(3) 
do dx Є{T) -2U ЄЦS) -í!U Є2(R), 

will be called the presentation complex in the sequel. It is the beginning of the (£2) 
simplicial cochain complex one can introduce on the two dimensional Cayley polyhedra 
V. The maps do and d\ are actually dual to the two boundary operators d\ and <92 

available here. These linear <9i, <92 are defined respectively on (£2) sums of oriented 
edges and two cells of V by 

and 

ði (edge e) = end e — origin e, 

<92(two cell r) = ^2 edges bounding r . 
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Then the formula (2) for the circulation operator d\ reads 

(dia, two cell r) — (a, cV). 

The simplicial cochain complex (3) may be extended if (locally finitely many) higher 
dimensional cells are available. This happens for instance on coverings of triangulations 
of smooth compact manifolds. Again the coboundary maps are dual to the boundary 
operators on the extra simplexes. 

2.2. Measuring the heat decay and the spectrum. 
Heat operators and spectra. Let S0 : e

2{S) -> f{T) and 5X : P(R) -> e2{S) denote 
the adjoints of the (bounded) simplicial differentials do and d\. We have two positive 
self-adjoint Laplacians 

A0 = ô<̂ o acting on ^ 2 ( r ) , 

and 

Ai = do50 -f 5\d\ acting on e2{S). 

We can consider the associated heat operators. By spectral resolution (see [37]) we 
have, 

TOO 

e-'д [ e-adEA{\), 
Jo 

where E&{\) denotes the spectral projection associated to [0, A] by A = A0 or Ai. We 
see that for t —• +oo, the heat operators e~*Ao and e~*Al strongly converge towards 
orthogonal projections onto kerA0 and kerAi. (Recall that Pn —*• P strongly if 
P-f —* / in norm, for any fixed /.) As there is no harmonic e2 functions, if T is 
infinite, the first space actually vanishes. This is not necessarily the case for the space 
of Ai-harmonic JP one cochains, which is isomorphic to 

e2H^{T) = (kerdj n^2)/Im^, 

called the first reduced ^2-cohomology of T (see e.g. [34] for an introduction). 
According to [8], this cohomology group vanishes on amenable groups and in par­

ticular in the case of nilpotent groups we will study. In general anyway, one can split 
the asymptotic analysis of e~ i A l more precisely. Using Hodge decomposition 

e2{S) = ker Aj 0 Imdo © ImSi, 

we see that e~£Al may be written 

(4) e-'A> = n k e r Al + e - ^ n ^ + e-**nK--. 

Therefore the study of large time behaviour of e~<Al divides in two cases, 

(1) study of e~tdoS° on Imd0 = {ker So)1, where in fact this heat is conjugated by 
So to e~'A° on functions, 

(2) study of e~tSldl on I m ^ = (kerJi)1, which a priori contains the new spectral 
information with respect to functions. 
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V-trace and the spectral density function. We now describe a way to measure the 
speed of the strong convergences we faced. All the operators P we met act on ^(r)(8)V, 
for some finite dimensional space V, and are T-invariant under left translations. So 
their (End(V) valued) Schwartz kernels fc(7i,72) are actually of the form k(y~lyue). 
In particular they are determined by their value on Sc, the characteristic function of 
the neutral element e £ T, through the formula 

P<Je = £fc(7 ,e)(V 
7<-r 

Furthermore the single fc(e, e) controls all the fc(7, e) since, by positivity and symmetry 
of P, one sees that for all u, v £ V, 

|(fc(7,e)ii,?;)|2 < (fc(e,e)u,ii)(fc(7,7)v,v) = (fc(e,e)tx,u)(fc(e,e)v,t;), 

and in particular using the trace on End(V), 

TY^(fc*(7,e)fc(7,e))<(TVv(fc(e,e)))2. 

Definition 2.1. Let P be a T-invariant bounded operator acting on some £2(T) ® V, 
the number 

T(P) = Trv(k(eie)) = Trv((PSe)(e)) 

is called the T-trace of P. 

We have seen that, for P positive symmetric, one has 
• r(P) > 0, and also T(P) = 0 iff P = 0. 

We can use this r to define the spectral density function of P by 

(5) FP(X) = r(EP(X)) 

where Ep(X) is the spectral projection associated to [0, A] by P. When T is trivial, Fp 
reduces to Weyl's repartition function, counting the eigenvalues lower than A. 

By the spectral theorem this increasing function is the building block to express the 
trace of f(P) as the Stieljes integral 

T(f(P)) = jf(X)dFP(X). 

Applying this to /(A) = e~tx we have 
r+oo 

(6) T(e-iP)= e~adFp(X), 
Jo 

meaning that the function r(e~tp) is actually the Laplace transform of the spectral 
density function of P. In particular by dominated convergence, we see that when 
t —> +oo, 

r ( e - ^ ) - , F p ( 0 ) = T(nkerp). 

More precisely it is a classical result (see appendix of [23]), that the asymptotics of 
the two functions r(e~tp) when t —• -f-oo and FP(X) when A —> 0+ are related in the 
following way. There exists a € [0, -f oo] such that, 

T(e'tP) - FP(0) x t~a when t -+ +oo 
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iff 
FP(X) - FP(0) x Aa when A-+0+, 

where / x g means 3c, d > 0 such that cf < g < df. Observe that a = -foo in 
the case e~tP — U^p has a super polynomial decay, for instance an exponential one, 
which happens when P has a spectral gap around zero. 

A more general definition of this exponent a is 

which always exists in [0, Foo]. 

Remark 2.2. We could have considered a limsup instead. All the results we will 
mention here will be independent of this choice. Also, as far as we know, there is 
no geometric example where these limits are distinct (for natural operators acting on 
Galois coverings of finite simplicial complex). Very few of these exponents have been 
computed so far anyway! 

Novikov-Shubin numbers. Going back to our problem, we can now define two 
analytic exponents of the Cayley polyhedra V we have described in 2.1. 

Definition 2.3. The Novikov-Shubin numbers of V are 

a0(V) = 2a(AQ) and a\(V) = 2a(S\d\), 

describing respectively large-time heat decay on functions and one cochains in Im S\ = 
(kerdi)^ 

Remark 2.4. According to (4) we could have also defined a third exponent a(d0S0)) 

describing heat decay of e~tAl on one cochains in Imd0 = (ker^o)"1. Yet, one always 
has a(dooo) = a(Ao), as will be seen in §3.2. 

As mentioned in §2.1 the presentation complex (3) can be continued if higher di­
mensional cells exist. Namely, let K be a (p-F l)-dimensional finite simplicial complex 
K and K denotes its universal cover, or even any Galois cover r —» K —> K with T a 
quotient group of 7Ti(K). 

Then for k < p the fcth Novikov-Shubin exponent ak(K) is defined by 

(8) ak(K) = 2a(Skdk), 

where dk is dual to the boundary map between k + 1 and fc-simplexes. 

Remark 2.5. About the 2 factor in these formulas. This is a convenient normalisation 
as we will see for a0. Also it disappears if one uses instead in the definition \dk\ = 
(Skdk)1/2, the symmetric part of the polar decomposition of dk. Namely, one has 

a(\dk\) = 2a(Skdk) 

as follows from EP2(X2) = EP(X) and Fp2(A2) = Fp(A) for positive P , A. 

So far we have only considered analytic exponents associated to the discrete sim­
plicial cochain complex. One can do a similar work for the de Rham complex on a 
smooth manifold. There is a notion of de Rham Novikov-Shubin numbers that can be 
defined as follows. 
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Let M be a smooth compact manifold. De Rham differential d acts between smooth 
p and p + 1-forms on the universal cover M. One is interested again in the bottom 
of the spectrum (or the speed of heat decay) of the essentially self-adjoint Laplacian 
A = dS + 5d, or more precisely of Sd as acting on (kerd)-1. 

In order to get numerical invariants, one has to extend the function r introduced in 
the discrete setting in Definition 2.1. One uses again the ̂ Schwartz kernels, but now 
doing some average of the values taken on the diagonal of M x M. Precisely it is well 
known, as a consequence of ellipticity, that the heat operators e~tA and the spectral 
projections FA (A) are smoothing operators. Therefore their Schwartz kernels k are 
smooth on M x M. _ 

In general, let T C M be some fundamental domain of the T = 7Ti(M) action and 
P be a smoothing T-invariant operator P acting on a T-invariant bundle V over M. 
Then following Atiyah [1] we define the T-trace of P as 

T(P) or Trr(F) = / Tr{k{x,x))dx, 

where Tr represents the point wise trace on End(Vx). Finally thepth de Rham Novikov-
Shubin number of M is defined (nearly) as in (7) and (8) by, 

where 
F(X) = T{EUQ0,X])) 

is the T-trace of the spectral projection associated to ]0, A] by Sd acting on p-forms 
(which is also the projection E&p(\) o IIJ^-J). 

2.3. Topological invariance and around. 
Basic results. It turns out that these various analytic exponents, as defined on de 
Rham and discrete cochain complexes, tend to coincide for a given degree. Even more 
they are known to be topological invariants. 

Theorem 2.6 (Gromov-Shubin [23, 24], Efremov [17], Lott [29]). 

• Let K be a finite simplicial complex and T —> K —> K some Galois covering. 
Then ap(K) only depends on the choice ofT and the homotopy class of the 
(p + I)-skeleton of K (cells of K of dim < p + 1). 

• Let K be a triangulation of a compact smooth manifold M, and T some covering 
group. Then the pth simplicial Novikov-Shubin number ap(K) coincides with 
de Rham's one ap

R(M). In particular, given T, these numbers are homotopical 
invariants of M. 

An interesting particular case here is the following, corresponding to K = V/T, 
where V is a Cayley polyhedra of V (see §2.1). 

Corollary 2.7. • Let V be a Cayley polyhedra associated to a presentation of 
a discrete group T. Then the two Novikov-Shubin numbers a0(V) and a\(V) 
actually do not depend on the choice of the presentation (and V) but only on Y. 
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• If M is any smooth compact manifold with -K\(M) = T. then 

aQ(M) = aQ(T) and ai(M) = ai(.T). 

We will describe the basic ideas and £2 tools involved in the proof of these results 
in §2. 

For the moment, we recall that the geometric signification of the first of these 
analytic exponents, a0(r) , describing large-time heat decay on functions, is known. 

Theorem 2.8 (Varopoulos [43], Gromov). 

• a0(r) < +00 iffT is a group of polynomial growth, 
• that is iff T is virtually nilpotent (has a finite nilpotent cover), and then 

i. ln(card(^(N))) Ob r = growth r = « Hm V ' £ "' 
-V-»+oo in 1V 

= VJnrankz(r„/rn+1)€N, 
n 

where B$(N) stands for the set of elements ofT that can be written as a product 
of at most N terms from a generating set S of F, 
and Fn is the lower central series : defined byFi = r and Tn = (V, Tn_i). This 
is the normal subgroup of T generated by iterated commutators 

(7i,(...(7n._i,7u))). 

Prom the geometric side, it appears clearly that the growth, and therefore a0(r) , is 
a large scale invariant of V. We can also easily see that the growth does not depend 
on the choice of generators. 

Indeed, suppose given two generating sets S = {s i , . . . , sp} and S' = {s ' j , . . . , sn}. 
One can write each s» in a finite product of elements of S" and reversely. Let c and d 
the maximum lengths needed. This gives bounds to translate words in S in S\ and 
reversely, so that one gets inclusions 

B$(N)cB?(cN) and B$!(N) C B?(c'N), 

from which follows the claim. 

Analytic and geometric aspects. Hidden in the statement of the previous theorem, 
but crucial in Varopoulos proof, is that a0 is also related to other important analytic 
and geometric properties of T. 

One of them is that a0 rules the Sobolev injections. Namely one has in t? norm for 
P<OLQ) 

(10) | | / | | 9 <C| |d 0 / | | p with - = \-^-> 
q p aQ 

for functions with finite support on T. This provides a link to the geometrical in­
terpretation of aQ. Indeed, using (10) with p = 1 and / = Un gives the following 
isoperimetric inequality, between the size of sets fi C T and their boundaries d£l, 

(11) card(ft) < C(card(<9ft))^ . 



AN INTRODUCTION TO SPECTRAL AND DIFFERENTIAL GEOMETRY IN CARNOT-CARATHEODORY SPACES 1 4 7 

Applying this to the balls Q = B^(N) and summing (see [11]), one obtains then 

card(£j?(N)) <C'Na°, 

which gives the relation with the growth upper bound. 
The relationships between large-time heat decay, Sobolev inequalities, isoperime-

try and volume bounds has been much clarified and extended by many authors since 
Varopoulos work, see for instance the survey [10]. In all these approaches the use 
of £p spaces and analysis is required to translate the basic £2 spectral invariant a0 

into a geometric information, and reversely Unfortunately (or luckily for geometers), 
most of the interpolation techniques needed deeply rely on the fact we are dealing 
with functions here, at least through the maximum principle that heat operator e~tAo 

decays sup (or £l) norms. (As was patiently explained to me by Thierry Coulhon.) 
They do not extend automatically when working on forms. 

Let us mention anyway that a more 'elementary' approach (with respect to analysis) 
exists in the particular case we will restrict of graded nilpotent (Carnot) groups, that 
is nilpotent groups with dilations. Namely, we will see there that a direct link of 
a0 with the volume growth can be obtained from an homogeneity argument. The 
trick, from the geometric side, is to use a more convenient (homogeneous) differential 
on functions, instead of the standard one, to compute a0. This is suggested by the 
underlying idea, in Theorem 2.6 and Corollary 2.7, that ao is a very 'stable' number 
that can be computed using many geometric approaches. 

We will play a similar game, based on homogeneity of modified differentials, to 
estimate the next Novikov-Shubin exponent a\ (V) on such groups. This will allow us 
to relate it to the depth of the relations necessary to present Y from the free group. 

Yet, there are many examples where such an elementary approach only gives a 
geometric pinching of a i ( r ) . Going ahead, even in the case of Carnot groups, should 
rely on £p techniques, or more powerful analytic tools, as was the case for a0. 

Some relevant analysis, based on hypoellipticity notion has been presented in [38, 
40]. Nevertheless, we would like to stress on the fact that the picture of possible results, 
both from the geometric and analytic viewpoints, is still very unclear. In particular, a 
large part of the t? machinery used on functions is not available here, due as already 
observed, to the lack of basic tools like the maximum principle on forms (or discrete 
cochains) in non-positive curvature. 

Discrete time. We conclude with an alternative "discrete in time" presentation of 
the exponent c*i, more attractive from the numerical viewpoint. 

Recall that a\ has been introduced as being twice the (continuous) large-time heat 
decay exponent of e~t8ldl on the one-cochains in H = (kerdi)1 C £2(S). This abstract 
Hilbert space H is not so convenient to use numerically. A first fact is that, on nilpotent 
groups, one can use instead the heat decay of the full discrete Laplacian 

Ai = d050 + S\di 

acting on £2(S). This is because, as we will see (see also [31]), the heat decay associated 
to (IOSQ (conjugated to Ao = 50d0 on functions) is always quicker that the one induced 
on / / by 5id\. Prom the numerical viewpoint, Ai is a r-invariant linear operator 
acting on functions on the discrete space V x S (space of edges of the Cayley graph of 
T associated to the generating set S). Moreover, Ai is a local operator in the sense 
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that the value of Aia at (7, s) G T x S is a linear combination of a(7 /, s') with 7 /7"1 

in a fixed finite neighbourhood of the neutral element. 
Now we describe the discrete time approach, starting with the case of functions. 

Recall that for functions on T, the (continuous in time) heat decay can also be obtained 
from the asymptotic return probability of random walk on T (see [10]). This is due to 
the relation 

A0 = Id-P 5 

where Ps is the Markov operator of the standard random walk on the Cayley graph 
C (a particle on a vertex of C jumps to any of its neighbours with equal probability). 
Using instead the more convenient random walk associated to 

(12) P - ^ - H - f . 

(here the particle doesn't move with probability 1/2), we see that the return to origin 
probability after n steps is given by 

P"(6e)(e) = T(P»), 

with notation of Definition 2.L By the spectral theorem, and \\PS\\ < 1, we have 

(13) T(P») = f\l-±)ndFAo(\), 

where, following (5), FA0(^) = T(EAO(X)) is the spectral density function of A0. This 
gives that the rate decays of r(Pn) when n —> +00 and FAo(X) when A —• 0+ are the 
same, more precisely 

( 1 4) l i m i r j ( - - - P ) =- liminf ( - % £ > ) =- 2c*(r), 
v ' n-+oo \ - In n J A-O+ V In A / 

(and the same for limsup). 

Proof. Cutting the integral (13) for A < Xn = 2(1 - 2"1/n), gives 
r(Pn) > \FAo(Xn) 

and a first inequality in (14), using In An ~ - Inn when n —> +00. 
In the opposite direction, if FA0(^) < CXa, integration by parts gives 

AP")=l^(i-^r'Fam 

r+00 

- CnT" / e-t/2tadt for n -> +00 . 
do 

D 
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This approach does not rely on probability techniques (except for its intuitive mean­
ing) but only on the spectral theorem, and therefore applies also for other combinations 
of operators. In particular, on discrete one cochains, one can use instead of (12), 

P = Id-fcA1, 

for any k such that k < | |Ai| |^2). Then using the trace at e, 

r(P") = Tr( (F\y(e) ) 

as defined in Definition 2.1, one obtains similarly that 

( 1 5) liminf ftiP) = l i m i n f ( ^ M ) = 2 Q l ( r ) , 
v ' n-H-ooV - I n n / A-O+ V InA / 
which is also the large-time heat decay, as mentioned in §2.2. 

From the numerical viewpoint, the computation of the iteration Pn5e on a nilpotent 
group T uses a memory space polynomial in n (of degree ao(T) = growth(V), since the 
kernel support of Pn spreads this way), and a polynomial time. In practice however 
the convergence in (15) may be slow since this is a In/In limit. 

3. QUICK REVIEW OF THE BASIC £2 TOOLS 

3.1. Homotopy of Hilbert complexes. 
Homotopies from the analytic viewpoint. We now present the basic ideas leading 
to the homotopical invariance of the Novikov-Shubin numbers, as stated in Theorem 
2.6 and Corollary 2.7. 

At first sight, it seems unlikely that exponents built from the spectrum may possess 
a strong topological invariance. Indeed, spectrum of Laplacians depends on the metric 
and thus should only be isometry invariants of the manifold. This is (more or less) the 
case for the full spectrum, but we are only concern here in the near-zero spectrum, 
more precisely in the asymptotic behaviour of the spectral density function at zero. 
Then, the topological invariance of this behaviour may be understood as an extension 
of the well known fact that the kernel, or zero spectrum, of Laplacians has actually a 
topological sense, since it represents cohomology. 

The tools needed to grasp this idea have been introduced by Gromov and Shubin in 
[23, 24]. The general setting of the problem is on Hilbert complexes. Indeed we have 
met several sequences of Hilbert spaces Hk 

(H,d) O - ^ H o ^ H i ^ H a . . . 

with closed densely defined operators dk such that c4+i ° dk = 0 on the domain D(dk) 
of dk- A relevant notion of homotopy here is the following. 

Definition 3.1. Two Hilbert complexes (H,d) and (H',cQ are said homotopy equiv­
alent up to degree p, if there exists bounded maps 

fk:Hk-+Hk and gk:H'k->Hk 

for k < p + 1, such that for k < p, 

fk+idk = d'k+Jk on D(dk) and gk+id'k = dk+igk on D(d!k), 
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with 
gkfk = Id/^ +dk-ihk + hk+idk on D(dk) 

and 
fk9k = Id//; +d'k.lh

,k + h'Md'k on D«), 
for some bounded maps hk and h'k. The corresponding diagram is 

dk-\ dk 

fffc-i -^-=-- Hk ^ = - - fffc+i 
/ІJ 

Л - l 9k 

nк+l 

fк 9к+l fк+1 

к_^H'кфH'к k+1 
nk nk+l 

Remark 3.2. If moreover some discrete group T is acting both on ff and ff7, one 
asks that all involved operators commute with this action. 

We give some examples useful to our study. 
The case of the presentation complex. Consider first two Cayley polyhedras V 
and V associated to two presentations of a finitely presented discrete group T, as in 
§2.1. We have two presentation complexes as described in (3) 

e$)-*ue(S)±*e(R) and e(T)^e(s')-^e2(R'). 

As a first step to Corollary 2.7, let us show: 

Proposition 3.3. These Hilbert complexes are homotopy equivalent up to degree one. 
In particular, their homotopy class only depends on V. 

Proof. The required maps are maybe easier to see on the dual chain complexes 

^2 ( r ) £_ fi(S) <*- f(R) and e(T)S-e(S')^-e(R')y 

so that we focus on them. 
Let S = {s i , . . . , sn}, S' = {s i , . . . , s'm} be the two generating sets of V. Each s G S 

can be written as a word /i(s) in elements of S' U 5 ' - 1 , and reversely, each s' G S' is 
a word gi(s') in S U S'1. These /i(s) and gi(s') correspond to paths in the Cayley 
polyhedras V and V (see §2.1). To these paths are also associated one chains which 
are the sums of the edges encountered. The boundaries of these chains satisfy 

d[(fi(s)) = s-e = di(s) and 81(91(3')) = s' - e = fli(s'), 

so that 

(16) ffji = di and dl9l=d'1. 

We still denote by 

/i:^2(5)-^2(S /) and gx : e(S') -* e(S) 
the linear V left-invariant extensions of the previous maps. 

For each s € S> (16) gives that gi(fi(s)) has same endpoints (boundary) than s 
. Therefore, by simple connectivity of P, one can fill the cycle gi(/i(s)) — s with a 
(finite) two chain hi(s) € Vect(I^) C ^2(ff), that is 

gi(/i(s))-s = 52/ii(s), 
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which extends as before on i2(S) in 

gifi = Id+d2h1. 

Lastly, for each two cell r € R attached at e, one has by (16) 

&1(fld2r) = d1d2r = 0. 

Again, one can choose some two chain f2(r) £ Vect(-R') C i2(Rf) such that 

fid2r = d2(f2(r)). 

Therefore by extension we have a map f2 : f(R) —> £2(R') satisfying 

/ i f t = # / - , 

and a similar one g2 : P(R) —» P(R), completing the picture 

0 ,, hi 

Һ 32 
дí 

i\Y)^i2(S')±=zi2(R!) 

All these T-invariant maps are bounded and even local. • 

The previous proof is purely combinatorial and is indeed a special instance of general 
topological constructions on simplicial complexes [42]. Here, the analytic (partial) 
homotopies of these Hilbert complexes are induced from the geometric ones, between 
the two finite simplicial complexes K = V/Y and Kf = Vf/Y. The existence of the 
latter is due to wi(K) = -K\(Kf) = Y. 

More generally, if K and Kf are two finite simplicial complexes which are homotopy 
equivalent up to degree d, then there exists a simplicial map / : KcM-i —• Kd+l which 
formally induces an homotopy equivalence, up to degree d, between the i2 cochain 
complexes of given regular covers of K and Kf. 

From de Rham to simplicial complexes. The previous principle, that homotopy 
in the topological sense implies homotopy of relevant Hilbert complexes, also applies 
between L2-de Rham complexes on covers of smooth compact manifolds. This was 
proved by Gromov and Shubin in [23, 22]. 

Theorem 3.4. Let M and N be homotopic smooth compact manifolds and Y some 
covering group. Then the L2-de Rham complexes on the Y-coverings M and N are 
homotopy equivalent. 

Given a triangulation K of a smooth manifold M, it remains to compare the L2 

de Rham complex of M with the 02 simplicial cochain complex of K. They are also 
homotopy equivalent. Some natural but delicate proof, working in Lp, is given by 
Gol'dshtein, Kuz'minov and Shvedov in [19]. As in earlier work of Dodziuk [15], it 
relies on the use of (regularized) de Rham and Whitney maps, between de Rham and 
cochain complexes. 

Another approach, unifying these results, and much more elementary analytically, 
has been proposed by Pansu in [33] and [34, Chapter 4]. It consists in adapting classical 
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principles from sheaf theory (see eg [18] or [20, Chapter 0.3]) to complexes of Hilbert 
sheaves (or more generally Banach sheaves). 

Loosely speaking (see [33, 34] for more precise and general statements), one obtains 
that any T-invariant Hilbert complex of sheaves on a cover X of a metric space X, 
which is uniformly acyclic relatively to some open covering U of X, is homotopy 
equivalent to the £2 Chech complex of the covering U of X, also the ^2-simplicial 
cochain complex of the nerve of the covering. 

The uniformity assumption is easily checked on Alexander-Spanier cochain complex 
of small size, but also on the de Rham complex, where it reduces to the following local 
integration lemma. 

Lemma 3.5 (L2 Poincare Lemma on the unit ball, [33, 34]). Let Bn be the unit ball 
in En . There exists a constant C such that any closed L2 form a on Bn can be written 
df3 for some (3 with \\j3\\2 < C\\a\\2. 

This is proved by averaging over the ball Poincare's integration formula. 

3.2. Near-cohomology and T-trace. 
Quadratic forms versus spectra. Now we return to the presentation of the tools 
leading to the homotopy invariance of the Novikov-Shubin numbers. Let (H, d) and 
(H\ d') be homotopy equivalent Hilbert complexes. 

By Definition 3.1, the maps / : H —> H' and g : H' —> H, induce inverse topological 
isomorphisms between the cohomology spaces H = ker d/ Im d of H and H\ and also 
for the reduced cohomology Hr = kerd/Imd, but not at all between the spectrum of 
say, the induced Laplacians A and A'. 

In comparison to these quite delicate analytic data, the (Dirichlet) quadratic forms, 
defined on D(d) by 

Qd(a) = ||da||2, 

better behave since one has obviously 

QAf*)<CQd{a) and Qd(ga) < CQd,(a), 

for fixed constants C = \\f\\2 and C" = ||^||2. 
Taking account of this fact, Gromov and Shubin considered in [23, 24] the family of 

closed cones for e > 0, 

(17) Cd(e) = {aeH = H/kerd | Qd(a) < e2\\a\\2} . 

These cones are shrinking to {0} when e —* 0+, and contain forms which are 'nearly' 
closed. One defines an equivalence relation called near-cohomology on such families of 
cones. 

Definition 3.6. Two Hilbert complexes (H, d') and (17, d) have same near-cohomology 
if for e small enough there exists a constant k > 0 and bounded injective maps / : 
Cd(e) -> Cd,(ke) and g : Cd,(e) - Cd(ke). 

This notion is compatible with homotopy equivalence as defined in 3.1. 

Theorem 3.7 ([23, 24]). Homotopy equivalent Hilbert complexes, up to degree p, have 
the same near-cohomology, up to degree p. 
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Proof. We give the proof for completeness. With the notations of Definition 3.1, we 
want to show that / : H -» H' induces an injective map from Cd{e) into Cd>{ke), for 
e small enough and some k > 0. Let 

f:H = H/kerd- (kerd)1 —+ H' = H'/kerd' 

be the quotient (or projection) map induced by / , and let a € Cd{s) C H, then 

,18) lM/a)ll = lK(/a)ll = ll/<M 
1 ' <ll/lll|d«ll<e||/llllo||. 

We need to control a by fa. One has fa = fa + /? with /3 E ker d', so that using the 
homotopy formula for g o / (valid on Hk for k < p), 

<7(/a) = 5(/a) + gP = a + dha + hda + g/3. 

In this decomposition, a € (ker d)1 is orthogonal to dha + g/3 € ker d, and therefore, 

IMI < ||<t + ctoa + 08|| = \\g(fa) - hda\\ 

<\\9(f<x)\\ + \\h\\e\\a\\. 

Hence, for e < \\h\\~~1
) 

This proves the injectivity of / acting on Cd{s) and, together with (18), that f{Cd{e)) C 
Cd.{ke') for e = (211/iU)-1 and k = 2\\f\\\\gl • 

Basic properties of r . We still have to relate this abstract notion to numerical 
information as contained in the Novikov-Shubin invariants. This will rely on properties 
of the T-trace r introduced in §2.2. We briefly review them for the reader's convenience. 
More details can be found in Atiyah's original work [1], or the survey [34, Chapter 2]. 

Recall that we are working on Hilbert spaces H of the type £2{T) (8) V. Here V is 
either finite dimensional, in the case of the £2 cochain complex, or for the de Rham 
complex, an Hilbert space L2{T, A*M) of I? sections of the exterior bundle A*M over 
a fundamental domain T of the T action. In any case, one can define the trace Tr^ 
on positive operators acting on V by 

(19) ' Trv(P) = ^2(Pvi,vi)e[Q1+oo], 
J 

for any Hilbert basis Vj of V. Let ie : V —> H be the injection defined by ie{v) = 6e®v, 
and 7re = i* : H —> V be the evaluation map at e. Then (19) extends on positive T-
invariant operators P acting on H = £2{T) ® V, by 

(20) T{P) = Trv{7rePie) = J2(P& ® Vj)y Se 0 Vj). 
j 

Here the important facts about r are the following. 

Propositioh 3.8. r is a positive faithful trace, meaning that for Y-invariant bounded 
operators P 

• T{P*P) > 0 and T{P) = 0iffP = 0, 
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• T(P*P) = T(PP*). 

Proof. The first property has already been seen in §2.2. For the second one, by (20), 

T(P*P) = £ \\P{5e ® Vj)f = ~2 \(P(6e ® Vj), 6y ® Vjtf 
j i,7 

= ~2\(P'&®vj),Se®vj)\
2 

in 

= ~>2 \{P*(fie ® Vi)> ^7-J ® ̂ j)|2> by r invariance, 
i.7 

=x;n^(*«®vi)iia=T(^*). 

Using r, we can 'measure' a T-invariant subspace LcH. We define its T-dimension 
by 

(21) dim rL = r (n L ) , 

where UL is the orthogonal projection on the closure L of L. A striking property of 
dim p is the following invariance. 

Proposition 3.9. Let L be a closed T-invariant subspace of H, and f : L —> H be an 
injective closed densely defined T-invariant operator, then 

dimr(f(L)) = dimT(L). 

Proof. Let fUL = US be the polar decomposition of fUL (see [37, Section VIII.9]). 
Recall that S = \fUL\ is positive and self-adjoint, while U is a partial isometry from 
(ker(/Il£/))-

L = L (by injectivity of / on L here) to f(L). Hence 

U*U = UL and UU* = Uf(L)l 

and Proposition 3.8 gives 

dimr(L) = T(U*U) = T(UU*) = d im r( / (L)) . • 

Example 3.10. As a first use, let us apply this to the problem in remark 2.4. We 
want to show that the heat decay of e~tA° on functions is the same as for e~tdS on 
one forms Im d. By Laplace transform (6) we need to compare the trace of the two 
spectral projectors FAo(]0> A]) and FwQu, A]). In fact by Proposition 3.9 they are even 
equal, since d maps injectively ImFA^]^ A]) into ImEsdQO, A]) and reversely for 6. 

Measuring near-cohomology. We conclude by relating the near-cohomology to the 
Novikov-Shubin exponents. Recall they were defined in §2.2 as the polynomial decay 
when A —• 0 of the spectral density function 

Fsd(X2) = r(Ux)i 

where Ux = Esd(}0, A2]) is the spectral projection associated to ]0, A2] by 5d. 
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By the spectral theorem, the space L\ = Im IIA is a closed T-invariant linear subspace 
of the (near-cohomology) cone 

Cd(X) = {a E H = (kerd)x | \\da\\2 = (Sdaya) < X2\\a\\2}. 

It is in some sense the largest one. Namely, if V C Cd(X) is another such space, then 
it projects injectively on L\ by U\, since the spectral theorem gives, 

\\da\\2=(5daya)>X2\\a\\2 

for any non zero a G kerliA fl H = ImF^QA^-j-ooQ. Using the T-dimension this 
translates numerically into the following variational principle, due to Shubin. 

Lemma 3.11. [23] Let C\ be the set of all T-invariant linear subspace in C\(d). Then 

FSd(X
2) = sup dimrL . 

LGCX 

Proof. If L € C\ then by the previous argument and Proposition 3.9, 

dimrX = dimr(nA(L)) < dim r(ImnA) = FSd(X
2), 

since dim r is an increasing function by positivity of r. • 

Connecting this with Theorem 3.7, and using again Proposition 3.9, we can now 
compare spectral functions of homotopy equivalent Hilbert complexes. 

Theorem 3.12. [23, 24] Let (II, d) and (H\d') be homotopy equivalent Hilbert com­
plexes (of type (?(Y) <g> V). Then there exists Cy C > 0 such that 

FSd(CX)<Fs,d,(X)<FSd(CX), 

and in particular (H, d) and (IF, d') have the same Novikov-Shubin numbers (like any 
other dilatationally invariant limit built from FSd(X)). 

This together with the results of §3.1, linking homotopy of Hilbert complexes to 
homotopy of metric spaces, implies the topological invariance of these numbers as 
stated in Theorem 2.6 and Corollary 2.7. 

These general techniques will also be very useful in the particular case we will restrict 
now of Carnot groups. 

4. T H E PRESENTATION COMPLEX SEEN FROM FAR 

4.1. Carnot groups. 
Why ? We would like to describe here some formal asymptotic rescaling of the pre­
sentation complex (3) that can be done for discrete groups embedded in nilpotent Lie 
groups with dilations. 

Nilpotent groups provide an interesting class with respect to the study of Novikov-
Shubin numbers. Recall that by Theorem 2.8 they are, up to finite coverings, the only 
groups with finite first exponent ao on functions. Moreover, on forms or cochains of 
higher degree, one can show that for such groups, zero is never isolated in the spectrum 
of the Laplacian [30, Prop. 20] : a first necessary condition for finiteness of the next 
exponents ap. 

Lastly by a theorem of Mal'cev [36, Chap. 2], any finitely generated torsion-free 
nilpotent discrete group T can be cocompactly embedded into a nilpotent Lie group 
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G. This Lie group G, called Mal'cev completion of T, is such that lnT spans 0, even 
more, In T is a finite index subgroup of a lattice (additive subgroup) of 0. Reversely, 
Mal'cev has shown that a nilpotent Lie group G admits a cocompact discrete group T 
iff its Lie algebra 0 has a rational structure 0Q, i.e. admits a basis with brackets given 
by rational coefficients. 

By Corollary 2.7 these contractible Lie groups G provide us natural smooth models 
with the same Novikov-Shubin numbers as their discrete cocompact T. Thus differen­
tial geometry, and even Lie group techniques, are available to investigate the problem 
on nilpotent groups (a pity for the pure topologist but a chance for us!). 

We note that the irruption of smooth structures is not so artificial in this study. 
After all these exponents are large scale invariants (stable under finite coverings), and 
one knows for instance on Zd, that at large time the random walk 

F,n=(Id-Appl)n 

(see §2.2) do converges under appropriate rescaling to the kernel of the 'smooth heat' 
on Rd (the Gaussian law), 

ndP^\nx], [ny]) — - • e-'^&y). 
n—•+00 

Such a rescaling (central limit) result actually holds on nilpotent groups with dilations 
[13]. 

Definition 4.1. A connected nilpotent Lie group G is called a Carnot group if its Lie 
algebra 0 splits in 

0 = 0i © • • • 0 0r with [01, Qk] = fl*+i • 

The one-parameter family of Lie group automorphisms induced by 

h£ = ek Id on 0* 

are called dilations of G. 

Remark 4.2. 'Carnot group' seems to be a relatively recent terminology. In other 
places, like in subelliptic theory, such groups have been called filtered nilpotent Lie 
groups. This is a particular case of graded groups, where one only asks 

[0i>0fc] C0*+i, 

and which also possess dilations. 

Shrinking rf0. Suppose given now a rational Carnot group G together with a discrete 
cocompact group T. We assume moreover that T is generated by elements 7* = 
expXi with Xi € 0i. Choose some 'elementary' relations R = {r7} associated to 
this generating set S = {7-J of T (see §2.1). We would like to look at the presentation 
complex (see (3)) 

C^Y) ^ £2{S) ^ i2{R) 

at large scale. Equivalently we can consider the presentation complexes of the shrunk 
groups Te = h£Y at fixed scale. We don't deal with analytical problems here since we 
just want some formal hint of what's happening when e -* 0. 
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Recall that the first map do is the difference operator (1) so that for smooth functions 
/ restricted to T£ 

dr
Q*f(l,h£li) = f(1h£(li))-f(1) 

= f(1exp(eXi))-f(1) 

~e(Xi.f)(y) = edf(1)(Xi) when e - 0 . 

Hence e^d^'f converges to dnf : the differential of / along the horizontal bundle 
H = 0i (= spanR(lnS) also here). 

Our next issue will be to describe the asymptotic of the differential d\ 

(22) d\£a(re) = I a 
Jr£ 

on a shrinking relation r£ = h£r or T£. 

4.2. Discrete and infinitesimal relations. 
For free. In the treatment of shrinking relations, as in (22), it is useful to introduce 
an analogous notion of infinitesimal relations for Lie algebras. These are defined with 
respect to free Lie algebras. We briefly describe this framework. 

The free associative algebra A(H) over the vector space H = $i is the direct sum 
of all tensor products &H. Given a basis {Xi,... ,Xn} of H, A(H) identifies with 
the space of non-commutative polynomials in Xi. The bracket 

[P,QU = PQ-QP 

defines a Lie algebra structure on A(H), and by (one possible) definition, the Free Lie 
algebra generated by II is the Lie sub-algebra F(H) C *4(II) generated by H C A(H). 
In other words 

(̂II) = 0 F p 
p>-

with 
f F, = H 

{ Fp+1 = [II, FP}A = span{XP - PX | (X, P) e H x Fp} . 

Now since our Carnot Lie algebra g is bracket generated by H = $-., it can be 
naturally identifies with the quotient 

(23) 9 = T{H)/TI{Q) 

where the ideal IZ(g) stands for the infinitesimal relations of G. This is the Lie version 
of the presentation of a discrete group by generators and relations as described in §2.1, 
namely 

V = Free(S)/P(r), 

where S is a generating set, and It(r) is the normal subgroup generated by the chosen 
'elementary' relations of V. We can take profit of the two viewpoints here. 
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From discгete to infinitesimal relations. From the discrete side, a relation r of Г 
is a finite product of the generators 7* € S, equals to e in Г. Since *S C exp gi = exp Я 
heгe, r can be Hfted as an element r Є T(H) using Baker-Campbell-Hausdorff formula. 
Namely this formula expresses 

X*У = ln(expXexpУ) 

( 2 4 ) =X + Y+(XY-YX)/2 + ... 

= X + Y+l-[X)Y]A + ... 

as a formal polynomial series in brackets of K, У, and provides a product on T(H) 
compatible with the one on G = expд. Since r = e in Г C G, one has necessaгily 
rЄ7l(g). 

Actually this Иfting map from R(ľ) into 7г(д) induces an isomorphism between the 
vector spaces 

ЯC(Г) = Я(Г)/(F, Д(Г)) ® R and ?гc(g) = 7г(g)/[JҶЯ), 7г(g)]. 

This comes from two classical facts (see e.g [4, Thm. 5.3] and [36, Prop. 7:18]) 

• Hopfs formula identifying fíc(Г) with Я2(Г,R) and 7гc(д) with Я2(g,R). 
• The isomorphism Я2(Г,R) ~ Я2(g,R) coming from the cocompact embedding 

o f Г i n G . 

Theгefore in our situation, the lifts r of the elementary relations r of Г also generate 
the infinitesimal relations ideal 7г(д). 

Lastly we observe that the seгies r may be decomposed into its homogeneous com-
ponents 

(25) > = £ < > 
p>d(r) 

with rp € Fp, and Гd(r) ф 0 or d(r) = +00. 

Deŕìnition 4.3. We will call d(r) the order of r and D(r) = Гd(т) its direction. 

Since G is a graded Lie group, its relation ideal 7г(д) is too. In particular the 
directions of elementary relations of Г still belong to 7г(д) and generate it. 

A few examples. We give simple examples to clarify pгevious things. 

• Consider Г = Ћn c G = Rn. Since д = ĝ  = Fь the relation ideal of Rn is 

7г(Rn) = 0 Fp. It is generated by 
p>2 

F2 = span{[K,У]A = XY - YX | K,У Є Я = дx = Rn} . 

Given the canonical basis {ЄІ} of Z n, the elementary relations 

Гij \Єi}Єj) — ЄiЄjЄ^ Єj , 

describing closed rectangles in the Cayley graph of Zn, lift to 

Гi^XitXjti-Xùti-Xj) 

= [XiìXj]A + ... Ъy (24). 
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Hence r»j are relations of order 2 (or quadratic) and their directions are the previous 
infinitesimal relations D(rij) = [Xi,Xj]A in F2. 

• The Heisenberg group of dimension 2n + 1, denoted by H2n+1, can be defined as 
R2n+i = HxR with the product 

(x, t) * (x\ t') = (x + x\t + t'+ -u(x, a/)), 
.6 

where a; is a non-degenerated skew-symmetric two-form on H ~ R2n. The correspond­
ing Lie bracket on f)2n+1 = H © RT is given by 

(26) [X + tT, X' + t'T] = u(X, X')T. 

Hence H2 n + 1 is a 2-step Carnot group whose Lie algebra f)2n+1 is generated by H. 
Given a reduction basis {A ,̂ YJ} of a; in II, one gets the defining brackets 

(27) [XhXj] = [Yi,Yj] = [H,T] = 0 and [XuYj] = 6{jT. 

Let us see that, with respect to the free Lie algebra ^F(II), the infinitesimal relation 
ideal 7l(H2n+1) is generated by elements of order 3 for n = 1, but only 2 for n > 2. 

H3 has no quadratic relation. Indeed T = [X, Y] is not a relation, but rather a nota­
tion, with respect to .^(H) = T(X,Y). In comparison all order 3 brackets [X, [X,y]] 
and [y, [X, Y]] vanish in f)3 and lift in T(X, Y) as [X, [X, Y]]A and [Y, [X, Y]]A spanning 
F3. Therefore K(H3) = 0 Fp. 

p>3 

In contrary for H2n+1 , (27) gives us a lot of true quadratic relations 

[XuXj] = [Yi,Yj] = 0 and [X^] = 0 if i ± j . 

But they are also 'hidden' ones, namely 
[X i ,y i]-[X i ,y j] = o for i?j. 

Calling T the common value of [X{, Yi] in rj2n+1, one recovers easily the missing defining 
brackets [H,T] = 0 in (27). Indeed, given i, we can choose a j ^ i, then using Jacobi 
identity 

[Xh T] = [Xit [Xjt y,]] = -[Yjt [Xit X,]] - [Xjt [Yjt Xi]] = 0. 
This gives that, for n > 2, H2 n + 1 can be quadratically presented, meaning that 
7£(H2n+1) is generated by elements of order 2, namely 

(28) [XitXj]A , [YuYj]A , [XitYj]A (if i?j), 

(29) [XtMU-MMU. 

In fact we can see that the quadratic relations we gave span the hyperplane kero; in 
F2 = A2H, and finally 

(30) 7^(H2n+1) = (kerc^)0F p . 
p>3 

We now study the discrete viewpoint. The Heisenberg groups H2 n + 1 admit discrete 
cocompact groups 

H ! n + 1 = | X > * + fc* + *T/2 | Xi,yutez\ . 
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Given the horizontal generating set Xi,Yi G II, one gets again different types of 
possible elementary relations in the Cayley graphs of H2/1"1"1. 

For n — 1 a choice may be Ti = (X, (X, Y)) and T2 = (Y, (X, Y)). They correspond 
to closed loops in the Cayley graph that look like a figure 8 as seen in figure 2. Their 
directions are the order 3 previous infinitesimal relations [X, [X, Y]]A and [X, [X, Y]]A-
These loops span a zero area at order 2, but still have an order 3 moment. 

FIGURE 2. (X , (X ,y ) ) inH 3 . 

For n > 2, one can choose again relations (Xi} Xj), (Yi, Yj), (X», Yj) (i 7- j ) , describ­
ing rectangles in the Cayley graph, and whose directions are the order 2 Lie relations 
in (28). We have to complete the list by adding 

rii = {XuYi)(Xi,Yj)-\ 
which now look like a twisted figure 8 in the Cayley graph, see figure 3. Using (24), 
they are still relations of order 2, with directions [.Kt-^U — P0> ̂ U as m (29). 

FIGURE 3. (XuYi)(Xj,Yj)-1 and its horizontal filling. 

To complete the picture, we remark that the directions D(r^) = [X*,YJ\A — [XJ,YJ]A 

are not pure in F2 = A2H, and therefore are not directions of plane loops (staying in 
an horizontal plane in H). Anyway one can find a presentation of H2,"4"1 using only 
planar relations. 

Namely, we can add the generators Z^ = Xfx*Yj with i ^ j to the previous ones Kt-, 
Yi. They are also horizontal (in H = gi) since Z^ — —Xi + Yj as comes from [Xt-, Yj] = 
0. Then, as shown in figure 3, r^ can be horizontally filled in this extended Cayley 
graph, using the flat triangles (Xi,Yj,Zij) and the horizontal rectangles spanned by 
the commuting Z^. 
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At the Lie level, the existence of this 'horizontal' Cayley polyhedra for H | n + 1 is 
reflected by the fact that in (30), 

ft2(H
2n+1) = keru;CF2^A 2H , 

is spanned by its pure forms X AY. This is not automatically satisfied for general 
quadratically presented Carnot groups, so that such groups don't always admit 'flat' 
Cayley polyhedras. This subtle matter enters in the geometric problem of horizontally 
filling horizontal loops (see §6.2), but not at the cohomological level of the presentation 
complex we are studying. 

4.3. The asymptotic of d\£. 
From relations to differential operators. We now return to the asymptotic holo-
nomy problem. A priori, in the circulation formula (22) : 

Jr£ 

the form a need only to be a discrete function on the horizontal edges of the shrinking 
Cayley graph of Te. However in order to estimate this sum, we will assume that a 
actually comes from a smooth horizontal one form on G. We note 

n1H = C00(GiA
1H*) 

this space of smooth partial one forms on G. 
We would like to use the direction D(r). Recall that it belongs to the free associative 

algebra A(H) (and even to the free Lie algebra F(H)). There is a canonical mean to 
transform an element P G A(H) into an operator on D}H. 

This follows from the remark that, given any basis {K i , . . . , Xn} of H, a polynomial 
P £ A(H) uniquely factorizes in 

n 

(31) P = c+Y,PiXi> 
t=i 

with c scalar and Pi € A(H). We can then define a differential operator in(P) acting 
on QlH by 

n 

(32) iH(P)a = J2pMXi)-

More invariantly, using the splitting A(H) = Rl © A(H) ® H, we first define 

iH:A(H)-^A(H)®(A1H*)' 

by 
iH(l) = 0 and iH(PX) = P® bab{X) for X 6 H, 

where int(X)a = a(X). Then we view A(H)®(A1H*)' as differential operators acting 
(mn1H = C°°(G)®A1H\ 

From the definition we note that 

(33) iH(P)odH = P 
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for any P G A(H) without constant term, in particular for P G F(H). Recall that dn 
is the horizontal part of the differential on functions. We have also 

(34) iH(PQ) = PiH(Q) 

for any P , Q E A(H) such that Q has no constant term. 
Given a partial one-form a G iQ1//, the components in(P)a have a simple geometric 

meaning when put all together. Let 

a G Q}T(H) = C00(G,A1T(HY) 

be defined on P G F(H) by 

(35) a(P) = iH(P)a. 

Proposition 4.4. a is the unique closed extension of a in ti}F(H). 

Proof. For X G II one has a(X) = iH(X)a = a(X) so that a extends a. 
Also, given P and Q G ^"(II) one has 

da(P, Q) = Pa(Q) - Qa(P) - 3([P, Q)) 

= PIH{Q)<* - Qin(P)a - iH{[P, Q))a 

= iH(PQ-QP-[P,Q])<* by (34), 
= 0. 

Lastly, a closed form p G il^H) satisfies P([P,Q)) = PP(Q) - QP(P) and is thus 
determined by its restriction to the bracket generating H. • 

Each individual component a(P) may be considered as the "infinitesimal holonomy" 
of a in the direction P. More precisely we can express the asymptotic of d\e along a 
shrinking relation r£. 

Proposition 4.5. Let a G Q}H. Then for e —• 0, 

d\*a(re) = ed(r)a(D(r)) + 0(ed(r)+1) 

= ed{r)iH(D(r))a + 0(ed^1) 

where d(r) is the degree ofr and D(r) its direction (see Definition J^.S). 

Proof. Let a be the closed extension of a, and r£ be the lifting in T(H) of the loop 
r£ (using Baker-Campbell-Hausdorff formula). Since r£ is horizontal and a = a on If, 
one has 

d\'a(r£) = 6 a= a. 
Jr£ Jre ire Jre 

The form a being closed, this last integral only depends on the ends of the path, and 
is therefore the same as on the straight line tangent to re G 7£(g), that is 

d\ea(r£) = a(r£) 

= ed(r)a(D(r)) + 0(ed ( r ) + 1) , 

since r£ = ed<r)D(r) + 0(ed^r)+1) by (25). 
Of course these computations have to be taken in the sense of jets on the infinite 

dimensional F(H). Anyway this asymptotic can also be obtained staying in finite 



AN INTRODUCTION TO SPECTRAL AND DIFFERENTIAL GEOMETRY IN CARNOT-CARATHEODORY SPACES 1 6 3 

dimensional groups. Given an n > d(r), one can restrict a on the 'free' n-step nilpotent 
group, whose Lie algebra is ^ r(H)/Fn+i. The extension an is now only closed at order 
n, hence its use in the previous computations gives the same asymptotic at order d(r). 

• 

Examples, continued. • On Zn C Rn, the discrete relations r = (X,Y) have direc­
tions D(r) = [X,Y]A = XY- YX, for which by (32) 

(36) in(D(r))a = Xa(Y) - Ya(X) = da(X, Y), 

giving the comforting 

df)na(r£)= <f a~e2da(X)Y). 
Jrectangle(trX,cy) 

• In the same spirit, the Heisenberg groups H2 n + 1 and their discrete cocompact 
V = H^1"1"1 are quadraticaUy presented for n > 2. We therefore find again quadratic 
holonomy and first order iH(D(r)). For instance the twisted 8 

rij = (Xi,Y)(Xj,Yj)-
1 

of figure 3, gives 

D(r{j) = [Xu Yi]A - [Xj, Yj]A = XiY - YXi - Xfr + YjXj 

so that 
ftafary) ~ e2(Xia(Yi) - Yta(Xi) - Xja(Yj) + Yja(Xi)) • 

• For the 3 dimensional Heisenberg group H3 and its cocompact H | , we have cubical 
relations n = (X, (X, Y)) and r2 = (Y, (X, Y)) leading to 

r D(n) = [x, [x, Y]]A = X(XY - YX) - [x, Y]X 
( ' \D(r2) = [Y,[X,Y]]A = Y(XY-YX)-[X,Y]Y, 

so that by (32), 
f ia(D(n))a = X(Xa(Y) - Ya(X)) - Ta(X) 

[ ' I iH(D(r2))a = Y(Xa(Y) - Ya(X)) - Ta(Y), 

where T = [X,Y]. This gives us the first term, in £3, for the holonomy of a along 
the shrinking 8-loops her\ and h£r2 seen in figure 2. Observe that the limit of the 
'rescaled differential' e~2d\£ is now given by a second order differential operator, to be 
compared to the function case, where £-1dJe always leads to a first order du> That 
can be taken as a hint that, at large scale, d\ should more behave like a second order 
operator rather than a first order one. 

Remarks 4.6. Note that in the computation of i;/(P), like in (38), one doesn't need 
to fully develop P, but only the relevant part giving the tails of the monomials, as due 
to (34). 

We remark also that, since the i//(P) are used in Proposition 4.5 as differential 
operators on G, one can identify in the final expression the .4-bracket with the one on 
g = T(H)/1l(%). For instance T = [X, Y] in (38), may be seen as [X,y] t e ' f)3. 
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4.4. The infinitesimal presentation complex. 
Summary. We sum up what has been seen. Given a cocompact discrete T, horizon­
tally generated in a Carnot Lie group G, the simplicial presentation complex of the 
shrinking T£ = h£T 

(39) C(r.) £* C(Se) ^ C(RC) 

rescales, when restricted on smooth traces, towards an infinitesimal presentation com­
plex 

(40) L7°°(C7) - ^ n'H - ^ fi^(g). 

where 
• dn is the horizontal part of the differential d on functions, 
• (dna)(P) = a(P) = in(P).a for any infinitesimal relation P £ 7£(g) and 

horizontal one form a. 

We gather some features of this construction. 

• The property dn o dn = 0 can be seen either as a limit of the corresponding fact 
on the presentation complex, or using (33) : 

(dndHf)(P) = iH(P)dHf = Pf=0, 

since / , being a function on g = T(H)/K(g), is invariant along P £ 7Z(g). 

• Exactness. One has kerrf// = constants and kerd^ = Imdn-

Proof. If / £ C°°(G) is such that dnf = 0, then df = 0 along all brackets of H, that 
spans g. 

If dnoc = 0, then the closed extension S of a vanishes on 7£(g). Hence 5 is a closed 
one form on G itself. Then there exists f on G such that S = df, and in particular 
a = dHf. • 

• Actually, by Proposition 4.5, the only components of dn that appear in the limit 
of (39) are (dna)(D(ri)) for the finite set of directions D(r») of the chosen elementary 
relations Ti of T. As already observed, these D(n) generate the ideal 71(g). This 
implies that all the components of dna are determined by these (dnOt)(D(ri)). 

Indeed, given X £ H, P £ 71(g) and a £ rQ1//, one has 

dna([X,P])=a([X,P]) 

= Xa(P) - Pa(X) for S is closed, 

(41) = X • dna(P) 

since a(X) = a(X), being a function on g, is constant along P £ 71(g). 

Staying on G. Thanks to the previous remark and Hopf 's relation, one can replace 
the last space fi1?^) in (40) by a more convenient bundle on G. 

Recall that, in the Lie algebra setting, the second homology group H2(g, R) is defined 
as follows. The Lie bracket on g induces a complex 

A 3 g - ^ A 2 g - ^ 0 
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with 
J dg(X A Y A Z) = X A [Y, Z]g + Y A [Z, X]s + Z A [X, Y]g 

{ dg(XAY) = [X,Y]t 

leading to define 

H2(g,R) = ker3 f l / Ima f l . 

Moreover, since $ = ^ r(H)/7^(g) here, one can consider the canonical map 

d : H2(Q,R) —» 72.(8) = 1I(Q)I[T(H),K(Q)] 

defined by 

dfcoijXiAXi I Imfl) =Ytaij[Xi,Xj]A I [^(H),TZ(Q)\ 

for any choice of lifts X» of X{ in F(H). 

Hopf's formula [4, 36], in this setting, states that d is an isomorphism. Therefore, 
given any supplementary subspace V of [^(H),71(g)] in 7£(g), one can project the 
map dn by defining 

dv : &H -> C°°(H2(Q)) 

such that for y GH 2(g,R) 

(dva)(y) = (^a)(nv.sr), 
where n ^ is the projection of 7Z(g) on V along [!F(H),%(%)]. 

The reduction of the complex (40) given by 

(42) L7°°(G) - ^ &H ^U C°°(H2(g)), 

is still a resolution, since V generates the ideal 71(g), but now depends on the choice 
oiV. 

For instance, if some cocompact V C G is given, one can take for V the subspace of 
Tl(g) spanned by the directions of chosen elementary relations of V. 

Also, it may happens that some invariant (with respect to automorphisms of G) 
choice of V may be done. That's the case for Carnot groups which are homogeneously 
presented. That means that the graded relation ideal 

tt(fl) = 0 M9) 
<-><-»,.» 

is generated by its elements of lowest degree, so that we can take 

V = 11^(9). 

The differential dv is not invariant in general. However, it is a convenient reduction 
of the canonical dn : Ct1H —• fi1/^), using a bundle over G of minimal possible 
dimension dimH2(g). 
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Connection with d. Even if dv may be an operator of high order (equals to the 
maximal order of generating relations of G - 1), it is closely related to the standard 
first order d, but now restricted to someparticular space of forms and directions. 

Namely, pick some lifting map X —> X from g into ^(H), and extend it from A2g 
into A2^r(/7). Choose also a subspace Hi C ker 9flnA2g isomorphic to H2(Q, R) (as for 
instance dg+d* harmonic vectors relatively to a given metric on G). Then V = djr(H2) 
is supplementary to [H, TZ(Q)] in U(Q) by Hopf's formula. 

Proposition 4.7. For a eQ1H, let a be the one form on G defined by 

a(X) = a(X) 

Then one has dva = da, in restriction to %• 

Proof. Let Y = £ a{jX{ A Xi G H2. Then since dgY = £ a^X;, Xj]B = 0, Cartan's 
formula gives 

da(Y) = J2<Hj(XrtXj) - Xja(Xi)) 

= ^ ^ ( ^ 5 ( X J ) - K i a ( X i ) ) 

= 2(]P aiAXi>XJ]A) smce da = 0, 
= a(d?Y) = dva(Y). 

U 

Observe that more generally one obtains on A2H 

(43) da(Y) = a(dFY-dgY), 

so that in particular da vanishes on the kernel of the curvature map 

R : Y G A2a —> dFY - d^Y G K(Q) . 

We finally point out that one can make some choice of lifting Q —> F(H) that allows 
to characterize and compute a, and finally dv\ni, while staying on G, without referring 
to 5 and the free Lie algebra P(H). 

By Definition 4.1 we have Qk+i = fei.£Jjfc]g and in particular 

dg : 8i A Qk C Al+tf —> Qk+i 

is surjective. We can choose then a subspace Wk+i C A^+1g such that dg induces an 
isomorphism between Wk+i and Qk+i> A convenient choice may be given by W = Im<9* 
if some metric is fixed. 

Now we can define a lifting map step by step, starting with X = X for X G gi = 
H C F(H), and satisfying dgY = d?Y for Y G Wk+\. Then the one form a on G, 
introduced in Proposition 4.7, satisfies the following properties. 

Proposition 4.8. a G £tlG is the unique extension of the horizontal a £tilH, such 
that da = 0 onW. It can be computed step by step on Qk+i using 

(44) a(dgY) = £ a* (X.a(X,) - X^)) 

forY = j:aijXiAXj€Wk+1. 
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Proof. The vanishing of da on W comes from (43) and the construction of the 
lifting. Then (44) is just a rewriting of this property, showing in particular the required 
uniqueness. • 

This aspects of dv will be convenient to generalize to any degree on the large class 
of Carnot-Caratheodory manifolds in §4. 

Examples. • G = Rn is quadratically presented and one can take V = F2 ~ A2Rn. 
Of course H2(R

n, R) = A2Rn, and by (36), the complex (42) is just (the beginning of) 
de Rham's one. 

• We know that the Heisenberg group H3 is cubically presented, with 

ft3(r,
3) = F3 = span([X, [X, Y]]Ay [F, [X, Y]]A). 

One sees easily that H2(f)
3,R) = HAT, where T = [X,Y]. Dually, H2(r;3,R) identifies 

with the vertical 2-forms 9 A H* (where ker0 = H). Taking V = F3 the map dv is 
given by (38), namely 

f dva(X AT) = X(Xa(Y) - Ya(X)) - Ta(X) 

{ dva(Y A T) = Y(Xa(Y) - Ya(X)) - Ta(Y). 

As stated in Proposition 4.7, we observe that in restriction to HAT, one has 
dva = da, where a is the extension of a to g such that 

a(T) = Xa(Y) - Ya(X) = a([X, Y}A). 

Prom Proposition 4.8, it is the unique extension of a such that da(X A Y) = 0. 
Note that this is an invariant condition here, due to uniqueness of possible choices of 
n2 = HATandW = A2H. 

• By (30), the higher Heisenberg groups H2 n + 1 are quadratically presented for n > 2 
with 

7l2(r;2n+1)=keru;, 

where u G A2H* is the non-degenerate form defining H2 n + 1 as in (26). One finds that 
H2(fj

2n+1,R) = kevuD A2H. Dually, H2(f)2n+1,R) identifies with the quotient space 
A2H*/Rixj of horizontal two forms modulo u. Given V = kercj, and 

Y = Y^aijXiAXj <E H2(ri
2n+1,R) = keru;nA2H, 

one gets that 

UV8Y = J2a*[Xi,XjU = £ " a W i " XjXi), 
so that 

dva(Y) = (dnoc)(UvdY) = iH(UvdY)a 

= y£aij(Xia(Xj)-Xja(Xi))a by (32), 

= da(Y), 

for even any vertical extension a of a here. 
This points out the fact that dv is also given by the action of the standard d modulo 

the differential ideal I generated by vertical one forms. 
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Indeed let 9 be the one form defined by 6(T) = 1 and 9 = 0 on H. By (26), u = -dO, 
hence 

T={9Aa + uAP}, 

giving the isomorphisms 

(45) fii/y ~ Q}G/ll - S C°°(H2(g)) * &G/12. 

From this viewpoint, it is clear that such a quotiented differential can be invariantly 
defined on contact manifolds. These are manifolds M endowed with a codimension one 
subbundle H C TM such that, given locally (any) one form 9 satisfying ker# = H, 
then cD = d9 is non-degenerate on H. (The ideal T is independent of the choice of such 
a 9 called contact form.) 

• Consider now the following example G, called Engel's group. It is the (unique) 
three-step four dimensional Lie group, such that g is generated by H = R(X, Y) with 
the defining brackets 

J [X,Y] = Z, [X,Z] = T, 
( 4 6 ) l [ y , z ] = [X,P] = [y,T] = [z,T] = o. 

With respect to the free Lie algebra F(H) anyway, the first two brackets are notations, 
while only the two relations \Y, Z] = [X, T] = 0 are needed, since then 

[Y, T} = [Y, [X, Z}\ = [Z, [X, Y}} + [X, [Y, Z}}=0, 

[Z, T} = [[X, Y},T} = [[X, T},Y} + [[T, Y},X} = 0. 

That means that the infinitesimal relations ideal IZ(g) is generated by 

(47) n = [Y,[X,Y[U and r2 = [X,[X,[X,Y}}}A, 

so that we can take V = R(ri,r2). This choice is not canonical this time. Indeed the 
map X —> X +cY and Y —*Y induces an isomorphism of C7, which preserves r2, but 
replaces r2 by r2 + [2cX + c2y,ri]. 

Using Hopf's relation, or a direct (co)homological computation, one sees also that 
y A Z and X AT give a (non canonical) choice representing the quotient H2(g,E) = 
ker d/ Im d. One can readily compute the differential here. Namely developing (47) 
with remarks 4.6 gives 

n = Y(XY-YX)-[X,Y]Y 

r2 = X (X(XY - YX) - [X, Y]X) - [X, [X, Y]]X 

so that by (32) and (34), 

(48) dva(Y AZ) = iH(n)a = Y(Xa(Y) - Ya(X)) - Za(Y) 

and 

dva(X AT) = iH(r2)a 

(49) = X(X(Xa(Y) - Ya(X)) - Za(X)) - Ta(X). 
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Again as given by Proposition 4.7, we see that in restriction to Y A Z and X AT 
(representing H2(g,R)), dyot = da for the extension a of a to g defined by 

f <*(Z) = Xa(Y) - Ya(X) = S([X, Y}A) 
[ ' I <*{T) = Xa(Z) - Za(X) = 5([X, Z}A), 

and which by Proposition 4.8 is also the unique extension of a such that 

da(XAY) = da(X AZ) = Q. 

5. EXTENSION TO CARNOT-CARATHEODORY SPACES 

5.1. Carnot-Caratheodory geometry. 
Definition. The previous construction can be adapted to a class of manifolds whose 
tangent space is "modelled" on Carnot groups. 

A Carnot-Caratheodory (or C-C) structure on a smooth manifold M is, by definition, 
a bracket generating subbundle H of the tangent bundle TM. This gives an increasing 
filtration of TM by distributions 

(51) Hk+1 = [H,Hk} with Hr = TM 

for some minimal number of steps r. All C-C structures will be assumed regular here, 
meaning that the Hk have constant dimensions over each point of M. These Hk can 
then be seen as subbundles of TM. 

To each point XQ G M is associated a tangent Carnot Lie group Gxo in the following 
way. The Lie bracket induces a quotient map 

[ . ]o • Hk/Hk-i x Hp/Hp-i —> Hk+p/Hk+p-i, 

which turns out to be a zero order (algebraic) operator here since 

[X, fY] = f[X, Y] + (X- f)Y = f[X, Y] mod Hk+P^ . 

Therefore, given any XQ G M, [, ]0 defines at XQ a Lie algebra structure on the graded 
tangent space at x0 

r 

0xo = Gr(TI0M) = 0 Hk)X0/Hk.hxo. 
k=i 

By Definition 4.1, this Lie algebra defines a Carnot group Gxo since it is graded, 
nilpotent and generated by its first layer H. Details on the relationships between C-C 
structures and their tangent Carnot groups may be found for instance in [2, 32]. 

Examples. • Any Carnot group is a C-C manifold everywhere tangent to itself! 

• The trivial C-C structure is H = TM, giving [ , ]0 = 0 and gxo = Rn = TX0M, 
meaning that the tangent group is the tangent space. 

• Contact structures have already been defined in the previous section. This is the 
special instance of codimension one C-C structure H where, for any choice of one form 
9 with ker 8 = H, one has w = dO non-degenerate on H. 

Given locally any T G TM \ H, and a contact form 9 with 8(T) = 1, one sees that 
the tangent bracket [ , ]0 : H x H -> RT is [X,Y]0 = -d9(X,Y)T. This implies 
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by (26) that a contact structure is everywhere tangent in the previous sense to the 
Heisenberg group H2n+1, with dimM = 2n -f-1. 

Even more here, by a classical result of Darboux, a contact structure can be locally 
embedded into an Heisenberg group. But this is a very particular case since in general, 
a C-C structure with a constant tangent group can't be embedded in it, except in a very 
few "stable cases", see [32, Chapter 6], where some Darboux normal form Theorem 
holds. 

• A k-dimensional distribution Hk in En or TMn is generically locally bracket 
generating, and thus defines a C-C structure. For instance the case k = 2p and 
n = 2p+l corresponds to the previous contact structures. A generic plane distribution 
H2 in R4 leads to a tangent 3-step 4-dimensional Carnot group. It is the Engel's group 
we considered in §4.4. Many other examples are given in [32]. 

5.2. Retracting de Rham complex. 
Filtrations. Prom Propositions 4.7 and 4.8, the infinitesimal presentation complex 
(42) of a Carnot group, reduced to be some components of the standard differential, 
but acting on a particular family of one forms. Counterparts of these structures exist 
on C-C manifolds. 

We will follow closely presentations given in [38, 40]. 
Firstly, the increasing sequence of bundles Hk in TM gives rise to a natural decreas-

v 
ing filtration on p-forms by forms in Ap

k)T*M vanishing on all p-vectors of 6?) H^ 
t=i 

p 

such that 22 h < k. If we see vectors in Hk as being of weight < fc, then forms in 
i=i 

A*{k)T*M are of weight > k. 
By Cartan's formula and (51), each Sl\k)M = C°°(M,A*k)T*M) is preserved by d. 

We get in particular that de Rham's complex is filtered by these ft*k)M, and one can 
consider the quotiented differential d0 induced from d on 

(52) n*kM = tyk)M/n*{k+1)M. 

Cartan's formula again gives on ttp
kM that 

dQa(Xh..., Xp+i) = ^T ("l)l+Ja([xu XJ]Q, XU ..., Xij,..., Kp+i), 
i<*<j<p+i 

is a 0-order (algebraic) operator, with [, ]0 the Lie algebra bracket on the tangent Lie 
algebra gxo of the C-C structure. This do is the Lie algebra coboundary on A*g*0. It 
can be seen as de Rham differential acting on left invariant forms on 07, or also as dual 
maps to the boundaries dgxQ already met. Its cohomology kevdo/ Imdo is by definition 
the Lie algebra cohomology H*(gI0,lR), dual to the homology introduced in §4.4. 

We will note H*(gI0,R) = F"0, in reference to spectral sequence techniques (see 
eg [20, Chapter 3.5]). Indeed, this EQ is really the first space arising in the spectral 
sequence associated to the natural filtered complex (Cl*k)M,d). 

In order to get bundles on M, we will suppose that the C-C structure has some 
extra regularity hypothesis (always satisfied at least on an open dense set). 
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Definition 5.1. A C-C structure is called .Bo-regular if each EQ has constant dimen­
sion. 

In that case we can consider the bundle, still called JE?O, of smooth sections of these 
EotXQ. We note that, since 

H1(QX0yR) = (9/[B^}Y = gl = A1H\ 

one has El = QlH, while El = C°°(M, H2(gI0,R)). They correspond, in this varying 
tangent group situation, to the two bundles of the infinitesimal presentation complex 
(42). 

Extra choices. We would like now to adapt Propositions 4.7 and 4.8 to our setting. 
We have to describe some relevant spaces of "true" forms on which we could restrict de 
Rham's complex while staying a resolution. Such a result is achieved when applying 
an homotopical equivalence r = Id -Ad - dA. 

As in these propositions we first have to fix some choices of spaces representing 
the quotient spaces, $k = Hk/Hk_u EQ = H*(gI0,R) and T*M/kerdo. Therefore we 
choose 

• Vk such that Vx = H and Hjb-i-i = Hk 0 Vk+U 

• £0 such that kerdo = Imd0 0 £o, 
• W such that A*T*M = kerd0 0 W. 

Here do is viewed as acting on true forms on M, as allowed by the choice of Vk ~ $k 

that fixes the weight of vectors and forms. Of course, if some metric is available on 
M, one can take orthogonal spaces as supplementaries : 

(53) I4+1 = / Y H 1 n ^ , £0 = ker<50nkerdo = W(gIO,R), W = lmS0, 

for SQ = d*0 adjoint of do. 

Remarks 5.2. • There are no C-C invariant such choices in general (depending only 
on H C TM). Anyway, for the problems we are dealing with here, one breaks the 
invariance sooner or later, when introducing a metric and use adjoints. 

• Anyway, there may be non (completely) invariant choices which, in some particular 
situations, like contact geometry, quaternionic contact geometry (see §5.3), and maybe 
more or less flat parabolic geometries (?), finally lead to invariant operators. 

We observe that do, when seen as acting on Q.*M is actually the component of d 
which preserves the weight of forms : 

(54) d = do + di + • • • + dr 

where dk increases the weight by k. The fact that do is an algebraic operator allows 
us to partially inverse it. Let d^1 be defined by 

d0
 ldo = Id on W and d0

1 = 0 on W 0 £o, 

giving 

do do = Uw/kerdo > ^od0 = Uhndo/£o®W , 

(55) Id - d 0
 ldo - dodo"1 = Uso/imdo^w. 
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An homotopy. We can now define a retraction of de Rham complex by 

(56) r = ld-dQ
1d-ddo1. 

This is by definition an homotopical equivalence, that (non-strictly) increases the 
weight of forms. By (54) and (55), the component rQ of r preserving the weight is 
Us0/imdoeWi the projection onto £Q relatively to Imrf0 © W. 

In order to retract de Rham complex on the minimal possible space of forms, we 
can iterate r. The basic fact is that these rk do stabilize for k large enough to a 
map UE/F, which has to be both an homotopical equivalence, and a projection onto a 
sub-complex (Eyd) along another (F,d). 

The following lemma is useful to identify E and F. 

Lemma 5.3. The map dQ
ld induces an isomorphism from W into itself whose inverse 

is a differential operator P. 

Proof. On VV, one can write 

(57) dZxd = do'dQ + 4 1 (d-dQ) = Id +N , 

where N = dQ
l(d — dQ) is a nilpotent differential operator since it strictly increases 

the weight. 
Then P = Y%™™*ht(-l)kNk is the required inverse. • 

This lemma points out the fact that, when restricted to JV, de Rham differential 
itself has a left inverse Q = PdQ

l, meaning that Qd = Id on W. Thus this subspace 
W can be cut out from de Rham complex, using the homotopical equivalence Id — Qd. 
One can also get rid of dW and identify the remaining space. 

Theorem 5.4. [38] Let (M, II) be a EQ-regular C-C manifold with the above structures 
and notations. 

(1) De Rham complex (fi*M, d) splits in the direct sum of two sub-complexes 

E = kerdo-1 Hker(dQ
ld) = {a E £Q 0 W \ da € £Q © W) 

F = lmdQ
l + \mddQ

l = W + dW. 

The projection UE/F) onto E along F, is an homotopical equivalence given by 
Id — Qd — dQ, with Q = Pd^1 as above. 

(2) The retractions rk stabilize to UE/F-
(3) Let Uz0 = Us0/imdo®w and UE = UE/F. One has 

n^I I^ = Id on £Q and II^II^ = Id on E. 

In particular, the complex (Eyd) is conjugated to the complex (£Q,dc) with 
d^UeodUEUs,. 
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These complexes are gathered in the following commutative diagram : 

fi*M = £ 9 F — f i * M = £ © F 
A 

TlE i UE 

E — JE7 
A ;l 

n>0 uE n £ o uE 

\ dc * 
£Q *- £Q 

Proof. 1. We consider II = Id -Qd - dQ and recognize it as a projection. 
One has Q = Pd^1 = 0 on IV. Moreover Qd = Id on W by Lemma 5.3. Thus IT = 0 

on IV, but also on F = W + dW since Ud = dll, and finally F C kern. 
Reversely, ImQ C W and ImdQ = ImdPdQ1 C dW by construction. This gives 

that kern C lm(Qd + dQ) C W + dW = F and the equality kern = F. 
About Imn, since d^Q = 0, we have 

d ^ n = d^1 - d^dQ = d^1 - (dQ-1dP)d0-
1 = 0 

by definition of P. We have then also d^dU = d^Ud = 0, and thus I m l l C ^ . Lastly 
since Q = PdQ1 = 0 on ker do \ we have dQ + Qd = 0 on E = kerdo"1 H ker d^d so 
that UE = Id on £ , and the conclusion IT = UE/E-

2. One has directly r = Id on E from the definitions. 
By (57), we have r = I d - d ^ d = - N on W, with N = dQX(d - do) nilpotent. 

Therefore rn = 0 on W for n large enough, but also on dW and F = W + dW since 
rnd = drn. 

3. Since £Q C kerQ = kerPdo1 and ImQ C W C kerli£:0, we have that 

n^n^n^ = ruid-Qd - dQ)u€o = u£o. 
Lastly, we have n ^ = 0 on IV C F. Therefore, we have n^I I^ = lie = Id on 
E C kerd^1

 = W®£Q. D 

For convenience, this construction will be referred as "Carnot complex" in the se­
quel, also we emphasize it is indeed de Rham complex, but restricted to a particular 
subspace of forms. 

Comparison to the presentation complex. In the case of M being a Carnot group 
G, the two first steps 

C°°(G) ±+ £l -±+ £l 
of the previous construction are actually equivalent to the infinitesimal presentation 
complex, as considered in Propositions 4.7 and 4.8 

C~(G) - ^ Q}H - ^ C°°(G, W*). 

Indeed, we have already observed that £Q = Q}H. Also by definition £Q
2 = 

G°°(G, W2(g)), where W2(g) is a choice of subspace of A2g* representing the coho-
mology, dual to a /^(g) C A2g representing homology. 

Now we show that dc = dy> Given a € QlH) UEa is an extension of a to fi2G, 
since when restricted to H, 

UEa = UeoUEa = a. 
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By definition of E, we have d(UEa) G W © H2($) which is supplementary to Imdo in 
A2g*. This condition is equivalent to d(UEa) = 0 on IV', dual space to VV©W2(g), and 
which is supplementary to ker3fl in A2g. Therefore, by Proposition 4.8, ITĵ a coincides 
with the special lifting a described there. And by Proposition 4.7, one has finally on 
W2(fl), 

dya = da = dUEa = dca. 

Liftings and spectral sequence. The previous remark that for a G £Q = D,1H) UEa 
may be seen as a particular extension of a in £llM> is true in any degree, as comes 
again from the relation I l ^n^ = Id on £0. In the spirit of Proposition 4.8, we have 
the following characterization : 

Proposition 5.5. For a G £o, UEa is the unique extension a of a modulo W such 
that dQlda = 0. 

Proof. On £0, UE reduces to Id-Qd since dQ = dPdQ1 = 0 here. Moreover 
Im Q C Im P C W by construction. Therefore Il^a G a-f W is an extension satisfying 
the conditions. 

If a is another one, then d^dw = 0 with w = a - UEa G VV, and w = 0 by lemma 
5.3. n 

In practice, computation of this extension may be done by iterating r which reduces 
to Id-do 1 ^ on kerdo"1, to be compared with (44). 

This viewpoint on liftings over £o is also related to the natural spectral sequence 
associated with the filtration by weight (fi^M,d) of de Rham complex. 

More precisely fix a p and an a G E^k of maximal possible weight k. Then given 
any lifting a of a in ftj^M, the class in Efij) of the component of minimal weight k' of 
dca is easily seen to be invariantly defined, independant of choices of supplementaries 
and a. It is indeed the (k1 — fc)th differential of a arising in the spectral sequence, 
and giving the first obstruction to finding a closed extension a, as seen by diagram 
chasing. (If not working with p-forms a of maximal possible weight in EQ , quotients 
appear in the spectral sequence differentials.) 

In particular, if the do-cohomology bundles EQ have pure weights in degrees p and 
p + 1, then dc : £Q —• £Q+ 1 actually represents a C-C invariant operator [dc] : EQ —• 
E?\ 

This happens for instance for all degrees in contact geometry as we will see in the 
next section. In general this happens between one and two forms iff the tangent group 
is homogeneously presented. If not, it may be observed that in constrast to general 
spectral sequences, components of high order of differentials are always defined in the 
Carnot complex, and not only on kernels of lower order ones. In the case of a fixed 
Carnot group, we recall that following §4.4, dc interprets as giving the infinitesimal 
holonomy of an horizontal a G £llH along infinitesimal relations in 7£(g). Note that in 
this setting, looking for the holonomy along any relation, whatever its order, actually 
makes sense (and can indeed be obtained from Proposition 4.5), without requiring the 
vanishing of holonomies along relations of lower order. 
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Duality. Although the definitions of E and F seem to break it, Hodge-* duality is 
preserved, if the choices of supplementaries are done like in (53) with respect to a 
metric. 

Proposition 5.6. [38, 40] 
(1) *50 = (—l)*+1do* on £Q and * preserves £0. 
(2) *E = F~ or equivalently fMEAF = 0. The formal adjoint U*E of UE is 

* UE* = UFL/EL> 

(3) *5E = (-l)k+ldE* on QkM for dE = dUE. Similarly *5C = (-l) /e+1dc* on £k. 

Proof. 
(1) Such pointwise duality formulas hold on unimodular Lie algebras, in particular 

on the nilpotent tangent gxo ~ TX0M. 
(2) Since E = ker S0 fl ker <5od, then 

(•.E)-1 = (ker d0 H ker do<5)± = Im S0 + Im d50 = F. 

Therefore n ^ = U*E/F = UF±/EL = U^/^F = ^(RE/F)*- (*2 = ±1) 

(3) From *5 = (—l)k+1d* and dE = dUE = UEd, we get 

*6E = *U*E5 = UE*5= ( - 1 ) * + ^ ^ * = (-l)kndE * . 

Lastly from dc = n ^ d ^ n ^ , we get 

*SC = Us, * SEUS, = (-l)k+lUSodE * USo = (-l)fc+1dc* , 

using that n ^ is both an orthogonal and * self-adjoint projection. 

5.3. Some examples. 
Trivial C-C structure. Here H = TM with g = Rn and d0 = 0. Therefore F = {0}, 
E = £l*M = £0, and dc = dE = d is de Rham complex (not restricted). 

Contact manifolds. Let (M2n+1, H) be a contact manifold. We know from §5.1, that 
the tangent structure is the Heisenberg group Gxo = H2n+1 . We first compute do. 

Given a contact form Q €Q}M (with ker 9 = H), one has a natural transversal T, 
called a Reeb field, such that 6(T) = 1 and zrd(9 = 0. Now Cl*M splits in horizontal 
Cl*H = kerix and vertical forms 9 A Q*H. For a = an + 9 A a^, we have 

da = dnocH + d9 AaT + 9 A (CT&H + dnosn), 

and the component that preserves the C-C weight is seen to be (the algebraic) 

doa = d9 A a r • 

Since d9 is non-degenerate on H) we find that 

(58) *-*«»-{tVTL lit"' 
I 9 A ker L i f f c>n , 

where L : AkH* -> Ak+2H* is defined by La = d9A a. 
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Note that these F0 have pure C-C weights for all k, namely k if k < n and k + 1 
if k > n. As previously observed, this implies that the differentials in the dc-complex 
actually come from the (contact invariant) ones given by filtering de Rham complex 
(see [39, §3] for details). In particular, one gets a second order differential on E£ , given 
by the usual formula for second order differential in spectral sequences 

dn = d2- dido ldi = 0A(£T- dHL~ldH). 

This is also de Rham differential of the extension 

UEa = r(a) = a - d^da = a - 9 A L~~ldHa, 

if a is seen (lift) in ££ = keHy H (Im L)x , using a choice of 9 and a metric. 

We describe now some contact invariant choices of the sub-complexes E and F used 
in Theorem 5.4, to split the (true) differential forms Q,*M = E © F. Recall that 

(59) E = {a£V\daeV} and F=W + dW, 

where W is supplementary to kerd0 and V(~ W© £0) to Imd0. Given any contact 
form 9 and any almost complex structure J on H such that 

9H = dO(-,J-) 

is a metric on H, we can form the adjoint A : A*H* —> A*IJ* of the above multiplication 
L. By (58), one can take in degree k 

(60) yk=UaGSlkM\AaH = 0} if fc<n, 
1 {a = 9 A (3} = vertical forms if k > n + 1, 

where aH is (now) the restriction of a to H. This is independent of the choice of 0, 
by conformal invariance of F, but even of J, since from classical properties of L (see 
e.g [44] or [39, Sec. 4]) one has 

(61) kerA = kerLn-fc+1 on AkH*. 

This choice of V, giving E by (59), is therefore contact invariant. One gets finally 
that : 

• for k > n + 1, 

Ek = {vertical forms a with da vertical} 

(62) = {a = 9 A j9 | d9 A 0 = 0 on H} 

= £ok by (58), 

• and for k < n, 

Ek = {a <E QkM | Aa# = A(da)H = 0} 

= {a e ttkM | 9 A Ln-*+1a = 9 A Ln~k da = 0} , 

with in particular d(En) C closed vertical forms C En+1
) as needed. 

About W (leading to F), one can take in degree k 

k J vertical forms if k < n, 
~ [{0 Aim A} if fc>n+l, 
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which is again a contact invariant choice, since by duality from (61) 

ImA = ImLn-fc+1 on A2n~kH*. 

To get more geometric feeling on E, let us describe the k-dimensional submanifolds 
Nfc of M whose associated intersection currents I(Nfc) He in E. That means Nfc is 
seen as a distribution acting on ftkM by 

(Nk,a)= f a= [ I(Nfc)Aa, 
JNk JM 

and we are looking for those ones satisfying I(Nfc) € JB
2n+1-fc. Since by Stokes 

rfI(Nfc) = (-l)fc+1I(5Nfc), 

and E = V D rf_1(V), this condition is equivalent to 

(63) I(Nfc) € V2n+1~k and I(<9Nfc) <E V2n"fc . 

We recall that, from its definition, I(Nfc) = a(Nk)fiN, where 

• fiN is the superficial measure on N, 
• a(Nk) is the conormal volume form to Nfc, that is the unitary oriented section 

of Amax(TNfc)c, where the conormal bundle (TNk)c is the space of one forms 
on TM vanishing on TNfc. Given a metric, one has also a(Nk) = *dvo\TNk 
(up to sign). 

Putting this together with (60) and (63), one sees that : 

• for k < n, 

I(Nfc) G V2n+1"fc <=> a(Nk) is vertical & TNk C H. 

Therefore such (smooth) Nfc, and their boundaries <9Nfc, are necessarily horizontal 
submanifolds, meaning that their tangent spaces lie in the contact distribution 1I. 

Note that by integrability of TNfc, this implies moreover that TNk is a Legendrian 
distribution of II, i.e. d9 = 0 on TNfc. (Showing that such manifolds don't exist for 
k > n.) One can check that this last condition on TNfc translates, for the conormal 
volume a(Nk) (and I(Nfc)), into dOAa(Nk) = 0, which is one defining equation of Ek 

in (62). 

• For k > n + 1, one sees using a metric (as defined above) that 

I(Nfc) G V2n^-k 4=* Aa(Nfc) = 0 on II, 

<=> dO A dvo\TNknH = 0, 

<=>d9 = 0 on (TN f c)xnII , 

meaning that, this time, the distribution (TN1*)1 fl H is Legendrian. Such manifolds 
Nfc can then be called co-Legendrian. Again, this is a contact notion, since J72n+1~*: 

(and V2n~k) can be given contact invariant definitions like in (61). 
In fact, the previous Legendrian condition on (TNfc)-L fl H, is easily seen to be 

equivalent to the following invariant one : the restriction to H of the conormal bundle 
(TNk)c is Legendrian with respect to the dual symplectic form a;*, induced on II* 
from u) = d9 on H. 
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We observe also that for k = n -F 1, a co-Legendrian Nn+1 has the property that 
(TNn+1) H H is (generically) a n-dimensional subbundle of // , and is therefore itself 
Legendrian, being orthogonal to a Legendrian one in middle dimension. Therefore, 
such a Nn+1 is foliated by (integrable) n-dimensional horizontal submanifolds. Then 
the condition 9(Nn+1) E Vn means that 9(Nn+1) consists in some of these leaves. 

The conclusion of this discussion is that, at the level of currents induced by submani­
folds, the complex (E, d) is dual to these families of co-Legendrian (in dim > n-f 1) and 
Legendrian manifolds (in dim < n), with the standard boundary operator d relating 
them. 

Since we know by Theorem 5.4 that, at the linear level of forms, one can retract 
de Rham complex on (E,d), it looks tentative trying to represent homology by the 
previous special manifolds. This much harder non-linear problem is studied, at least 
at the level of horizontal submanifolds, in Gromov's work [21]. 

EngePs structures. Recall that an Engel's structure is given by a three-step two-
plane field H in TMA. It's tangent group has been described in §4.4. Let 0X, 0Y, 0Z, 
0T G A V be dual to (X, Y) e H = $u Z e g2 and T G g3 as used in (46). Then, d0 

is given by 

doOx = d06Y = 0 , d0ez = -0X A 0Y and dodT = -6X A0Z, 

from which we get 

(El = gl = Bpan(OxM 

El = span (6Y A 0Z) 0X A 6T) = *£g, 

E* = IE* = span (0Y A 0Z A 0T) 0* A 0Z A 0T) 

In degree one, dc = dv and HE have been computed on G in (48), (49) and (50). 
The missing differentials can be obtained using *-duality. The results are summarized 
in the following diagram, adding all possible travels between points gives the various 
components of dc (within braces) and the liftings Ii£ (without braces) 

(64) (0Y) 

(/) v 0z " 6YKT =-* (̂ VA^AT) 

> " > z " < x^ ^ ^ 
(ex)z^—^0r^ v Y eZAT

 Y
 Y (&G) 

^ -Z ^ s" 
(QXAT) *• (OXAZAT) 

This describes the dc-complex on the Engel's group. Now, due to the existence of 
an normal form for Engel's structures, see [32, Chapter 6], one can locally embed a 
general Engel's structure H C TM4 in its tangent Engel's group. In particular, there 
will locally exist vectors fields K, Y, Z,T £ TM4, such that the dc-complex on M4 
becomes isomorphic to (64), for a compatible choice of metric. 

We are here, as in contact geometry, in a very particular case of a C-C distribution 
of "stable type", see [32, Chapter 6]. In general, one can't embed a C-C structure in 
its tangent group (means, even if it is a constant one). Anyway by definition of [ , ]0, 
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one can always find a basis of vectors fields around any point XQ £ M, such that their 
[ , ]o brackets coincide up to vectors of lower C-C weights, with those given on the 
tangent group C7X0. In such local coordinates, the expressions of the dc-differentials 
on M will coincide with those on the tangent group Gxo, up to perturbations of lower 
C-C order. This property is useful with respect to analytical problems, see [38, 40]. 

Quaternionic contact geometry. Let us consider now some attractive C-C struc­
ture arising in various asymptotic analytic and geometric problems on quaternion-
Kahler manifolds (like in [3, 26]). 

We first describe the Carnot group <24n+3, called quaternionic Heisenberg group, to 
which this particular C-C structure is tangent. Let H ~ R4n and an oriented V ~ E3 

be endowed with scalar products. Suppose given a linear map J : V* —* End(H) 
such that for some, and then all, direct orthonormal base (0i,#2,03) of V*, J» = J(0») 
defines a quaternionic structure on H. That means the J» are complex structures on 
H satisfying the imaginary quaternions commutation relations J1J2 = — J2J1 = J3-

Consider then the 2-step 4n -f- 3 dimensional Carnot group ( j 4 n + 3 whose Lie algebra 
q4*+3 = H 0 v h a s a bracket [ , ]0 : H x H -> V defined by 

e([X,Y]0) = -(J(9)X,Y)H. 

Dually, the curvature 4 : V* -> A2IY* of Q4n+3 is given by 

(65) (do0)(X,Y) = (J(6)X,Y)H. 

Geometrically this group (of Heisenberg-type [27, 12]) arises in the Iwasawa decom­
position of the rank 1 semi-simple Lie group Sp(n + 1,1). 

Definition 5.7. Given a a (4n + 3)-dimensional manifold M, a codimension 3 C-C 
structure H C TM is called a quaternionic contact structure if its tangent Carnot 
group gxo is everywhere isomorphic to Q4n+3. 

For instance the sphere at infinity 4S4n+3 of the quaternionic hyperbolic space Hj^ 1 

possesses such a structure, since it is indeed a (one point) compactification of Q4n+3 

itself. More interesting, this geometric structure has some flexibility for there exist 
many non locally conformally flat examples. 

For n > 2, this is a consequence of works by C. Le Brun [28] and 0. Biquard [3], that 
the previous flat quaternionic contact structure on S'4n+3 admits an infinite dimensional 
space of deformations (asymptotic to deformations of the quaternionic-Kahler metric 
on Hjj+1). 

The 7-dimensional case is simpler, since being a quaternionic contact structure is 
even an open condition for a 4-dimensional distribution H C TM7. 

Namely (see e.g [32]), we first note that in (65), the three dimensional Imdo is the 
subspace of self-dual forms A+/7*, and the metric on V* ~ Imcfo is induced by the 
intersection form q(u)dvo\H = (J2. Now a general 4-dimensional 2-step distribution 
H C TM7 is said elliptic if, at every point x0, q is positive definite on the 3-dimensional 
L = Imdo C A2H*, where do : (TM/H)* —> A217* is again the curvature of the 
tangent Carnot group gxo. In that case, it is a classical algebraic fact that one can find 
a unique conformal class of metric on H (and an induced one on V = TM/H), such 
that Imdo = A\H* and do is given by (65), showing finally that Gxo is isomorphic to 

Q7. 
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We note also that, in any dimension, the conformal class of the metric on H is 
actually determined by the quaternionic contact distribution H itself. This is due to 
the fact that isomorphisms of (34n+3 conformally preserves the 4-fundamental form 
Q = _I)i=i(^o^)2j and following [41, Lemma 9.1], are up to dilations and translations, 
induced by Sp(n)Sp(l) C SO(H). 

The C-C weights of the cohomology groups E0 of Q 4 n + 3 have been computed for 
instance in [25]. On p-forms, 

[ p for p < n, 

p and p + 1 for n + 1 < p < 2n 

2n + 2 for p-=2n + 2, 

and weights complementary to N(Qin+3) = 4n + 6, in complementary degrees. 
In dimension 7 (for n = 1), the pattern of the Carnot complex is the following, with 

the degree of forms along x and (weight - degree) along y : 

(67) siAe^tfM 

V A 

(66) Ko n a s weight(s) 

Я 4 X f5 dc 

^O ""*" c 0,7 

V 
0,3 —*" c-o 

ç2 <̂  ç3 c0 .3 —*" ^n 

where £l2_H = &l2 c_ VL2H/lmdo is the space of anti-self dual partial 2-forms on the 4-
dimensional iI. We can see that the bottom line looks like the half-signature complex 
on IT, except H is not integrable here. 

We now discuss some invariance properties of this construction. Together with 
analytic features developed in [38, 40], they have been used by Pierre Julg in its proof of 
Baum-Connes conjecture for Sp(n, 1) in [26]. Although the techniques we'll follow look 
different, these invariance results are certainly closed to general constructions proposed 
by Cap, Slovak and Soucek in [5], extending Bernstein-Gelfand-Gelfand sequences in 
parabolic geometries. 

We first describe some (family of) transversal spaces T to H that we need to fix 
supplementaries. Let again V* be the space of vertical forms (i.e. vanishing on H), on 
which we have our (conformal class of) metric. Given X G TM} we can define 0X e V* 
by 6(X) = (9Xy6)v*- Mimicking the definition of Reeb field in contact geometry, we 
consider the quadratic form Q : TM —• ^H defined by 

Q(X) = d(||0x||2) + 2ixdOx restricted to H. 

This is a tensor since 

Q(fX) = d(f2\\ex\\
2) + 2fixd(f9x) 

= f2Q(X) + \\exfd(f) + 2f(X • f)9x - 29x(X)fdf 

= f2Q(X) on H. 
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Its symmetric bilinear form B satisfies, for (X, h) G TM x H, 

B(X,h)=ihdo9x 

= (J(Ox)hf°* by (65). 

Hence it induces, for X £ H fixed, an isomorphism from H into hlH*. Therefore, the 
quadric Q~x(0) splits into HUT, where T is a cone transverse to H and isomorphic 
to TM/H. 

It turns out that this "Reeb cone" T is automatically a vector space if dimM > 11 
(i.e. for n > 2). Actually, this T is easily seen to coincide, in these dimensions, with 
the vertical vector space associated to the connection constructed by 0. Biquard in [3, 
II.i], In dimension 7, a connection has also been given by D. Duchemin in [16]. In this 
dimension, the flatness of T is a priori a non-vacuous condition on the quaternionic 
contact structure. Such 7-dimensional quaternionic contact structures, with flat Reeb 
cone, will be called integrable in the sequel. 

In any case this T depends on the choice of a metric on H, within its invariant 
conformal class. We compute its variation. 

Proposition 5.8. If gH -+g'H = efgH, then T-+T'=(Id + A)(T) with 

A(X) = -J(0*)VH / , 

where V/ / / = (dHf)#gn is the horizontal gradient of f. 

Proof. From their definitions, if gH = efgHi then 

J' = e~fJ , g'v. = e~2fgv. and 0'x = e2fOx, 

from which one finds 

Q'(X) = e2f(Q(X)-2\\ex\\
2dHf). 

Hence if Q(X) = 0, then Q'(X + h) = 0 for some heHift 

B(x,h) = \\ex\\
2dHf <=>h = -j(ex)vHf, 

since B(X,h) = (J(9x)h)^ and J2(0) = -\\0\\2Id. D 

Remark 5.9. This shows in particular, as stated above, that the 'flatness* of the Reeb 
cone only depends on the quaternionic structure H : because A is a linear map. For 
instance T is flat on the sphere 54 n + 3 , since it is locally equivalent to the group model 
Q4ri+3, for which T is q2 = [H, H]0. 

Using these T, one can now extend (or lift) partially defined forms a into 'true' ones 
57, by requiring their vanishing on vectors of higher C-C weight. These extensions are 
not invariant, but induce invariant choices of ker£0, Im<50 and sub-complexes E and 
F in Theorem 5.4. This follows from the lemma. 

Lemma 5.10. Let (M, H) be a quaternionic-contact structure, assumed integrable if 
dim (M) = 7. Then, given two conformal gH and g'H, the induced variation A of 
vertical extensions of partial forms satisfies 

A(kero"0) C lmS0. 
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Proof. As in (52), we note Q?kM the space of partially defined p-forms on p-vectors 
of weight < k. If g'H = eJfgn, we show that for a E &p

kM, its variation of vertical 
extension to fi£+1M is given by 

(68) Aa = 50(dHfAa) + dHfA S0a. 

• We first check it on horizontal forms il^M = D,PH. Fix orthonormal bases 
(7j)i<i<3 of F, dual to vertical one forms (0j)i<j<3. Given a = Y?j=i@j A aj with 
aj ~ QP~lH C ker do, one has d^a = X^=i do0j A a,, so that 

3 

do = ^2 do()J A iTi o n fiP+i^ • 
i=i 

Therefore, for any X G H, one has on £}£_,_, M, 

doix + ixrfo = ^(ijcdofl,-) A iTj = ] T ( J ( ^ ) X ) # A ^ • 

Taking adjoints and X = VH/, gives for a € £FH, 

S0(dHf A a) + d# / A <J0a = ~P 9j A ij(0j)vHf(* 
3 

= a(j(e.)-Hf,...) 
= -iA()a = Aa, 

as comes from Proposition 5.8. 

• To get (68) in general, we observe that for vertical one forms 0, 

A(0Aa) = 0AAa , 

since 0 A • commutes with vertical extension, while 

(5»o(0Aa) = -0A(Joa, 

which is dual to d0ir + irdo = 0 (= adq(T)) for vertical T. • 

As already mentioned, Lemma 5.10 gives that the splitting of de Rham complex 
into the two sub-complexes 

E = ker o"0 n ker Sod and F = Im S0 + Im d50 

is invariant, meaning it depends only on the (integrable) quaternionic contact structure 
H. That's not the case of the reduction of (E, d) to (£o, dc), as presented in Theorem 
5.4, because 

£0 = ker do n ker S0 , 

where ker do is not invariant, when seen as acting on 'true' forms like in (54). 
Anyway, one can correct this by adapting the construction. Let replace £0 by its 

graded version 
£o = 0 £%k = 0 ( k e r do,k n ker V ) , 

k k 

where do,*: is now the (invariant) quotient action of d on the graded (by weight) exterior 
algebra Q?kM = i l^M/Sl^ .NM, as defined in (52). Then, since by Lemma 5.10 
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vertical extensions are defined up to Im 5Q C F, their projections on E along F are 
unique. In particular we get an invariant lifting map 

U£^E:Slr^E. 

In the opposite direction, we also have a natural projection 

RE-+S*T : E - * £<f • 

Indeed, one can extract successive homogeneous components of elements of E C kev5Q, 
which again are defined up to ImoVj by Lemma 5.10. These components therefore 
represent unique elements in £f ~ (keroo/Imoo)gr-

As in Theorem 5.4, these maps U£sr_¥E and Ii£_£P- a r e inverse to each other. One 
can then define a conjugated complex (£Q ,dc) to (E,d), by considering 

The advantage of this last reduction is that £Q is a (now invariant) vector bundle, 
while E consists in forms satisfying some differential equations. This feature was useful 
in Julg's work [26]. 

We close here this series of examples, and return to our primary study of large 
time heat decays on Carnot groups. Recall that, in §4, we were led to considering 
these differential complexes, by looking at the discrete presentation complex of lattices 
at large scale. The link was rather formal anyway, and we still have to check it is 
analytically relevant. 

6. BACK TO SPECTRAL PROBLEMS 

6.1. Algebraic pinching of heat decay. 
Carnot complex and near-cohomology. Let (M, H) be any ^o-regular C-C mani­
fold. We know by Theorem 5.4 that, from the topological viewpoint, one can retract de 
Rham complex on the sub-complex (E, d), this one being itself conjugated to (£Q, dc). 
One can then use any of these homotopy equivalent complexes to express the coho-
mology of M. 

One can extend this principle to near-cohomology using the general ideas presented 
in §3. 

Theorem 6.1. [38, 40] Let (M,H) be a compact EQ-regular C-C manifold and M 
some Galois covering. Then, de Rham complex, (E,d) and (£Q,dc), have isomorphic 
near-cohomologies on M. In particular, they have the same Novikov-Shubin exponents 
(twice the large time heat decay exponents on (kerd)-1 by §2.2). 

Proof. The proof is straightforward, using the notions introduced in §3. By Theorem 
3.12, it suffices to show that these complexes are homotopy equivalent, in the Hilbertian 
sense of Definition 3.L 

We first describe the underlying Hilbert complexes here. We work respectively in 
"true" L2 forms_on M for de Rham complex, L2 sections of the bundle £Q for dc, and 
the L2 closure EoiEn C?(n*M) for (E, d). 

Starting with smooth compactly supported forms as initial domains, one then closes 
the differentials (i.e. their graphs) in these Hilbert spaces. This is possible because 
the adjoints of these differential operators are also densely defined (at least on CQ°). 
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The basic homotopies 11^ and n^II^, between de Rham complex, (E, d) and (£o, c!c), 
are not bounded in L2, being differential operators. They can't thus be used directly 
in Definition 3.L Anyway, one can first cut-out high frequencies, irrelevant in the 
near-zero spectral problem we are dealing with. Namely, let EA(1) be the spectral 
projector associated to [0,1] by de Rham Laplacian A. One has 

FA(1) = Id-FA(] l ,+oo[) = Id-Bd-dB 

where B = SA^E&Ql, +oo[) is bounded in L2 by the spectral theorem. Thus it 
induces a bounded homotopical equivalence between de Rham and the cut-off de Rham 
complex on £A(1) = lmE&(l). Now, by elliptic regularity of de Rham Laplacian, any 
(V-invariant) differential operator is bounded on £A(1). In particular the previous 
maps 11^ and Us0UE provide the required bounded homotopies on this cut-off de 
Rham complex. • 

Previous result claims that for near-cohomology study, one can mod out F, keeping 
only E. One can give some geometric flavour to this statement. Consider the near-
cohomology cones Cd(s) of the cut-off de Rham complex (£^(1),^). Recall that by 
(17) 

Cd(e) = {ae [£A(1)] = £A(l)/kerd | ||da|| < e||a||} . 

The splitting of de Rham complex into E © F, induces a splitting [E] 0 [F] of forms 
modulo kerd. Moreover, by Theorem 5.4, one has UE = Qd + dQ, where Q becomes 
bounded as before, when restricted to £A(1). Therefore, one gets for a € Cd(e), 

\\[nFa}\\ = \\[Qda}\\<C\\da\\<C£\\a\\, 

meaning that, when e —> 0, the near-cohomology cones Cd(s) of the cut-off de Rham 
complex are actually shrinking around [E] relatively to [F] (inside cones of slope < Ce). 
This is suggested in figure 4. 

FIGURE 4. The shrinking of near-cohomology cones Cd(e). 

Theorem 6.1 is probably not very useful in the problem of studying Novikov-Shubin 
numbers on general (C-C) manifolds. Actually we will only apply it on nil-manifolds. 

More precisely, let G be a rational Carnot Lie group (see §4.1), and consider the 
quotient M = G/T where T is a discrete cocompact group in G. By contractibility of 
G, one has TTI(M) = T, so that by Theorem 2.6 and Corollary 2.7, de Rham complex on 
the smooth group G may be used to compute the two first Novikov-Shubin exponents 
aQ{T) and cYi(r). Then by Theorem 6.1, these exponents are the same as for the 
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complex (So^dc). The advantage of this last one is its better behaviour through the 
natural dilations h£ available on G. 

Indeed, recall that the first stages of the construction are 

(69) C°°(G)^QlH^£2. 

The first map du is the differentiation along H, the first strata of g, and is thus an 
homogeneous operator of order one with respect to the dilations h£. For the second 
map £Q = L2(G, H2(g,R)) may have components of different homogeneities, pinched 
by the order of generating relations of g relatively to the free Lie algebra T(H), as 
comes from Hopf's relation (see §4.3 and 4.4). 

Dilations and T-dimension. To take profit of the previous remarks we have first to 
check the behaviour of T-dimension and trace (see §3.2) under dilations. They actually 
behave like densities on G. 

Proposition 6.2. Let L be a T-invariant subspace of L2-differential forms on G. Then 
for neN, 

dim r(hnL) = dimhnr(L) = nN^dimT(L), 

where N(G) = ^zd im(g j ) is the growth ofG. 
i=l 

Remark 6.3. In this statement we use dilations with integer coefficients, and a lattice 
T horizontally generated, in order to have hn(T) C V, and L also ftnr-invariant. An­
other 'continuous' approach is possible, for the G-invariant operators we are actually 
dealing with (see next proposition). 

Proof. Given an initial (invariant) metric g on G, the map hn induces an isometry 
between L C L2(G,A*G) and hnL C L2*y(G,A*G), that conjugates respectively the 
hnT and F actions. Then by definition of dimr (see §3.2), we have 

dimrthng(hnL) = dimhnr,9(
L) • 

invariance result Proposition 3. 
invariant metrics on G and the 1 

dimrihng(hnL) = dimri9(hnL) = dimr(hnL). 

Moreover, by the general invariance result Proposition 3.9, dimr actually does not 
depend on the choice of r-invariant metrics on G and the bundle, and hence 

as needed. 
The second equality is a particular case of the multiplicativity of dimr under finite 

coverings, here 
r /f tnr -> Mn = G/hnT ^M = G/T. 

If (ei) is an Hilbert base of L and T C G a fundamental domain of the T action, we 
have by (20) and (21) that 

dimrL = Ylf IM-011'd*-

A fundamental domain for hnT consists in card(r//inr) copies of T, so that 

dim/^rL = card(r/ftnr)dimrZ/. 
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Lastly, we recall that hn acts by multiplication by nk on ci*, hence 

card(r//inr) = vo\(hnT)/vo\(T) = nN{G), 

with N(G) = ^2 kd[m (flfc)- D 
k 

The previous result actually holds for any dilation and lattice T, if the operators 
and spaces are G-invariant. 

Proposition 6.4. Let P be a positive G-invariant operator acting on L2-sections of 
a G-invariant vector bundle V. If P has a finite V-trace for some lattice T, it has for 
any, and its kernel Kp is a bounded continuous function with 

rr(F) = vol(G/r)TV(Kp(e,e)), 

where Tr is the trace on End(K). 

We recover in particular the dependency of T-trace and T-dimension in vol(G/r). 
Proof. Prom (20), P is T-trace class iff its square root S is such that SXT is an 
Hilbert-Schmidt operator, that is iff the kernel Ks of S is in L2(G x J7). Moreover, 
we have 

(70) MP) = IISX-HI.™ = / \\Ks(x,y)\\2dxdy. 
JGxT 

For (left) invariant operators, one has Kp(x,y) = kp(y~*x), and P acts on L2(G, V) 
by convolution as 

Pf(x) = (kp * f)(x) = / kP(y-1x)f(y) dy. 
JG 

By (70), we see that 

(71) r r(P) = | |5 X ^ | |L = vol(^)||fc5||2. 

In particular, Tr(P) < +oo iff fc$ G L2(G,End(V)), in which case 

kP = ks*kse L2(G) * L2(G) 

is bounded and continuous on G (and vanishes at oo). Then, by (70) and hermitian 
symmetry of ks (i.e. ks(x~1) = ks(x)*)> we obtain 

MP) = vol(? )\\ks\\l 

= vol(T)Tr((ks *ks)(e)) 

= vol(G/r)TV(fcP(e)). n 

Proposition 6.4 points out the fact that, given a Lie group G and a lattice T C G (i.e. 
T discrete and vol(G/r) < +oo), the Novikov-Shubin numbers ap(M) of the covering 
G —> M = G/Y actually depend only on G, but not on the lattice I\ The common 
values for all T, denoted by ap(G) in the sequel, are indeed either infinite, or given 
by the decays of kernels at the origin e of G-invariant spectral projectors Esd(]0, A2]), 
also twice the heat kernel decays on (kerd)1 (see §2.2). 
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Application to a0. We can now use the homogeneity of du in (69) to recover the 
value of ao(r) for lattices in a Carnot Lie group G. 

Namely, one has Auhe = e2h£Aj{, so that the spectral spaces £AH(A) of AH rescale 
as follows 

(72) hc(£^H(\)) = SAlI(e
2\). 

Therefore, by Propositions 6.2 and 6.4, the spectral density function of AH is homo­
geneous, 

(73) FA„ (e2) = dimr(£A„ (e2)) = eN^F^„ (1). 

Hence we recover Varopoulos' result, for these groups T, that 

relating twice the large time heat decay on functions to the growth of G (also the 
growth of any cocompact Y). 

Pinching of a\. The same kind of discussion applies to the next exponent ai(r) = 
ai(G), except that now dc : QlH —• Z\ may be polyhomogeneous. 

We recall that, by Hopf's relation, E\ ~ 1I2(g,]R) is isomorphic to the space V = 
71(g)/'[J^(g)i H] of defining relations of g = ^(H)/71(g) (with respect to the free Lie 
algebra F(H)). 

This leads to the following pinching of ai(G), for rational Carnot group G, i.e. those 
admitting a lattice I\ 

Theorem 6.5. [38, 40] IfY is a lattice in a Carnot group G then a\(Y) = ai(G) 
satisfies 

rmin-l<Pi(G) = ^r<rmax-li 

where rmin and rmaj( are the minimal and maximal order of defining relations of G} 

also minimal and maximal weights 0/II2(g,R). 

Hence the higher order defining relations of G are, the slower heat decays on one 
forms, with respect to the growth of G. Notice that if G is a r-step groups (i.e. 
9 = fli © • • • © £Jr)> then generating relations of G are necessarily of order pinched 
between 2 and r + 1, and we obtain in general that 

(74) l < A ( G ) < r . 

Thus heat on one forms never decays quicker than on function, in ^-/Y(G)/2
J and never 

slower that t~N(<G)/2r. Examples of each type will be given in §6.2. 
Proof. In general the differential dc splits in homogeneous components 

dc = dp**'1 + • • • + ĉ "1""1, 

and we don't have anymore that the spectral spaces of Ac properly rescale under /ie, 
like in (72) for the case of functions. We consider instead the action of h£ on the 
near-cohomology cones (see (17)) 

CdcW = {ae L2(G, A^J /kerdc | ||dea|| < A||a||} . 
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Namely, we have 

n i / L * MI n > * i I. ^ j A; r m i n | |d ca| | if fc<l, 

iiuhtan = WM < [kJ\J[ if fc;x; 
leading to 

M C * ( A ) ) C \C74(.W--») if * > 1 . 

and finally to the following rescaling, for e < 1 

(75) GJA^"-1) c MG-C(A)) C Cdc(\e
r^). 

By Lemma 3.11, we can recover the spectral density function of Scdc on (kerdc)1 , using 
all T-invariant subspaces in the cones Odc(A), namely 

Fscdc(^2)= sup d im r F . 
LCCdc(A) 

Putting this together with (75) and Propositions 6.2-6.4, we get the pinching 

Fscdc(e
2(r—1>) < eN^FScdc(l) < Fscdc(e

2^-^), 

and finally 

eN(G)^^FScdc(l) < FScdc(e
2) < sN{G)/(r—^FScdc(l), 

giving the pinching of ai(T) = liminf ^-^—-. 
c-»o In e 

Notice that the spectral function for dc is finite, since by Theorems 3.12 and 6.1, 
its dilatational class is the same as for de Rham complex, or even to an ^2-simplicial 
complex by Theorem 2.6. (Finiteness is automatic at the discrete simplicial level, while 
for de Rham complex, it is a direct consequence of the ellipticity of the Laplacian, see 
e-g. [1].) D 

Extens ions of T h e o r e m 6.5. We gather some developments around Theorem 6.5. 

• This theorem gives a pinching of the asymptotic heat decay on one forms, on 
rational Carnot Lie groups, i.e. for those admitting a lattice T. It actually makes 
sense, and stays true for non rational Carnot Lie groups. One way to prove it is to 
notice that, even for non rational Carnot group G, there exists a discrete Z C G and 
a relatively compact D C G such that 

Z"1 = Z and G = [ J zD (disjoint union). 

(One takes Z = exp(Z) for an additive integral lattice in g, see [40, §3.2.2] for details.) 
This allows to 'discretize* L2(G) = £2(Z) ® L2(D) and adapt the basic Propositions 
3.8 and 3.9 to this situation. 

This technique also raises the following question : 
Even, if Z is not a group, one can take a simplicial complex given by the nerve of 

an open covering G = M zft, where D C ft open. Is it true that a\(G) still gives 
z£Z 

the asymptotic heat decay on discrete 1-cochains of this now non-periodic simplicial 
complex? 
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• Another viewpoint on non-rational C7 is to define a C7-trace and dimension along 
the lines of Proposition 6.4. 

Briefly, let P be a positive C7-invariant operator acting on L2 sections of a C7-invariant 
bundle K, and D C C7 be such that 0 < fi{D) < -f-oo. Then the C7-trace of P is defined 

by 

TG(P) = M(o)-1Trace(xoIJXo) 

= y(D)-1 Y^iXDPXDet, e.), 
t 

for any Hilbertian basis (e )̂ of L2(C7, V). This C7-trace doesn't depend on D. Indeed 
if S is the positive square root of P, one has also 

(76) TG(P) = »(D)-'Y,\\SXDei\\l 
i 

= ^(D^WSXDWHS (Hilbert - Schmidt norm) 

= »(D)-l\\KsXD\\\ ( I 2 - n o r m ) 

= IIMI2, 
where Ks{x,y) = ks{y~lx) is the kernel of the C7-invariant S (to be compared with 
(71)). In the case TG{P) is finite, then kp = ks * ks is bounded and continuous on C7, 
and we have also 

TG{P) = TrVe{kP{e)). 

Following Propositions 3.8 and 3.9, the basic point to check about TG is the following 
property, valid on unimodular Lie groups (like nilpotent ones). 

Proposition 6.6. If P is a {not necessarily positive) G-invariant bounded operator, 
then 

TG{P*P) = TG{PP*). 

Proof. Let P = U\P\ be the polar decomposition of P, then P*P = \P\2 and by (76) 

TG(F*P) = li(A)-1'£\\\P\xAei\\l 
i 

= »(A)-1Y,\\U\P\XAei\\l (U partial isometry) 

= n(A)-l\\PXA\\ls=\\kp\\\. 

Finally, since kp+{x) = kp{x'1)*, one has ||kp*||2 = \\kpW2 on unimodular groups, and 
the result. • 

This gives another mean to extend Theorem 6.5 on non-rational Carnot groups, 
replacing the T by C7-trace. 

• In another direction, one can obtain pinchings of higher Novikov-Shubin exponent 
ajt(G) on fc-forms, if EQ c.. Hk{g,E) is of homogeneous weight Wk> One get then 

(77) min(l, < j » - wk) < £ | | < vffi - wk. 
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The proof is the same as for Theorem 6.5. The homogeneity condition on Hk(g,R) is 
not automatically satisfied for k > 2. It allows to control the action of h€ on norms in 
(kerdc)1 (needed in this proof). 

6.2. Examples. The algebraic pinching of a\(G) is sharp if the group is presented by 
relations of same order. We start with such examples. 

Heisenberg groups. For instance we have seen in §4.2 that the Heisenberg groups 
pj2n+i a r e quadratically presented for n > 1 and cubically for n = 1. Therefore 

w™) = {l !or n~] 
]2 for n = l , 

and hence 
rvm2^M=/^H2n+1) = 2 n + 2 f o r n ^ 2 

U } \N (H 3 ) /2 = 2 for 7 i = l . 
In particular heat on one-forms of H3 only decays as \/t when t —• +oo, half its 
speed in l/t2 on functions. Therefore this asymptotic spectral invariant a\ actually 
distinguishes H3 from R4 (or tjie discrete groups H^ from Z4) although they have the 
same growth N(C) = 4. 

In order to distinguish (with the asymptotic spectra) higher dimensional H | n + 1 

from Z2n+2, one has to consider the higher Novikov-Shubin exponent an) about the 
spectrum between n and (n + l)-cocycles (discrete or forms). Indeed, by (77) and the 
cohomological computations (58), one has 

&(H2n+1) = l for k ž n and A.(H2n+1) = 2, 

and hence 
f ak(n

2n+1) = 2n + 2 = ak(R
2n+2) for k<n-l 

| a n ( H 2 n + 1 ) = n + l = an(R2 n + 2)/2. 

Geometrically, this coincidence of the first exponents is reflected by the fact that 
one can find simplicial triangulations of both groups using horizontal simplexes up to 
topological dimension n, hence with the same homogeneous (Hausdorff) dimensions, 
while vertical (n-M)-dimensional simplexes (with Hausdorff dim = n-f-2) are needed 
on H2n+1. Notice that (77) actually relates the exponents ak to the homogeneous 
dimension gap between the cohomology groups H*+1(g,R) and H*(g,R). 

Quadratically presented groups and Dehn function. In fact quadratically pre­
sented 2-step groups are very common if 

(78) d im(g 2 )<d im(g i ) /2 - l . 

Indeed, one can show that, within this bound, a Zariski open dense set of brackets 

[ , ]o : 0i * fli -> 02 
give quadratically presented Lie algebras 0 = gi 0 02 (see [40, Prop. 4.1]). Even 
more by Gromov's work [21, §4.2 A"] 2-step groups satisfying (78) are generically 
"quadratically finable", meaning that an horizontal closed curve 7 can be filled by a 
surface of area < Klength(7)2. 
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In fact Pi can always be compared with another asymptotic invariant of finitely 
presented discrete groups T called Dehn filling exponent. Recall it is the smallest A 
such that any trivial word of length n can be factorized using Knx elementary relations 
(equivalently, any closed loop in a Cayley graph of T can be filled by Knx elementary 
2-cells). The following inequalities hold on general r-step Carnot groups T 

(79) 2 < px(T) + 1 < max weight(H2(g,R)) < Dehn(r) < r + 1, 

and the above case corresponds to equality between the first four terms-
Proof. The two first inequalities comes from Theorem 6.5 and (74), while the last 
one has been proved by C. Pittet in [35]. We look at the third one. 

Given u E H2(g,E) of weight N(u), one can find a closed polygonal curve 7 in the 
generators of T such that 

f v = C^0 

for one (and then any) surface S bounding 7. Indeed by §4.2 and 4.3, one can pick a 
7 whose direction in TZ(Q) is not in kera, where a G (71(g)/[H, Tl(g)})* represents u 
in Hopf 's relation. 

Now if Sn is any simplicial surface filling the dilated loop An7, one has 

\C\ = \L\=\f Ku\ = \f n-N^\ 
JS J Sn «l.Sn 

^ n - ^ I ^ H o o A r e a ^ ) 

so that Area(5n) > K\ength(hni)
N^ as needed. • 

Remark 6.7. It is not true in general that P\(T) + 1 = Dehn(r). In fact these two 
exponents behave differently under products since one finds that 

Dehn(r! x T2) = max(Dehn(r1), Dehn(r2)), 

while 
<*i(ri x r 2 ) = min^r - ) +a0(r2),a1(r2) + a0(r1)). 

In particular ai(Rn x H3) = n + 2 so that 

/3i(RnxH3) = - ^ while Dehn(RnxH3) = 3. 

We leave this as exercises for this Winter School. 

One can go beyond the bound (78) staying quadratically presented. Let H = O ~ 
R8 be the octonions (or Cayley numbers). We define an 'octonionic contact group' 
G15 as follows. Given an imaginary octonion v G V = ImO, we note J(v) the left 
multiplication by v on H. Then G15 is the 15-dimensional H-type group whose Lie 
algebra g = H © V* is define as in (65) by 

M ( i , y ) = (J(«)A',y)H 

This group is quadratically presented. Indeed, following [41, (12.11)] the map 

(80) d0:AU* = VAH* —+ A3H* 

v A a i—> d0v A a 
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is injective (even an isomorphism) and thus the cohomology group H2(g,R) has no 
component of weight 3. 

Notice that, although it is quadratically presented, this group doesn't possess any 
integrable Legendrian plane (X, Y) G H (corresponding to 'pure' relations [X, Y]0 = 
0). In particular it doesn't enter Gromov's family of known quadratically finable groups 
(with a quadratic Dehn function), and its Dehn exponent seems unknown. (Though 
there is no C1 Legendrian surface, quite irregular 'crumpled' surfaces of Hausdorff 
dimension 2 might exist anyway?) 

Once obtained such an example, we can take products staying in the quadratic 
presentation class : because taking products only adds quadratic relations 

[XuX2] = 0 for ( X i , X 2 ) E g i x g 2 . 

We get therefore a 15n-dimensional quadratically presented 2-step Carnot groups with 
dim H = 8n. The map (80) being algebraic, we obtain in fact that a generic (in the 
Zariski sense) 15n-dimensional Carnot groups with n\ = dim (H) = 8n is quadratically 
presented. (Otherwise stated a generic 8n-dimensional distribution H C R15n gives 
rise to a quadratically presented Carnot group.) Such examples raise the following 
problem. 
Question : Is it possible to significantly improve the bound 

n2 = dim (g2) < -^ , 

while keeping a quadratic presentation? This is a purely algebraic question on finding 
effective bounds under which (80) stays injective. Note that (80) only implies the 
much larger bound 

^ ( n i - l ) ( m - 2 ) 
n 2 < , 

but do is a very special linear map. 

In another direction, we mention there exists (a few) examples of quadratically 
presented groups of arbitrary high steps (see [40, §4.1]). These examples (due to S. 
Chen [9], J. Carlson and J. Toledo [6]) show that (3\ (= 1 here) can be much smaller 
than the number of steps r. 

Higher weights. We now describe some examples with relations of higher weights. 
Given k and r in N*, we note Fki1> the r-step 'free' nilpotent group over Rk. This 

is the Lie group whose Lie algebra is the quotient of the free Lie algebra ^(R^) by 
elements of weight > r -f-1. Notice that relations of FkyT are generated by all elements 
of weight r 4-1 in ^(R*), so that Theorem 6.5 gives 

Pi(Fkir) = ry 

the maximum possible value for r-step groups. 

In fact Pi is 'generically' close to r. Given k and n, by a generic Carnot group G 
with dim (C?) = n and dim (gi) = fc, we mean a group associated to a Zariski open 
dense set of jets of fc-dimensional distributions H in Rn. 

Proposition 6.8. [40, Prop. 4.4] Letn(k}r) = dim(Fjtir). Generically, one has 

(81) r-l<Pi(G)<r if n(fc,r) < n < n(fc,r + 1). 
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Hence the generic pinching is much sharper than the general one (74). This follows 
from the remark that, within these dimensions bounds, G is generically a r-step group 
which doesn't contains any relation of weight < r -1, Then (81) comes from Theorem 
6.5. (So this is not an improvement of Theorem 6.5, but just the observation that 
the pinching given there is generically quite sharp and close to the maximal possible 
value.) 

In the opposite direction we now give an example of Carnot groups arising in semi-
simple geometry 

For n > 4, let Tn C SL(n,R) be the nilpotent group of upper triangular matrices 
(Id4-strictly upper). This is a ( n - l)-step Carnot group whose Lie algebra is generated 
by the elementary matrices Xj = Eiti+i for 1 < i < n - 1. By Kostant and Cartier's 
works (see e.g. [7, 14]) the relations of Tn are quadratic and cubical 

f [*.,*i] = 0 for | j - t | > l , 
( ' \[Xi,[XifXw\i = [Xi+lt\Xi,Xi+1]] = 0 

(Notice that T3 is the 3-dimensional Heisenberg group and is cubically presented by 
the last relations.) These Tn give examples of increasing number of steps with 

1 < Pi(Tn) < 2 

anyway, in contrast to the generic case (81). 

These groups give examples of mixed homogeneity, and estimating more precisely 
Pi in that case looks delicate in general. Let us show however that 

A(T4) = 2, 

as if T4 were purely cubically presented. 

Proof. Prom the results of §4.3 and 4.4, the two relations 

[XuX,] = [Xu[XuX2]] = 0 

given in (82), translate into the following components of dca for a G l l 1 / / 

dca(XuX3) = iH([XuXz])a = Xxa(X3) - X2a(X1), 

and 

dca(XuYl) = iH([Xu[XuX2]])a 

= X1(X1a{X2) - X2a(X\)) - Yxa(Xx), 
where Yi = [A'i,A'2]. In particular for a = f9x2i ° n e s e es that dca is actually of 
weight 3, and non zero if X2.f ^ 0. Then the near-cohomology cone Cdc(\) contains 
a non-vanishing sub-cone 

C'(\) = {ae L2(A1H*)/kerdc \ dca of weight > 3 and ||dca|| < A||a||} , 

which now rescales quadratically through the dilations : 

h£(C'(\)) = C'(\e2). 

Following the proof of Theorem 6.5, this leads to the homogeneity of the spectral 
density function 

* U ( £ 2 ) ^ " ( G ) / 2 , 
giving the result. • 
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Thus it happens here that the component of low degree of dc is so degenerated 
analytically that the asymptotic spectral behaviour is determined by the relations of 
higher weight. 

Remark 6.9. It looks possible (but the proof is not fully checked yet) that this 
behaviour occurs each time the system Sca = dca = 0 is under-determined, when 
restricted to relations of weight < n, meaning that 

dim ( # i i g h t < n ( f l ) R)) < dim (H) - 1 = • A(G) > n - 1 ? 

In the opposite direction, it also happens that the components of low degree of dc 

'dominate' analytically the others. For instance let G = Tn/H be any quotient of the 
triangular group Tn by a normal subgroup H generated by elements of weight > 4. 
Relations of G are generated by those of Tn) at most cubical, and the generators of rj, 
that can be of order n - 1. One can show anyway that 

A(G)<2, 

as if the added relations of high order were 'inaudible' in our asymptotic spectral 
problem. 

This result relies on analytic properties of the operators, derived from hypoellipticity. 
They are developed in [40, Section 5] and provide some tools for other geometric 
applications. 

As a conclusion, let us emphasize that this work only dealed with some particular 
aspect of Carnot-Caratheodory geometry. The purpose was to show how it naturally 
appears, and may help, in studying some asymptotic Riemannian and even discrete 
spectral geometric problem. Many other viewpoints and problems related to this 
geometry exist. Some of them may be found for instance in [21]. 
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