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SPECIAL CONNECTIONS ON SYMPLECTIC MANIFOLDS 

LORENZ J. SCHWACHHOFER 

ABSTRACT. On a given symplectic manifold, there are many symplectic connections, 
i.e. torsion free connections w.r.t. which the symplectic form is parallel. We call such 
a connection special if it is either the Levi-Civita connection of a Bochner-Kahler 
metric of arbitrary signature, a Bochner-bi-Lagrangian connection, a connection of 
Ricci type or a connection with special symplectic holonomy. 

We link these special connections to parabolic contact geometry, showing that the 
symplectic reduction of (an open cell of) a parabolic contact manifold by a symmetry 
vector field is special symplectic in a canonical way. Moreover, we show that any 
special symplectic manifold or orbifold is locally equivalent to one of these symplectic 
reductions. 

As a consequence, we are able to prove a number of rigidity results and other 
global properties. 

1. INTRODUCTION 

Torsion free connections on a differentiable manifold M which preserve a given 
geometric structure are among the basic objects of interest in differential geometry 
For example, if M carries a Riemannian metric, then there is a unique torsion free 
connection which is compatible with this metric, called the Levi-Civita connection. 
Thus, every feature of the connection reflects a property of the metric structure. 

In contrast, for a symplectic manifold (M,u>), there are many symplectic connec
tions, where we call a connection on M symplectic if it is torsion free and u is parallel. 
Thus, in order to investigate 'meaningful' symplectic connections, we have to impose 
further conditions. 

In [CS], the notion of a special symplectic connection was established. Special sym
plectic connections are defined as symplectic connections on a manifold of dimension 
at least 4 which belong to one of the following seemingly unrelated classes. 
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1. Bochner-Kahler and Bochner-bi-Lagrangian connections 
If the symplectic form is the Kahler form of a (pseudo-)Kahler metric, then its 

curvature decomposes into the Ricci curvature and the Bochner curvature ([Bo]). 
If the latter vanishes, then (the Levi-Civita connection of) this metric is called 
Bochner-Kahler. 

Similarly, if the manifold is equipped with a bi-Lagrangian structure, i.e. two 
complementary Lagrangian distributions, then the curvature of a symplectic 
connection for which both distributions are parallel decomposes into the Ricci 
curvature and the Bochner curvature. Such a connection is called Bochner-bi-
Lagrangian if its Bochner curvature vanishes. 

For results on Bochner-Kahler and Bochner-bi-Lagrangian connections, see 
[Br2] and [K] and the references cited therein. We shall give a brief summary of 
these structures in section 2.2. 

2. Connections of Ricci type 
Under the action of the symplectic group, the curvature of a symplectic connec

tion decomposes into two irreducible summands, namely the Ricci curvature and 
a Ricci flat component. If the latter component vanishes, then the connection is 
said to be of Ricci type. 

Connections of Ricci type are critical points of a certain functional on the 
moduli space of symplectic connections ([BC1]). Furthermore, the canonical al
most complex structure on the twistor space induced by a symplectic connection 
is integrable iff the connection is of Ricci type ([BR], [V]). For further proper
ties see also [CGR], [CGHR], [BC2], [CGS]. We shall treat these connections in 
section 2.1. 

3. Connections with special symplectic holonomy 
A symplectic connection is said to have special symplectic holonomy if its holo

nomy is contained in a proper absolutely irreducible subgroup of the symplectic 
group. 

The special symplectic holonomies have been classified in [MS] and further 
investigated in [Brl], [CMS], [SI], [S2], [S3]. These connections shall be discussed 
in section 2.3. 

At first, it may seem unmotivated to collect all these structures in one definition, 
but we shall provide ample justification for doing so. Indeed, our main results show 
that there is a beautiful link between special symplectic connections and parabolic 
contact geometry. 

For this, consider a simple Lie group G with Lie algebra g. We say that g is 2-
gradable, if g contains the root space of a long root. In this case, the projectivization 
of the adjoint orbit of a maximal root vector C C P°(g) carries a canonical G-invariant 
contact structure. Here, F°(V) denotes the set of oriented lines through 0 of a vector 
space V, so that F°(V) is diffeomorphic to a sphere. Each a G g induces an action field 
a* on C with flow Ta := exp(Ra) C G, which hence preserves the contact structure 
on C. Let Ca C C be the open subset on which a* is positively transversal to the 
contact distribution. We can cover Ca by open sets U such that the local quotient 
Mu := Ta

0C\U, i.e. the quotient of U by a sufficiently small neighborhood of the 
identity in T0, is a manifold. Then Mu inherits a canonical symplectic structure. Our 
first main result is the following (cf. Theorem 3.11). 
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Theorem A [CS]. Let $ be a simple 2-gradable Lie algebra with dimg > 14, and let 
C C P°(g) be the projectivization of the adjoint orbit of a maximal root vector. Let 
a e g be such that CacC is nonempty, and let T 0 = exp(Ra) C G. If for an open 
subset U cCa the local quotient Mu = Tj°c\U is a manifold, then Mu carries a special 
symplectic connection. 

The dimension restriction on g guarantees that dim Mu > 4 and rules out the Lie 
algebras of type Ai, A2 and B2. 

The type of special symplectic connection on Mu is determined by the Lie algebra g. 
In fact, there is a one-to-one correspondence between the various conditions for special 
symplectic connections and simple 2-gradable Lie algebras. More specifically, if the 
Lie algebra g is of type An, then the connections in Theorem A are Bochner-Kahler of 
signature (p, q) if g = su(p+1, q+1) or Bochner-bi-Lagrangian if g = sl(n, R); if g is of 
type C„, then g = sp(n, R) and these connections are of Ricci type; if g is a 2-gradable 
Lie algebra of one of the remaining types, then the holonomy of Mu is contained in 
one of the special symplectic holonomy groups. Also, for two elements a, a' E g for 
which Ca)Cai C C are nonempty, the corresponding connections from Theorem A are 
equivalent iff a! is G-conjugate to a positive multiple of a. 

Surprisingly, the connections from Theorem A exhaust all special symplectic con
nections, at least locally. Namely we have the following 

Theorem B [CS]. Let (M,CJ) be a symplectic manifold with a special symplectic 
connection of class C 4, and let g be the Lie algebra associated to the special symplectic 
condition as above. 

1. Then there is a principal T'-bundle M -» M, where T is a one dimensional 
Lie group which is not necessarily connected, and this bundle carries a principal 
connection with curvature u. 

2. Let T C T be the identity component. Then there is an a & $ such that 
T = T 0 C G, and a Ta-equivariant local diffeomorphism i : M -> Ca which 
for each sufficiently small open subset V C M induces a connection preserving 
diffeomorphism ^ : T l o c\V -> T|°C\U = MU} where U := %[V) C Ca and Mu 
carries the connection from Theorem A. 

The situation in Theorem B can be illustrated by the following commutative dia
gram, where the vertical maps are quotients by the indicated Lie groups, and T\M -> 
M is a regular covering. 

м——*c, a 

T тa 

M ^ T \ M ~ ^ T 0 \ C 0 

In fact, one might be tempted to summarize Theorems A and B by saying that for 
each a G g, the quotient To\C0 carries a canonical special symplectic connection, and 
the map z: T\M -» T0\C0 is a connection preserving local diffeomorphism. If T0\C0 is 
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a manifold or an orbifold, then this is indeed correct. In general, however, T0\Ca may 
be neither Hausdorff nor locally Euclidean, hence one has to formulate these results 
more carefully. 

As consequences, we obtain the following 

Corollary C [CS]. All special symplectic connections of C4-regularity are analytic, 
and the local moduli space of these connections is finite dimensional, in the sense 
that the germ of the connection at one point up to 3rd order determines the connection 
entirely. In fact, the generic special symplectic connection associated to the Lie algebra 
2 depends on (rk(g) — 1) parameters. 

Moreover, the Lie algebras of vector fields onM whose flow preserves the connection 
is isomorphic to stab (a)/(Ma) with a e g from Theorem B, where stab (a) = {x € g | 
[x, a] = 0}. In particular, dims > rk(g) — 1 with equality implying thats is abelian. 

When counting the parameters in the above corollary, we regard homothetic special 
symplectic connections as equal, i.e. (M,u, V) is considered equivalent to (M, e*°at, V) 
for all *0 e R. 

We can generalize Theorem B and Corollary C easily to orbifolds. Indeed, if M is an 
orbifold with a special symplectic connection, then we can write M = T \M where M 
is a manifold and T is a one dimensional Lie group acting properly and locally freely 
on M, and there is a local diffeomorphism i: M -» Ca with the properties stated in 
Theorem B. 

We also address the question of the existence of compact manifolds with special 
symplectic connections. In the simply connected case, compactness already implies 
that the connection is Hermitean symmetric. More specifically, we have the following 
Theorem D [CS]. Let M be a compact simply connected manifold with a special sym
plectic connection of class C4. Then M is equivalent to one of the following Hermitean 
symmetric spaces. 

1. M = (CF x CP*, ((q -f l)0o, -(P + l)0o)), where g0 is the Fubini-Study metric. 
These are Bochner-Kahler metrics of signature (p,q). Moreover, M = (ClPn, #0) 
is also of Ricci type. 

2. M = SO(n + 2)/(SO(2) • SO(n)), whose holonomy is contained in the special 
symplectic holonomy group SL(2,R) • SO(n) C Aut(R2 ® Rn). 

3. M = SU(2n 4- 2)/S(U(2) • U(2n)), whose holonomy is contained in the special 
symplectic holonomy group Sp(l) • SO(n,H) C Aut(lHP). 

4. M = SO(10)/U(5), whose holonomy is contained in the special symplectic holo
nomy group SU(1,5) C GL(20,R). 

5. M = Ee/(U(1) -Spin(lO)), whose holonomy is contained in the special symplectic 
holonomy group Spin(2,10) C GL(32,R). 

In particular, there are no compact simply connected manifolds with any of the 
remaining types of special symplectic connections, i.e. M can be neither Bochner-bi-
Lagrangian, nor can the holonomy of M be contained in any of the remaining special 
symplectic holonomies. 

This paper is structured as follows. Following this introduction, we first describe 
the various types of special symplectic connections and review some of their geomet
ric features. We then show how on a formal level, we can link these conditions to 
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the algebraic formalism of 2-gradable simple Lie algebras. In section 3, we describe 
2-gradable Lie algebras and perform the symplectic reduction, showing that the lo
cal quotients To

0C\C0 carry special symplectic connections in a canonical way, and 
hence prove Theorem A. In section 4, we investigate the structure equations of special 
symplectic connections and derive results which culminate in Theorem B. Finally, in 
section 5 we show the existence of connection preserving vector fields and Corollary C, 
and the rigidity result from Theorem D. 

This report is closely related to the reference [CS]. In fact, the main results are 
shown in that paper, and we shall refer to it for many of the proofs. In this report, we 
emphasize the more concrete description of special symplectic connections and their 
various geometrical features as opposed to the more abstract construction from [CS], 
and we describe the link to parabolic contact geometry in more detail. 

2. SYMPLECTIC CONNECTIONS 

Let (M,UJ) be a symplectic manifold. A symplectic connection is a connection on 
the (tangent bundle of) M which is torsion free and for which u is parallel. 

It is not hard to see that symplectic connections exist on any symplectic mani
fold (M,UJ). Namely, by Darboux's theorem, around each point in M we can find a 
coordinate system (x1 , . . . ,xn) in which 

u = Uij dxl A dx*, 

where (oj)ij is a constant skew symmetric non-degenerate matrix. Then a connection 
is symplectic iff the Christoffel symbols T^ have the property that the tensor 

is totally symmetric. Thus, there are many symplectic connections. In coordinate free 
notation, this is seen by the observation that for two symplectic connections V and 
V the tensor 

(1) a(X,Y,Z):=u(VxY-VxY,Z) 

is totally symmetric, i.e. a 6 T(S3(TM)). Conversely, given a symplectic connection 
V and a G T(S3(TM)), then (1) determines the symplectic connection V . Thus, the 
space of symplectic connections is an affine space whose linear part is given by the 
sections of S3(TM). In particular, this space is infinite dimensional, even if we take 
the quotient by the action of the symplectomorphism group. 

This may be one of the reasons why symplectic connections in their full generality 
are difficult to be utilized in order to obtain information on the underlying symplectic 
manifold. Thus, it is natural to put certain 'reasonable* restrictions on their curvature 
and thereby single out symplectic connections with special behaviour. 

In order to make this more precise, we recall the following terminology. For a given 
Lie subalgebra rj C End(V) we define the space of formal curvature maps as 

K(\)) := {R e A V <g> I) | R(x, y)z + R(y, z)x + R(z, x)y = 0 for all x, y, z 6 V} . 

This terminology is due to the fact that the curvature map of a torsion free connection 
always satisfies the first Bianchi identity. Thus, Rp e K(\)p) where f)p C End(TpM) is 
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a subalgebra which contains the holonomy algebra of the connection. Note that K(\)) 
is an ij-module in an obvious way, with the action given by the formula 

(h-R)(x,y) :=[h,R(x,y)]-R(hx,y) - R(x,hy) for all h G f) and x,yGV. 

There is an .7-equivariant map Ric : K(\}) -» V* ® V*, given by 

Bic(R)(x,y) :=tr(R(Jtx)y). 

The Bianchi identity implies that Ric(R)(x,y) - Ric(R)(u,x) = —trR(x,y), hence 
the image of Ric lies in S2(V*) c V* ® V* if J) C End(V) consists of trace free 
endomorphisms. 

2.L Connections of Ricci type. In general, given a symplectic vector space (V, a;), 
i.e. u G A2V* is non-degenerate, we define the symplectic group Sp(V,o;) and the 
symplectic Lie algebra sp(V,u) by 

Sp(V,cj) := {g G Aut(V) | u(gx,gy) = u(x}y) for all x,y G V} , 

sp(V,u) := {h G End(V) | u(hx,y)+u(x,hy) = 0 for all x,y G V} . 

Then Sp(V.u;) is a Lie group with Lie algebra sp(V,o;). 
If V is a symplectic connection, then up G A2TPM is invariant under the holonomy 

group, hence Holp c Sp(TpM,o;j,) so that at each point p G M the curvature Rp G 
K{sp{TpM,up)). 

Note that sp(V, u) consists of trace free endomorphisms, so that we have the £p(V, u)-
equivariant map 

Ric : K(sp(V,u)) —>S2(V*). 

More explicitly, this map is given by the following 

Lemma 2.1. Let R C K(sp(V,u)). Then Ric (R)(x, y) =u)(R(u~l)x,y). 

Proof. Let (e,,/,) be a basis of V such that, using the summation convention, u~l = 
dAfi. Thus, 

Ric(.R)(x,y) = tr(R(_}x)y)=v(R(ei,x)y,fi)-u;(R(fi,x)y,ei) 
= u(R(eh x)fu y) + u(R(x, fi)e{, y) = u(R(eu f{)x, y). • 

Note that as a Sp(V,o;)-module, we have V =* V* and sp(Vyu) S- S2V* S- 52V, with 
an isomorphism for the latter being given by the equivariant map 

(2) o : S2V —> sp(V,u), (xoy)z := u(x, z)y + u(y,z)x for all x,y,z GV. 

In fact, by virtue of Lemma 2.1 we may reinterpret the map Ric as 

Ric : K(sp(V} u>)) —•> sp(V, w), R>—+ R(v~l). 

Now we make the following 

Definition 2.2. A Lie subalgebra f) C sp(V,u) is called special symplectic if there is 
an rj-equivariant linear map o : S2(V) -> \) satisfying 

(3) (x o y)z - (x o z)y = 2 w(y, z)x - a; (a?, y)z + u(x, z)y for all x,y,z GV. 

By (2), it is evident that sp(Vtu) is special symplectic. Moreover, it is straightfor
ward to verify the following important fact. 
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Proposition 2.3. Let f) C sp(V,u) be a special symplectic subalgebra. Then for each 
pEl), the map 

(4) Rp : A2V —> sp(V,u), Rp(x, y) := 2u(x, y)p + x o py - y o px 

satisfies the first Bianchi identity, i.e. Rp e K(\)). 

From this, we now obtain the following 

Proposition 2.4. For p € sp(V,u), we have H\c(Rp)(x,y) = (dimV + 2)u(px,y). 
Moreover, as a Sp(V,u)-module, we have the decomposition 

K(sp(V,u)) = U®W, 

where 

n:={Rp\p€sp(V,u)}*sp(V,u), and W:=ker(Ric). 

Thus, n is irreducible. Moreover, dim W = |(n —2)n(n + l)(n + 3) where n := dimV. 
In particular, W ^ 0 iff dim V > 4, and in this case, W is irreducible as well. 

Proof. Since sp(V,u) is special, it follows that Rp e K(sp(V,u)) by Proposition 2.3. 
Moreover, it is straightforward to verify that Rp(u~l) = (n + 2)p which implies the 
second assertion. In particular, Ric : K(sp(V,u)) -> S2V* is surjective, so that the 
asserted decomposition follows. 1Z is irreducible as sp(V,u) is simple. Now consider 
the sequence of End (V)-equivariant linear maps 

0 —> 54F* —> S3V* ® V* —> S2V* ® AV* —> V* ® A3V* —> A4V* —> 0, 

which are given by skew symmetrization. Since we can regard these maps as the 
exterior differentiation of differential forms on V with polynomial coefficients, it follows 
easily that this sequence is exact. 

Let us now consider the map B : A2V* ® sp(V,u) —> A3V* ® V which is given by 
B(R)(x,y,z) := R(x,y)z + R(y,z)x + R(z,x)y. Thus, K(sp(V,u)) = ker(JB). 

Using the isomorphism sp(V,u) = S2V* from (2), it is easy to verify that B : 
A2V* ® S2V* -> A3V* ® V* coincides up to a multiple with the differential in the 
above exact sequence, hence K(sp(V,u)) = (53V* ® V*)/SAV*, and from this, the 
assertions follow from a dimension count and by standard representation theoretical 
arguments. D 

By virtue of this proposition, we can now decompose 

(5) K(sp(TpM, up)) ^UpOWp. 

for each p € M, and we make the following 

Definition 2.5. Let (M, u, V) be a symplectic manifold with a symplectic connection. 
We say that V is of Ricci type if its curvature satisfies I?J G 1ZP for all p e M with 
the decomposition (5). 

If V is of Ricci type, then there is a unique section p of endomorphisms of the 
tangent spaces of M for which the curvature of V at each point has the form (4). 

We shall now give a more geometric interpretation of connections of Ricci type. For 
this, consider a symplectic manifold (M,u), and define its twistor space as 

Z := {Jp e sp(TpM,up) | J2 = - I d , up(Jp_,_) is positive definite.} 
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The fibers of the canonical fibration n : Z —•> M can be identified with the Hermitean 
symmetric space Sp(n, R)/U(n) and hence carry a canonical complex structure. Also, 
if V is a connection on M, then V induces a connection on End(TM) = T*M ® TMy 

and evidently, Z C End(TM) is parallel w.r.t. V. Thus, V induces a decomposition 
of the tangent space 

TJpZ = VJp®Ujp) 

where Vjp = ker(d7Tjp) is the vertical space. We now define the almost complex 
structure J on Z by the requirement that 

1. J(UJp) = HJp and J(VJp) = V3p for all Jp G Z,_ 
2. J\Vj coincides with the complex structure of n l(p) = Sp(n,R)/U(n), 
3. dir: (Hjp, J) -* (TPM, Jp) is complex linear. 

Then the following is known. 

Proposition 2.6. [BR] [V] Let V be a symplectic conection on (M,(j). Then the 
almost complex structure on the twistor space Z —> M which is induced by V is 
integrable iff V is of Ricci type. 

2.2. Bochner-Kahler and Bochner-bi-Lagrangian connections. Suppose that 
V is the Levi-Civita connection of a Kahler metric g on M with Kahler form u. Here, 
we use the term Kahler metric for a metric of arbitrary signature unless explicitly 
stated otherwise. Thus, there is a complex structure J on M with g(x,y) = u(Jx,y) 
for all x,y € TM, and J is parallel w.r.t. V. It follows that the curvature of V takes 
values in the Lie algebra u(p,q)} where (p,q) is the complex signature of the Kahler 
metric. 

A bi-Lagrangian structure on a symplectic manifold (M,u) is a splitting of the 
tangent bundle TM = L\ © L2 where L{ are Lagrangian distributions. A symplectic 
connection V on such an M is called bi-Lagrangian if both distributions are parallel. 
We can define a section J of the endomorphism bundle by J|/,. = (—1)* Id L{- Evidently, 
Jp G sp(TpM,up) for all p G M, and J2 = Id. Conversely, given a section J with 
Jp G sp(TpMyUp) for all p G M and J2 = Id as above, we get a splitting of TM in 
to the Eigenspaces of J, and it follows that both of them must be isotropic and hence 
Lagrangian. Evidently, J is parallel w.r.t. any bi-Lagrangian connection V, hence the 
curvature of V takes values in the Lie algebra u'(m) C sp(ra,R) which is defined as 
the stabilizer of the endomorphism J G sp(m, R) with J2 = Id. 

Therefore, in order to determine the curvature spaces K(u(p,q)) and K(u'(m)) 
simultaneously, we observe that they are all of the form \)j := {x £ sp(m,R) | [x, J] = 
0}, where in the case of u(p,q), J e i5p(ra,R) is the invariant complex structure so 
that J2 = — Id, and in the case of u'(ra), J E sp(ra,R) is the endomorphism with 
J2 = Id. 

We define the circle product 

o:S2(V) - > ( ) , , 

(6) (x o y)z := u(x, z)y + u(y, z)x - e(u(Jx> z)Jy + u(Jy} z)Jx + u(Jx, y)Jz), 

where e G {-kl} is given by J2 = eld. Indeed, it is straightforward to verify that 
u((x o y)z, w) + u(z, (x o y)w) = 0 and (x o y)Jz = J(x o y)z for all x, y,z,w G V, so 
that x oy G \)j in either case. Moreover, o also satisfies (3), so that \)j C sp{V,u) is a 
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special symplectic subalgebra in the sense of Definition 2.2, hence by Proposition 2.3 
the map Rp : A2V -» fjj from (4) is an element of K(\)j) for all p G rjj. 

Proposition 2.7. Let rjj C sp(V,u) be one of the special symplectic subalgebras 
u(p,q) or u'(m) with the product o : S2(V) -> rjj from (6), and let J G sp(V,u) 
be the endomorphism with J2 = e Idy, e = ±1 , which is stabilized by f)j. 

Then for all p G \)j, the map Rp : A2V -» \)j from (4) satisfies Ric(Rp)(x,y) = 
4u(px,y) -h e tr(Jp)u(Jx,y) for allx,y G V, and as a \)j-module, we have the deom-
ponsition 

K(t)J) = K®W) 

where 

n-{Rp\pe\)j}^\)j, and W:=ker(Ric) . 

Thus, 1Z decomposes into two irreducible summands, one of which is trivial and spanned 
by Rj. Moreover, dimW = ^n2(n — 2)(n + 6) where n := dimRV. In particular, 
W 7-= 0 iff dim V > 4, and in this case, W is irreducible as well. 

Proof. It is straightforward to calculate that I^o;"1) = 4p 4- e tr(Jp)J form which 
the asserted formula for the Ricci curvature follows by Lemma 2.L In particular, 
Ric (Rp) 7-= 0 for all 0 T«- p G fjj which shows the asserted decomposition. 

In order to calculate the dimension of W and show that it is irreducible, observe that 
all the Lie algebras rjj have the same complexification, so it suffices to treat the Lie 
subalgebra rjc := gl(n, C) acting on the vector space V := W 0 W*, where W := C1 

is the standard representation. 
Let x, y G W and z, w G W*. Then for any R G K(f)c) we have R(z, x)y-R(z, y)x = 

-R(x,y)z, and since the left hand side lies in W while the right hand side lies in W*', 
it follows that both sides vanish. 

The vanishing of the right hand side implies that R(W, W) = 0 since x, y G W and 
z G W* are arbitrary. Analogously, R(W*,W*) = 0. Moreover, the vanishing of the 
left hand side implies that R(z, x)y = R(z, y)x and, analogously, R(x, z)w = R(x, w)z. 
Thus, if we define the tensor aR G W ® VV ® W* (8) W* by 

(7) o"/i(x, ?/, 2, Hi) := w(R(z, x)y) = -(-R(z, x)H7)?/ for all x, y G W and z, HJ G W*, 

then cr̂  is symmetric in x and t/ and in z and W, i.e. GR G 52(^V) ® S2(W*). 
Conversely, given a G S2(W) ® 52(iy*), we verify that the map Ik : A2(17) -> 

r) determined by R(W,W) = I?(VV*,I7*) = 0 and (7) lies in K(r)c), showing that 
I-'(bc) — 52(1V) <S> 52(VV*), and the decomposition of this space as a f)c-n-odule as 
well as the dimension of this space follow from standard representation theoretical 
arguments. a 

By virtue of this proposition, we have for each of the Lie algebras rj j = u(p, q) or 
rjj = u'(m) 

(8) K(\)j)^Tlp®Wp. 

for each p G M, and we make the following 

Definition 2.8. Let (M,(j, J) be a symplectic manifold with a section J of the endo
morphism bundle of M such that Jp G sp(TpM,up) and J2 = e IdrpM for all p G M, 
where e = ±1. 
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Consider a symplectic connection V for which J is parallel which thus is bi-Lagrangian 
if e = 1, or the Levi-Civita connection of the Kahler metric g := u(J_,_) if e = —1. 

If the curvature of V satisfies Rj G 1ZP for all p € M with the decomposition (8), 
then we call V Bochner-bi-Lagrangian in the first and Bochner-Kahler in the second 
case. 

If V is Bochner-Kahler or Bochner-bi-Lagrangian, then there is a unique section p 
of endomorphisms of the tangent spaces of M for which the curvature of V at each 
point has the form (4). 

For Kahler metrics, the decomposition (8) has first been achieved by Bochner 
([Bo]), and for this reason, the Ricci flat component W of the curvature is called 
the Bochner curvature of the Kahler metric. The same terminology is also adapted for 
bi-Lagrangian connections. 

2.3. Connections with special symplectic holonomy. Let (M, u) be a symplectic 
manifold which in this section we assume to be simply connected. If V is a symplectic 
connection on M, then evidently, u is invariant under parallel translation, so that the 
holonomy group of V is contained in the symplectic group Sp(V, u). We say that V has 
special symplectic holonomy if the holonomy group of V is contained in an absolutely 
irreducible proper subgroup of Sp(V,u;). Here, recall that a subgroup H C Aut(V) is 
called absolutely irreducible if H acts irreducibly on V, and the complexified group He 
acts irreducibly on Vfc := V® C under the complexified representation. 

The absolutely irreducible proper subgroups H C Sp(V,u) which can occur as the 
holonomy of a torsion free connection have been classified. The list of these connections 
is the following (cf. [MS], [S3]). 

Table 1: List of Real Special Symplectic Holonomies 

Group H Representation space Gгoup H Repгesentation space 

SL(2,R) R4 ~ 5 3 (R 2 ) E? R5 6 

SL(2,R).SO(p,o) R2^\(p + q)>3 Щ R 5 6 

Sp(l)SO(n,Є) И1 ~ R 4 n , n > 2 Spin(2,10) R32 

SL(6,R) R20 „ Л З R 6 Spin(б, 6) R32 

SU(1,5) R2 0 C Л3C* Spin(б,Є) R32 

SU(3,3) R 2 0 c Л З ( C 6 Sp(З-R) R1 4 C Л 3 ^ 6 

For these representations, the following is known (cf. Proposition 3.3 below). 

Proposition 2.9. [MS], [S3] Let H C Sp(V,u;) be a special symplectic holonomy group 
with Lie algebra lj C sp(V,uj). Then f) is a special symplectic subalgebra, i.e. there is 
a linear map o : S2(V) -•> rj which satisfies (3). 

Thus, by Proposition 2.3, for each p G I), the map Rp : A2V —> \) defined in (4) is 
contained in K(f)). Moreover, we have the following 

Proposition 2.10. [MS], [S3] For each special symplectic holonomy group H with Lie 
algebra f}; we have Ric (Rp) 7- 0 for all p 7- 0, and moreover, K(\)) = {Rp \ p e f)}. 
Thus, K(\)) = 1) as an E-module. 
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This means that for each symplectic connection V on (M, u) with special symplectic 
holonomy, there is a unique section p of endomorphisms of the tangent spaces of M 
for which the curvature of V at each point has the form (4). 

2.4. Special symplectic connections. The various conditions for symplectic con
nections which we presented in the preceding sections have at first glance nothing in 
common. On the other hand, there is a striking formal similarity in the presentation 
of the curvature which turns out to be of tremendous significance. Therefore, we make 
the following 

Key Definition 2.11. Let (M,u) be a symplectic manifold of dimension at least 4, 
equipped with a symplectic connection V, i.e. a torsion free connection for which 
cj is parallel. We say that V is a special symplectic connection with structure group 
H C Sp(V,u) and structure Lie algebra f) C sp(V,u) if 

1. V is of Ricci type in the sense of Definition 2.5 In this case, H = Sp(V,cj) and 
t)=sp(V,u). 

2. V is Bochner-Kahler in the sense of Definition 2.8 for a Kahler metric of signature 
(p,q). In this case, H = U(p,q) and f) = u(p,q). 

3. V is Bochner-bi-Lagrangian in the sense of Definition 2.8. In this case, H = 
GL(m,R) C Aut((Rm) ® (Rm)*) and \) = u'(m) C End((Rm) © (Rm)*). 

4. The holonomy of V is contained in the special symplectic holonomy group H c 
Sp(V,u) with Lie algebra f) C sp(V,u). 

Note that in all cases, the structure Lie algebra f) C sp(V,u) is special symplectic 
in the sense of Definition 2.2, and there is a section p of the endomorphism bundle for 
which the curvature is given by Rp as in (4). 

We are now interested in the covariant derivative of the curvature of a special sym
plectic connection. For this, we consider one of the structure Lie algebras rj C sp(V,u;), 
and define the space of covariant 7Z-derivations by 

1l{l) := {> e V* ® \) | RtW(y,z) + Rrp(y)(z,x) + R^{z)(x,y) = 0 for all x,y,zeV). 

Again, %y is an H-module in an obvious way. The significance of this space is due to 
the fact that for any torsion free connection the second Bianchi identity holds: 

(VxR)(y, z) + (VyR)(z, x) + (VzR)(x,y) = 0 for all x,y,ze TPM and peM. 

Thus, if V is special symplectic so that at each point p e M the curvature is of the 
form Rp for some p e f), then VXR is also of this form, so that the correspondence 
x »-» VXR yields a linear map rp : V -> \) so that VXR = I^(x). The second Bianchi 
identity then implies that ip e TZ^\ 

From (3) it is straightforward to verify that for each u e V, the map ipu : V -» rj, 

^(a*) •'= vox is contained in TZy. Evidently, the correspondence u »-> ipu is equivariant 

and injective, so that 71^ contains a submodule isomorphic to V. Indeed, this exhausts 

all of 7^ . Namely, we have the 

Proposition 2.12 ([CS]). 7/dimV > 4 and f) C sp(V,u) is one of the subalgebras 
associated to a special symplectic connection as in Definition 2.11, then 7l\f* = V as 
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an U-module, i.e. 

U^ = {ipu'V-¥l)\ueV}, where ipu[x) :=uox for all x eV. 

Now we are ready to investigate the structure equations of special symplectic con
nections. 

Proposition 2.13 ([CS]). Let (M,o;, V) be a simply connected symplectic manifold of 
dimension at least 4 with a special symplectic connection of regularity CA with the as
sociated Lie subgroup H C Sp(V,o;) and special symplectic Lie subalgebra \) C sp(V,uj) 
from Definition 2.11. Then there is an associated ^-structure n : B -> M on M which 
is compatible with V, and there are maps p: B -+\), u: B —> V and f : B -» R, such 
that the tautological form 9 e ft,l(B) <S> V, the connection form rj e Q,l(B) ® \) and the 
functions p, u and f satisfy the structure equations 

AfiA. At> n dp+[rj,p] = uo0 
dO + rj A 9 = 0, 

(9) du + 7j-u=(p2 + f)-0 
d + lЫ^RA л ) , 

df + d(p,p) = 0. 

The assumption of simply connectedness of M is imposed only to ensure that the 
H-structure B —> M exists which slightly simplifies the proof. However, our result 
also hold if M is not simply connected. 

For clarification, we reformulate the structure equations (9) as follows. If for h 6 f) 
and x e V we let &, £x e X(B) be the vector fields characterized by 

0(60 = 0, 77(60 = A and 0(&) = x, 17(6) = 0, 

then (9) holds iff for all hj el) and x, y e V, 

[6i, 6] = 6[/i,*l 1 [61,6c] = 6.x, [6r> 6y] = -2u(x, y)£p - (,xopy + £yopx 

UP) = -[A, p], &(*) = -hu, &(/) = 0, 

f«(p) = uox, fx(ti) = (p2 + f)x, &(/) = -2u{pu, x) 

Proof. Let F be the H-structure on the manifold M, and denote the tautological 
and the connection 1-form on F by 9 and 77, respectively. Since by hypothesis, the 
curvature maps are all contained in Tfy,, it follows that there is an H-equivariant map 
p : B -> \) such that the curvature at each point is given by Rp with the notation from 
(4). Thus, we have the structure equations 

d9 + rj A 9 = 0 
( 1 0 ) drj+\[rj,rj] = Rp(9h9), 

The H-equivariance of p yields that 6/1 (p) = -[h,p] for all h e f). Moreover, since the 
covariant derivative of the curvature is represented by £X(P) f°T dl x e V and this must 
lie in TZ[ \ it follows by Proposition 2.12 that £x(p) = u ° P fQI s o m e H-equivariant 
map u : B -» V, which shows the asserted formula 

dp+[rj,p] = uo9. 
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Since u is H-equivariant, it follows that &(u) = -hu for all h el). Also, elaborating 
the equation £x£yp - (jy£xp = [fx, £y]p yields that for all x, y e V 

(11) (£xu - p2x) oy= (£yU - p2y) ox . 

Now we need the following lemma whose proof we will postpone. 

Lemma 2.14. Let f) C Bp(V,u) be a special symplectic subalgebra, dimV > 4, and let 
<p:V -> V be a linear map such that 

(12) <p(x) o y = <p(y) o x for all x,y eV. 

Then <p is a multiple of the identity. 

Applying the lemma to the function x i-» £xu — p2x, (11) implies that there is a 
smooth function / : B -> R for which £xu - p2x = fx for all x e V so that 

du + r]-u= (p2 + f)9. 

Finally, elaborating the equation £xfyu - £y£xtz = [fx, £y]u yields that df + rf(p, p) = 0. 

D 

Proof of Lemma 2.14. By (3) we have 

(<p(x) o y)z - (<p(x) o z)y = 2u(y, z)<p(x) + u(<p(x), z)y - v((p(x), y)z. 

But (12) now implies that the cyclic sum in x, y, z of the left hand side vanishes, hence 
so does the cyclic sum of the right hand side, i.e. 

2(u(x,y)<p(z) + u(y, z)<p(x) + u(z,x)<p(y)) = (u(<p(y), z) - u(<p(z),y))x 

(13) + (u(<p (z), x) -u(<p(x), z))y + (u)((p(x), y) -u(<p(y), x))z. 

For each x e V, we may choose vectors y,z e V with u(x,y) = u(x,z) = 0 and 
w(y,z) 7-= 0 since dimV > 4. Then (13) implies that <p(x) e span(x,y,z) so that 
u(<p(x),x) = 0. Polarization then implies that u(<p(x),y) + w(<p(y),x) = 0 for all 
x,y e V. 

Next, we take the symplectic form of (13) with x, and together with the preceding 
identity this yields 

u)(x,y)w(<p(x), z) = LJ(X, z)u)(<p(x), y) for all x,y,z e V. 

Thus, u(x, y)(p(x) = u)(<p(x), y)x for all x, y e V, and since for 0 7- x E V we can pick 
y e V such that u(x,y) 7-- 0, this implies that <p(x) is a scalar multiple of x for all 
x e V, whence <p is a multiple of the identity. • 

It is now our aim to interpret the structure equations (9) in a way that links them 
to parabolic contact geometry. This shall be pursued in the following section. 

3 . PARABOLIC CONTACT STRUCTURES 

3.1. Two-gradable Lie algebras. 

Definition 3.1. A real simple Lie algebra 0 {5 called 2-gradable if there exists a de
composition 

(14) 0 = 0"2 0 0" 1 0 0° © 01 © 02 

with dim0±2 = 1, and an element H0 e [02,0~2] such that ad//0|g. = i Idfl. for all i. 
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Since fl* is an Eigenspace of ad//0, it follows that [fl', fl
J] C fl

i+J by the Jacobi identity. 
Moreover, note that B\Q := fl

2 ©fl~
2 ©RH0 is a Lie subalgebra of fl which is isomorphic 

tos[(2,R). 
Recall that the complexification flc := fl ® C of fl is a complex simple Lie algebra 

for which we can choose the Cartan decomposition 

ac = t©0fia, 

where t C flc is a maximal abelian self-normalizing subalgebra, and A C t*\0 is the 
root system of flc such that ad*^ = a(t) Idfla for allt G t and a _ A. Moreover, 

a = (flnt)© 0 fln(fla©fl_a). 
aeA+ 

If fl is two-gradable then H0 € fl is diagonalizable, so that we can choose the Cartan 
decomposition of flc such that H0 e in fl, hence a(H0) € {0,±1,±2} for all a e A, 
and there is exactly one a0 6 A such that fl

±2 = fl n fl±ao and H0 £ [aao, fl_ao] is 
uniquely determined by a0(H0) = 2. Thus, we have 

8*= 0 80 for ZT-0 , and fl° = t© 0 fl/,. 
{t3€AK/3,a0)=i} {/^AK/W-O} 

Here, (/?, a) denotes the Cartan number. In particular, fl
±2 = fl±ao, and if A has roots 

of different length, then aQ must be a long root, as | (/?, a0) | < 1 for all ft 7- ±a0 . 
We can decompose fl° = RHao © f), where the Lie algebra f) is characterized by 

[f),s[o] = 0. Observe that fl° and hence I) are reductive. Thus, as a Lie algebra, 

0 e v :=a~2©fl°© f l
2 _*£[<)©[) and a°dd := fl

_1 © fl1 S. R2 (8) V as a fl
cv-module, 

where fj acts effectively on V. Identifying \) with its image under this representation, 
we may regard it as a subalgebra f) C End(V), and hence we have the decomposition 

(15) fl = fl
et,©fl

0<i^(i5[(2,R)©[))©(R2®V), 

where this notation indicates the representation ad : fl
ev -r End(fl

odd). 
We fix a non-zero R-bilinear area form o E A2(R2)*. There is a canonical s[(2,R)-

equivariant isomorphim 

(16) 52(R2)—>s[(2,R), (ef)-g:=a(e,g)f + a(f}g)e for all e , / , ^ G R 2 , 

and under this isomorphism, the Lie bracket on s[(2, R) is given by 

[e/, gh] = a(e, g)fh + a(e, h)fg + a(/, g)eh + o(/, h)eg. 

Thus, if we fix a basis e+, e_ G R2 with a(e+, e_) = 1, then we have the identifications 

H0 = - e + e_ , fl
±2 = Re^ , g±l = e± ® V. 

Now one can show the following 

Proposition 3,2 ([CS]). Let Q be a 2-gradable simple Lie algebra, and consider the 
decompositions (14) and (15). Then there is an \)-invariant symplectic form u G A2V* 
and an \)-equivariant product o : S2(V) -»I) such that 

[, ]:AV*d)—>fl
ev=-£[(2,R)©[) 
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is given as 

(17) [e®x,f®y)=u{x,y)ef + a{e,f)xoy for e,feR2andx,yeV, 

using the identification S2{R2) = sl{2,R) C 0ev from (16). Moreover, there is a 
multiple { , ) of the Killing form on 0 which satisfies the following: 

1. ( f l^ ) = 0 i / i + j V 0 , 
2. For all x, y e V and he I), we have {h, xoy)= u{hx, y) = u{hy, x) 
3. For all x,y,z e V, (3) holds, so that \) C sp{V,u) is a special symplectic subal-

gebra. 

Thus, each 2-gradable simple Lie algebra yields a special symplectic subalgebra 
f) C sp{V,u). The converse is also true. Namely, we have 

Proposition 3.3 ([CS]). Let {V,u) be a symplectic vector space, and let f) C sp{V,u) 
be a special symplectic subalgebra with product o : S2{V) -> f). Then there is a unique 
2-gradable simple Lie algebra 0 which admits the decompositions (14) and (15), and 
the Lie bracket of $ is given by (17). 

We shall call 0 the simple Lie algebra associated to the special symplectic subalgebra 
t)Csp{V,u). 

From this proposition, we obtain a complete classification of special symplectic 
subalgebras by considering all 2-gradable real simple Lie algebras ([OV]). Namely, a 
simple Lie algebra 0 is 2-gradable iff we can choose the Cartan decomposition of 0c 
such that 0 fl Q±ao ^ 0 for some long root a0 e A. 

Corollary 3.4. Table 2 yields the complete list of special symplectic subgroups H C 
S p ( V » . 

From Table 2, we now observe the link between 2-gradable simple Lie algebras and 
the Lie groups H c Sp(V,o;) which are associated to special symplectic connections 
in the sense of Definition 2.11. Namely, note that the Lie groups H C Sp(V,o;) 
corresponding to entries (i) and {ii) are precisely the groups associated to Bochner-
bi-Lagrangian and Bochner Kahler connections; the H of entry (Hi) is associated to 
the connections of Ricci type, whereas a comparison with Table 1 yields that the H's 
of entries {iv) - {xv) are the special symplectic holonomy groups. 

This shall be the conceptual background of our construction of special symplectic 
connections out of 2-gradable simple Lie algebras. 

3.2. Contact manifolds. We shall now recall some well known facts about contact 
manifolds and their symplectic reductions. 

Definition 3.5. A contact structure on a manifold C is a smooth distribution V cTC 
of codimension one such that the Lie bracket induces a non-degenerate map 

VxV —• TC/V =: L. 

The line bundle L -> C is called the contact line bundle, and its dual can be embed
ded as 

(18) L* = {A € TC | \{V) = 0} C TC. 
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Table 2: Real 2-gradable Lie groups 

| |TypeofД| G H | V 

0) 
(ü) 

Ak, k > 2 SL(n + 2,R), n > l 
SU(p+l,ø + l),p + g > l 

GL(n,R) 
U(p,<7) 

W W* with l Г í - Г 
CP+9 

(iii) C*. k > 2 Sp(n + 1,R) Sp(n,R) R2" 

(iv) 
(v) 

B*,it>3 
D*,fc>4 

SO(p + 2,ø + 2),p + g > 3 
SO(n + 2,И), n > 2 

SL(2,R)-SO(p,g) 
Sp(l).SO(n,H) 

• R2®RP+« 

(vi) G2 G2 
SL(2,R) 5 3 ( R 2 ) 

(vü) ғ4 
F(D Sp(3,R) R 1 4 C Л 3 R б 

(vüi) 

(ix) 

M 

Eв E? 

E<3> 

SL(6,R) 

SU(1,5) 

SU(3,3) 

Л 3 R в 

R 2o c л 3 ( C б 

R 2 0 c Aзø 

(xi) 

(xii) 

(xiii) 

E7 E^ 

E<6> 

Ef 

Spin(6,6) 

Spin(6,H) 

Spin(2,10) 

R32 c д C 

R32 C ДC 

R 3 2 C A c 

(xiv) 

(xv) 

Eв E ^ 

E<9> 

E<5> 

E<7> 

R 5 6 

R 5 б 

Notice that we can define the line bundles L -> C and L* -> C for an arbitrary 
distribution V C TC of codimension one. It is well known that such a distribution 
V yields a contact structure iff the restriction of the canonical symplectic form Q, on 
T*C to L*\0 is non-degenerate, so that in this case L*\0 is a symplectic manifold in a 
canonical way. 

We regard p : L*\0 -> C as a principal (R\0)-bundle. We call the contact structure 
orientable if L*\0 has two components each of which is a principal R+-bundle. In fact, 
if the contact structure is not orientable, then there is a double cover C of C such that 
the induced contact structure V on C is orientable. Thus, for an orientable contact 
structure, we get the principal R+-bundle 

p:C->C, 

where C C L*\0 is a connected component. The choice of connected component is 
called an orientation of the contact structure. 

The vector field E0 € X(C) which generates the principal action is called Euler field, 
so that the flow along E0 is fiberwise scalar multiplication in C C L* c T*C. Thus, 
the Liouville form on T*C is given as A := E0 Jft, and hence £s0(n) = £1 and ft = dX. 
This process can be reverted. Namely, we have the following 

Proposition 3.6. Let p : C -> C be a principal R+ -bundle with a symplectic form Q, 
on C such that £E0-^ = fi where E0 G X(C) generates the principal action. Then there 
is a unique contact structure V onC and an equivariant imbedding %: C <-+ L*\0 C T*C 
with L* from (18) such that Q, is the pullback of the canonical symplectic form on T*C 
toC. 
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Proof. By hypothesis, 0, = d\ where A := (E0Jft). Since \(E0) = 0, there is for 
each i e C a unique Â . e T*^C satisfying P*(AJ = \x. Moreover, £_-0(A) = A, 
hence Â *! = e*^ for all t E R, so that the codimension one distribution V := 
dp(kei(\)) C TC is well defined, and the correspondence x i-> Â . yields an equivariant 
imbedding C <-> L*\0 whose image is thus a connected component of L*\0. Moreover, 
by construction, A is the restriction of the Liouville form to C C L*\0 C T*C. Since 
Q = d\ is non-degenerate on C by assumption, it follows that V is a contact structure. 

• 
Next, we define the fiber bundle 

ft := {(A, | ) _ C x TC C T*C x TC \ \(dp(£)) = 1} . 

Projection onto the first factor yields a fibration 9t -» C whose fiber is an affine space. 

Definition 3.7. Let C be a contact manifold. We call a vector field £ onC a contact 
symmetry if &z(V) c V. This means that the flow along £ preserves the contact 
structure V. 

We call £ a transversal contact symmetry if in addition £ £V at all points. If C is 
oriented with orientation C C L*\0, then £ is called positively transversal if A(£) > 0 
for all A G C. 

For each contact symmetry f on C, there is a unique vector field f € £(C), called 
the Hamiltonian lift o/£, satisfying dp(£) = f and £;A = 0, so that £^fi = 0. 

Given a positively transversal contact symmetry £ with Hamiltonian lift £, there is 
a unique section A of the bundle p : C -> C such that A(f) = 1, and hence we obtain a 
section of the bundle fR->C ->C 

(19) aK:C—*JH- <Je:=(A,*f)€9l. 

We call an open subset U C C regular w.r.t. the transversal contact symmetry £ if 
there is a submersion itu : U -> M\j onto some manifold Mv whose fibers are connected 
lines tangent to f. Evidently, since £ is pointwise non-vanishing, C can be covered by 
regular open subsets. 

Since f is a contact symmetry, it follows that f JdA = 0 and £{A = 0. Thus, on 
each M\j there is a unique symplectic form UJ such that 

(20) 7T*;a; = - 2 d A , 

where the factor —2 only occurs to make this form coincide with one we shall construct 
later on. 

3.3. Parabolic contact structures. To link all of this to our situation, let g be a 
2-gradable simple real Lie algebra and let G be the corresponding connected Lie group 
with trivial center Z(G) = {1}. Recall the decomposition 

B = 0~2 0.9"1 0 9° 0 .g1 © B2 = Re_ 0 e_ 0 V 0 (Re+e_ 0 fj) 0 e+ ® V 0 Re2 
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from (14). We let \x := g ldg be the left invariant Maurer-Cartan form on G, which 
we can decompose as 

2 

(21) /j,= Y^Vi, A*o = A*tj + ^oe+e_ 
i=-2 

where /Zj € fi^G) ® a*, f̂, G nL(G) ® f) and z/0 € fl^G). Furthermore, we define the 
subalgebras 

p := g° 0 g1 0 g2, and p0 := r) 0 g1 © g2, 

and we let P, P0 C G be the corresponding connected subgroups. Using the bilinear 
form ( , ) from Proposition 3.2, we identify g and g*. Now we define the root cone 
and its (oriented) projectivization 

C : = G . e 2 C g = V , C :=p(C) C P°(g) = P°(fl*), 

where P°(g) is the set of oriented lines in g, i.e. P° =* Sdlm*-\ w h e r e p . g\0 -> P(g) 
is the principal R+-bundle defined by the canonical projection. Thus, the restriction 
p : C -> C is a principal bundle as well. 

Being a coadjoint orbit, C carries a canonical G-invariant symplectic structure Q,. 
Moreover, the Euler vector field defined by 

E0GX(C), (E0)v:=v 

generates the principal action of p and satisfies ££0(fl) = fi, so that the distribution 
V = dp(E0

n) C TC yields a G-invariant contact distribution on C by Proposition 3.6. 
Now one can show the following 

Lemma 3.8 ([CS]). As homogeneous spaces, we have C = G/P. C = G/P0 and 9t = 
G/H. Moreover, the fiber bundles 91 —•> C —> C from before are equivalent to the 
corresponding homogeneous fibrations. 

For each a e g we define the vector fields a* E X(C) and a* 6 X(C) corresponding 
to the infinitesimal action of a. i.e. 

(22) (a*) м := | (exp(ża) • [v]) аnd (d*)^ := -j-
t=o d ř 

(exp(ża) • Ü). 
ť=0 

Note that a* is a contact symmetry and a* is its Hamiltonian lift. Let 

(23) C a : = { A e C | A ( a * ) > 0 } and C a : = p ( C a ) c C , 

so that p : Ca —> Ca is a principal R+-bundle and the restriction of a* to C0 is a positively 
transversal contact symmetry. Therefore, we obtain the section aa : Ca -> D\ = G/H 
from (19). 

Let 7r: G -> G/H = 1H be the canonical projection, and let Ta := ^ ( ^ ( C o ) ) c G. 
Then evidently, the restriction IT : Ta —»cra(Ca) = Ca is a (right) principal H-bundle. 

Theorem 3.9 ([CS]). Let a e g 6e sucft that Ca C C /ram (23) zs non-empty, define 
a* € JE(C) ana1 a* 6 3C(C) as m (22), and let n : Ta -» Ca wrtft Ta C G 6e Jfte principal 
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U-bundle from above. Then there are functions p : Ta -> f), u : Ta -> V, f : Ta -> R 
such that 

(24) Ad,-i (a) = -el + p + e+ ® u + -fe\ 

for all g eTa. Moreover, the restriction of the components /zj, + /z_i + \i-2 of the 
Maurer-Cartan form (21) to Ta yields a pointwise linear isomorphism TVa -> rj © 
.g"1 © 9~2, and if we decompose this coframe as 

/if, + n-i + fi-2 = -2/c (\e2_ +p)+e-®0 + rj, 
(25) 

where KGnl(Ta), 0enl(Ta)®V, rj <E nl(Ta) <g> fj, 

Men /c = -|TT*(A) w/iere A € ft1^) zs tfie contact form for which aa = (A,a*). 
Moreover, 

(26) dK=-v(0A6), 
— 

and 9, r], p, u, f satisfy the structure equations (9). 

Proof. According to the above identifications, we have g e Ta iff (g • e\,g • (\e2_ + 
Po)) = **(\g • <}) ^ 9 • ( K + p0) = (a*) 0 < iff (Ad0-i(a*))c,+ = \e2_ mod p0 iff 
Ad0-i(a) = \e2_ mod p0, i.e. 

rfl = { ^ G | A d 0 - i ( a ) E Q } , 
(27) where 

Q := \el+p0 = {\e2_+p + e+®u+\f e\ \ p el),u e V, f eR} , 

and from this (24) follows. Thus, if dLgv e TgTa with v e Q, then we must have 

d 
poЭ7t 

v,-e2_ + p + e+®u + -fe\ (Ad(Pexp(to))-i(a)) = -[v, Ad0-i(a)] = -
it=o 

and from here it follows by a straightforward calculation that v must be contained in 
the space 

(28) RAd5-ia©^ e-®x + e+®px+-u(u,x)e\ x€V\®\), 

and since v was arbitrary, it follows that p>(Tgra) is contained in (28). In fact, a 
dimension count yields that dim(jj,(TgTa)) = dimTa = dimCa + dimH coincides with 
the dimension of (28), hence (28) equals /J>(TgT), i.e. ^ + /z_i + /z_2 : TTa -> f) ©g"1 © 
0~2 yields a pointwise isomorphism. From there, the structure equations (26) and (9) 
follow by a straightforward calculation. 

With these equations, it follows that K is H-invariant and vanishes along the principal 
fibers, hence K = -\n*(\) for some A e £ll(Ca). Since ft^-ifo-i) = 0, it follows that 
A is a contact form. Moreover, if we let a* denote the right invariant vector field on 
G characterized by p,(a*) = Ad5-i(a), then dp(d*) = a*, where p : Ta -> C is the 
canonical projection, and from (24) it follows that A(a*) = —2/c(a*) = 1, so that 
(A, a*) e 9\ which shows the final assertion. rj 

Consider the principal Ta-bundle Ta -> T a \ r a =: Ba whose fundamental vector 
field we denote by fa. That is, fa is the restriction of the right invariant vector field 
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on G corresponding to a e a: to Ta C G. Thus, /i(£a) = Ad^-ia, and the flow along £a 

preserves //. Therefore, by (21), (24) and (25), it follows that 

* ( e . ) s ~ , 7/(^ = 0, *(£-) = 0, 

and we obtain the following 

Corollary 3.10. 1. The differential form K e ft1^) defined above yields a con
nection on the principal Ta-bundle p : Ta -> Ba from above. 

2. The functions p : Ta -> \), u : Ta -> V and f : Ta -> R defined above are constant 
along the fibers ofp : Ta —> Ba, hence they induce functions on Ba which by abuse 
of notation shall also be denoted by p, u and f, respectively. 

3. There are differential forms on Ba whose pull back under p equals 0 and rjf re
spectively. By abuse of notation, these forms will also be denoted by 0 and rj, 
respectively. 

4. 0 + 7] e £ll(Ba) ® (V 0 I)) is a coframing, i.e. yields a pointwise isomorphism of 
TBa with V © f), and 0, rj, p, u and f satisfy the structure equations (9). 

5. There is a differential form on Ca = Ta/H whose pull back equals K, and again, 
we shall denote this form also by K. 

Thus, if we let Xa := T a \ r a /H, then we obtain the following commutative diagram, 
where the labeled maps are principal bundles with the indicated structure groups. 

(29) Г a ^ B 

H 

C 
T 

. — " X 

Let us assume for the moment that Xa is a manifold. Then the maps Ba —> Xa and 
Ca -> Xa are principal bundles with structure group H and T 0, respectively. Moreover, 
K yields a connection on the Ta-bundle Ca —> Xa, and 0 induces an embedding of Ba 

into the coframe bundle of Xa such that 0 is the pull back of the tautological form. 
Hence we may regard Ba -> Xa as an H-structure on Xai and rj yields a connection on 
this structure which satisfies (9) by Corollary 3.10 and hence is special symplectic. In 
particular, Xa carries a symplectic structure u which by (26) is the curvature of the 
connection K on the line bundle Ca -> Xa. Therefore, this line bundle is a quantization 
bundle of Xa. 

If T a = S1, then Xa is an orbifold, and the statements in the preceding paragraph 
are still valid in this sense, i.e. Xa carries a special symplectic orbifold connection and 
Ca —> Ka is the orbifold quantization bundle. 

However, for general a € 0, Xa will be neither a manifold nor an orbifold. In fact, 
there are plenty of choices where Xa is neither Hausdorff nor locally Euclidean, so the 
statement that Xa should carry a special symplectic connection is somewhat delicate. 
Therefore, in order to get a precise statement in the general case, we have to "localize" 
the structure. 

For this, note that the action of Ta on Ca whose quotient equals Xa is locally free. 
Thus, we can cover Ca = Ta/H by open subsets U C Ca with the property that the 
local quotient My := To

0C\U, i.e. the set of connected components of the intersections 
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of Ta-orbits with U, is a manifold. We let T^ := p~l(U) C Ta where p : Ta -> Ca 

is the principal H-bundle from above. Thus, restricting the maps of (29), we get the 
following commutative diagram 

rploc 

rv—a-+B$c 

H H 
v v 
U r-^Mu 

rploC V 

" - O 

where Bx{}c := Ta
3C\rcI. Now we argue again that the differential forms 6 and 77 on 

IV C Ta as well as the functions p, u and / fator through to differential forms and 
functions on B]jc

t respectively, which satisfy (9). Thus, we may regard Bx§c -> Mu 
as an H-structure, and rj yields a special symplectic connection on Mu- Moreover, we 
can extend the local principal bundle U -> Mu to a principal Ta-bundle U -> Mu 
and we can extend K e £ll(U) to a connection form on U for which (26) holds. Thus, 
U -> Mu is a quantization bundle of Mu- That is, we have the following result from 
which Theorem A from the introduction follows immediately. 

Theorem 3.11. Let Q be a 2-gradable real simple Lie algebra, and let fj C g be the 
Lie subalgebra from (15), i.e. f) C sp(V,u) is special symplectic. Let a€ $ andCa C C 
as before. Let U C Ca be an open subset for which the local quotient Mu := T[°C\U is 
a manifold, where 

Ta :=exp(Ra) c G . 

Letu £ fi2(M(/) be the symplectic form from (20). Then Mu carries a canonical special 
symplectic connection associated to I), and the (local) principal Ta-bundle TT : U -> Mu 
admits a connection K E ^(U) whose curvature is given by dK = n*(u). 

Remark 3.12. If we replace a by 0! := Adgo(a), then it is clear that in the above 
construction we have Ta/ = LgoTa. Thus, identifying Ta and IV via Lgo, the functions 
p + jj> + f and the forms K + 0 + U will be canonically identified and hence both satisfy 
(9). Therefore, the connections from the preceding theorem only depend on the adjoint 
orbit of a. 

Also, since Ca = Cet0a and Ta = Tet0a for all to GR, the above construction yields 
equivalent connections when replacing a by eto<i. In this case, however, the symplectic 
form u on the quotient will be replaced by e'^u. 

4. T H E DEVELOPING MAP 

In this section, we shall revert the process of the preceding section, showing that 
any. special symplectic connection is equivalent to one of those given in Theorem 3.11 
in a sense which is to be made precise. Namely, recall that by Proposition 2.13 each 
special symplectic connection of regularity C4 associated to the special symplectic Lie 
algebra rj c sp(V,u) on a symplectic manifold (M,u) of dimension at least 4 induces 
functions p : B -> I), u : B -> V and / : B —> R where n : B -> M is the associated 
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H-structure on M, such that for the tautological one form 0 e £ll(B) ® V and the 
connection form rj £ £ll(B) ® f), the structure equations (9) hold. 

It is now our aim to construct the equivalent to the principal line bundle r —> B from 
the preceding section. Namely, we let g be the 2-gradable simple Lie algebra associated 
to \) by Proposition 3.3. Motivated by (27) and (28), we define the following function 
A and one form a 

A : B —> Q C g, A := \e\ + p + e+ ® u + \fe\ , 
(30) 

a e fi(JB) ®g, a := e_ ® 0 + 77 + e+ ® (p0) + \u(u, &)e\ , 

where Q := |e?. + p0 C g is the affine hyperplane from (27). It is then straightforward 
to verify that (9) is equivalent to 

(31) dA = -[a, A] and da + -[a, a] = 2TT*(U)A . 

_ 
Let us now enlarge the principal H-bundle B -> M to the principal G-bundle 

B : = J 5 x H G — > M , 

where H acts o n B x G from the right by (b,g) • ft := (b • ft, h~lg), using the principal 
H-action on I? in the first component. Evidently, the inclusion B x H «-> H x G induces 
an embedding B <-> B. 

Proposition 4 .1. Tfte function A and the one form a defined by 

A : B - + g , A([b,g]) := Ad,-. (4(6)), 

a e nx(B) ® g, a[{b}9)] := Ad5-ia6 + / i , 

on B are iye// defined, where /x = <7-1d<7 6 fi^G) ® g is the left invariant Maurer-
Cartan form on G, and the restriction of A to B C B coincides with A. Moreover, a 
yields a connection on the principal G-bundle B -> M which satisfies 

(32) dA = - [a , A] and da + -[a, a] = 2;r*(a;) A . 

Proof. First, note that A : £ -> H and a 6 nL(S) ® g are H-equivariant, i.e. 
R*hA = Ad/i-i-4 and R*ha = Ad^-ia. Thus, if we define the function A and the one 
form a by 

A:=Ad,- i ( i4) : B x G —> g 

a := Adg-ia + fi € n L ( H x G ) ® g , 

then A(bh,h~xg) = A(6, #), so that A is the pull back of a well defined function 
A : B -> g. Also, a is invariant under the right H-action from above, and for ft E f} 
we have 

fi((G.)», dR9(-h)) = Ad,-.(oi(fk)) - M(««,(ft)) = Ad,-. (A) - Ad,-. (A) = 0, 
so that a is indeed the pull back of a well defined form a £ Q}(B) ® g. Moreover, 
R*g(a) = Adgla is easily verified, and since a coincides with \i on the fibers of the 
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projection B x G -> B, it follows that the value of d on each left invariant vector 
field on G is constant. Since the left invariant vector fields generate the principal right 
action of the bundle B x G -> B, it follows that d is a connection on this bundle, 
hence so is a on the quotient B —> M. 

Finally, to show (32) it suffices to show the corresponding equations for d and A. 
We have 

dk = -[/i, Adp-i(A)] + Ad0-i(cL4) = -[/z, A] - Ad0-i([a,.A]) 

= -[//, A] - [Ad0-ia, A] = -[d, A] 

by (31), and 

da+-[&,&] = (-[/i,Ad0-icj] + kdg-ida + dfi) + ^(kdg-i^a] +2[/x, Ad0-i<j] + [//,//]) 

l-[a,a]) + dii+l-[ 

= Ad0-i(27T*(o;)^) = 2TT*(O;)A, 

where the second to last equation follows from the Maurer-Cartan equation and (31). 

• 
Let M C B be a holonomy reduction of a, and let T C G be the holonomy group, 

so that the restriction M —> M becomes a principal T-bundle. By the first equation 
of (32), it follows that M C A" 1 (a) for some a G g, and by choosing the holonomy 
reduction such that it contains an element of B C B, we may assume w.l.o.g. that 
a G Q. We let 

S := Stab (a) = {g G G | kdga = a} C G and s := i(a) = {x G 9 | [x, a] = 0} , 

so that S C G is a closed Lie subgroup whose Lie algebra equals s. Observe that 
the restriction A - 1 (a) —> M is a principal S-bundle, hence we conclude that T C S. 
Moreover, on M, we have 

d = 2/ca 

for some K G Cll(M) which by (32) satisfies d/c = n*(u). In particular, the Ambrose-
Singer Holonomy theorem implies that T a = exp(Ra) C G is the identity component 
of T which is thus a one dimensional (possibly non-regular) subgroup of S, and K yields 
the desired connection form on the principal T-bundle M -> M. 

Define Ca C C as in (23) and Ta c G and Q C 0 as in (27), and let 

B:=p-l(M)cBxG, 

where p : . B x G - > i ? X j j G = B i s the canonical projection. Then the restriction of 
the map 

liBxG—>G, i(b,g)\=g-1 

satisfies i(B) C Ta; indeed, since A(M) = a, it follows that Ad0-i_4(6) = a for all 

(6, g) G B and hence kdga = 4̂(6) G Q, so that g~l G Ta. Since 2/ca = d = Ad0-ia+/x, 
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it follows by (30) that 

z* (/i) = -Adgfj, = -2/cAdpo + a = -2KA + e_®0 + 77 + e+® (pO) + -<J(U, 0)e\ , 

and hence 

%*([i) = -2K (-e2 + p J + e_ <g> (9 + rj mod g1 © g2. 

Comparing this equation with the structure equations in Theorem 3.9, it follows that 
the induced map % : M = B/H -> Ca = Ta/H is a local diffeomorphism and the 
induced map i : M := T\M —> T0 \ca is connection preserving, where T a \c a is 
(locally) equipped with the special symplectic connection from Theorem 3.11. Thus, 
we have shown Theorem B from the introduction. 

Remark 4.2. Theorem B generalizes immediately to orbifolds. Namely, if M is an 
orbifold, then a special symplectic orbifold connection consists of an almost principal 
H-bundle B -> M, i.e. H acts locally freely and properly on B such that M = -B/H, 
and a coframing 0 + 77 € 9}(B) <g> (V © fj) on B such that rj(£h) = h 6 f) and 0(&) = 0 
for all infinitesimal generators & of the H-action, and such that the structure equations 
(10) hold for some function p : B -> fj. 

Now the proofs of Propositions 2.13 and 4.1 as well as the proof of Theorem B go 
through verbatim as we never used the freeness of the H-action on B. In particular, 
the holonomy reduction M is a manifold on which T acts locally freely, and M = T\M 
as an orbifold. 

5. APPLICATIONS AND GLOBAL PROPERTIES 

Definition 5.1. Let (M, V) be a manifold with a connection. A (local) symmetry 
of the connection is a (local) diffeomorphism (p : M -> M which preserves V, i.e. 
such that V(Hp(x)d(p(Y) = d(p(VxY) for all vector fields X, Y on M. An infinitesimal 
symmetry of The connection is a vector field C on M such that for all vector fields X, Y 
on M we have the relation 

lCVxY} = V[iiX]Y + Vx[CY}. 

Furthermore, let n : B +• M be an H-structure compatible with V, and let 6,r) 
denote the tautological and the connection form on B, respectively. A (local) symmetry 
on B is a (local) diffeomorphism (p : B -> B such that (p*(0) = 9 and ip*(rj) = TJ. An 
infinitesimal symmetry on B is a vector field ( on B such that £r(0) = £{(r)) = 0. 

The ambiguity of the terminology above is justified by the one-to-one correspondence 
between (local or infinitesimal) symmetries on M and B. Namely, if (p : M -> M is a 
(local) symmetry, then there is a unique (local) symmetry (p : B —> B with 7ro<D = <Do7r, 
and vice versa. Likewise, for any infinitesimal symmetry £ on M, there is a unique 
infinitesimal symmetry £ on B such that C = dn((). 

The infinitesimal symmetries form the Lie algebra of the (local) group of (local) 
symmetries. We also observe that an infinitesimal symmetry on B is uniquely deter
mined by its value at any point. (The corresponding statement fails for infinitesimal 
symmetries on M in general.) 
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Proof of Corollary C. The first part follows immediately from Theorem B since 
Ca C C is an open subset of the analytic manifold C, and the action of Ta on Ca is 
analytic as well. Also, the C4-germ of the connection at a point determines uniquely 
the G-orbit of a € g by (9) and hence the connection by Theorem B. 

Note that the generic element a e g is G-conjugate to an element in the Cart an 
subalgebra which is uniquely determined up to the action of the (finite) Weyl group. 
Since multiplying a G g by a scalar does not change the connection, it follows that the 
generic special symplectic connection associated to g depends on (rk(g)-l) parameters. 

For the second part, by virtue of Theorem B it suffices to show the statement for 
manifolds of the form M = Mu where U C Ca is a regular open subset for some a E g. 
Let IV C Ta C G be the H-invariant subset such that we have the principal H-bundle 
IV -> U, and let Bu := Ta\^u so that Bu -> Mu is the associated H-structure. 

Let i G i , and denote by (x the right invariant vector field on G corresponding to 
—rr, so that the map x H> £X is a Lie algebra homomorphism. Then £,?X(A0 = 0 where 
H denotes the Maurer-Cartan form. By (27), it follows that the restriction of Cx to 
T0 is tangent, and since Tv C Ta is open, we may regard (x as a vector field on Tr/. 
Since (x commutes with the action of Ta, it follows that there is a related vector field 
£-» on the quotient Bu = To

0C\r^, and since the tautological and curvature form of 
the induced connection on Bu pull back to components of /i, it follows that (x is an 
infinitesimal symmetry on Bu. 

Conversely, suppose that £ is an infinitesimal symmetry on Bu. Since an infinitesi
mal symmetry must preserve the curvature and its covariant derivatives, we must have 
C(A) = 0. But the tangent of the fiber of the map A : Fu -» g is spanned by the 
vector fields (x, x E s, and since infinitesimal symmetries are uniquely determined by 
their value at a point, it follows that C = Cr for some x es. 

Finally, it is evident that £x = 0 iff (x is tangent to Ta iff x € Ka, hence the claim 
follows. • 

We also mention the following rigidity result from [CS]. 

Theorem 5.2. Let g be a 2-gradable simple Lie algebra, let G be the connected Lie 
group with Lie algebra g and trivial center, and let S C G be a maximal compact 
subgroup. Then C = S/K for some compact subgroup K c S where C C P°(g) is the 
root cone. Moreover, let T C S be the identity component of the center ofS. Then the 
following are equivalent: 

1. There is a compact simply connected symplectic manifold M with a special sym
plectic connection associated to the simple Lie algebra g. 

2. dimT = l, i.e. T^ -S 1 . 
3 . T ^ { e } . 

If these conditions hold then T\C = S/(T • K) is a compact Hermitean symmetric 
space, and the map %: M -> T\C from Theorem B is a connection preserving covering. 
Thus, M is a Hermitean symmetric space as well. 

This theorem allows us to classify all compact simply connected manifolds with 
special symplectic connections, as the maximal compact subgroups of semisimple Lie 
groups are fully classified (e.g. [OV]). Thus, we obtain Theorem D from the introduc
tion. 
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We shall only sketch the proof of Theorem 5.2. If M is simply connected, then 
there is a principal T0-bundle 7T: M -> M by Theorem B with a connection K whose 
curvature equals u. If T0 = R, then 7T would be a homotopy equivalence, and since 
n*(u) = rf/c is exact, this would imply that u e Q?(M) was exact, which is impossible 
if M is compact. 

We conclude that T0 = 51 , so that M is compact as well. Thus, the local diffeo-
morphism i: M —•> Ca C C must be a covering, and, in particular, Ca = C. 

Thus, we have to consider those a E Q for which T0 = Sl, Ca = C, and such that 
the action of T0 on the universal cover of C is free. 

By a thorough investigation of the elements c e g with the above properties, one 
finds that the stabilizer S C G of a is a maximal compact subgroup such that T0 C S is 
the connected component of the center. Since S also acts transitively on C, i.e. C = S/K 
for some compact subgroup K C S, it follows that M is a cover of T0\S/K = S/(T0-K), 
and finally, one shows that S/(T0 • K) is Hermitean symmetric. 
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