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LOCAL CONVEXIFIABILITY OF SOME RIGID DOMAINS 

MARTIN KOLAR 

ABSTRACT. The main obstruction for constructing holomorphic reproducing kernels 
of Cauchy type on weakly pseudoconvex domains is the Kohn-Nirenberg phenomenon, 
i.e., nonexistence of supporting functions and local nonconvexifiability. It is well known 
that "generic" weakly pseudoconvex domains in C2, domains of type four, do admit 
supporting functions at every boundary point, but it is still an open question whether 
such domains are also locally convexifiable. In this paper we prove this under the 
additional assumption of rigidity of the domain. 

1. INTRODUCTION 

Let D C C2 be a domain with real analytic boundary, and let p e dD. For 
a neighbourhood U of p let cj> e CU(U) be a real valued function such that 

dDMJ = {z eU \ 4>(z) = 0} 

and grad (j> ^ 0 in U. Recall that dD is pseudoconvex in U if for all q e dD D U 
the Levi form 

t,J = l 3 

is nonnegative on the complex tangent space to dD at q) i.e., on complex vec­
tors C = (Ci, C2) satisfying Y%=i |£(<7)C» = 0- When 3D is strictly pseudoconvex 
(the Levi form is positive definite at each point), fundamental work of Henkin and 
Ramirez provides a construction of a holomorphic reproducing kernel, a direct anal­
ogy of Cauchy's integral kernel from one complex variable. The construction is 
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based on holomorphic supporting functions hq(z)^ which are defined in a neighbour­
hood of each q e dD and whose zero set intersects D only at q. The reciprocal of 
a supporting function provides an analogy to the all-important function -£- from 
one variable. Local analysis on strongly pseudoconvex domains is further simplified 
by Narasimhan's lemma, which gives local holomorphic coordinates in which dD is 
strongly convex, and suporting functions can be taken linear. 

One of active areas of current research in several complex variables concentrates 
around the attempt to extend Henkin's construction to (at least some) weakly pseu­
doconvex domains (see [DF], [DM], [M] for related geometric results). 

The main obstacle for this was discovered by Kohn and Nirenberg in [KN]. Their 
example shows that a weakly pseudoconvex domain need not be locally convexifiable 
and need not admit supporting functions. As a consequence, it became an important 
problem to find a characterization of those domains for which the Kohn-Nirenberg 
phenomenon does not occur. 

On finite type domains local convexifiability is a much stronger property than mere 
existence of supporting functions in all neighbouring points. Explicit conditions for 
local convexifiability were derived in [Kl], [K2]. They are applicable on domains of 
type six and higher. 

When studying the Kohn-Nirenberg phenomenon, it is natural to consider first 
domains of type four, which are in some sense "generic" among weakly pseudo-
convex domains and closest to strong pseudoconvexity. It is well known that the 
Kohn-Nirenberg phenomenon, in the sense of nonexistence of holomorphic support 
functions does not occur on such domains ([FS], [K3]). On the other hand, the 
answer to the related question, whether all such domains are locally convexifiable, 
is still not known. The conjectured answer is affirmative. The main result of this 
paper is the following theorem, which adds further support to this conjecture. 

Theorem 1.1. Let D be a rigid domain in C2 with real analytic boundary and 
p E dD be a point of finite type four. Then D is locally convexifiable near p. 

2. RIGID DOMAINS OF TYPE FOUR 

The study of pseudoconvex domains for which the Levi form degenerates at some 
points leads to the following definition of type of a boundary point, which measures 
the maximal order of contact of complex curves with dD at p. The original definition 
of finite type is due to J. J. Kohn ([K]). Here we give an equivalent definition, 
introduced by J. D'Angelo ([D]). 
For a smooth function / defined in a neighbourhood of 0 in C let v(f) denote the 
order of vanishing of / at 0. 

Definition 2.1. p is a point of finite type, if there exists an integer k such that 

v((j> o 7) < fc 

for all holomorphic maps 7 from a neighbourhood of 0 € C into C2, satisfying 
7(0) = p and 7;(0) 7- 0. 
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The smallest such integer is called the type of p. 

We will assume that p e 3D is a point of type four. We will describe the boundary 
of D in its neighbourhood using local coordinates (z, w), where z = x+iy, w = u+iv. 
These coordinates are assumed to be centered at p and the direction of the positive 
v-axis is the direction of the inner normal to dD at p. Hence the real tangent space 
to dD at p is given by v = 0. By the implicit function theorem we can describe dD 
near p as a graph of a function v = F(z, z, u). 

Recall that rigidity means that the above coordinates can be chosen in such a way 
that F does not depend on u. It may be rather complicated to decide whether a 
given domain is rigid, but once we find coordinates with this property, the changes 
of variables which we consider below will not change this form. So we assume that 
dD is desribed by 

v = V(z,z) 

for a real valued real analytic function ^ . Using ^(z, w) = v - \l/(z, z) in (1.1), the 
complex tangent space at a point q 6 dD, defined by X)i=i ^"(#)Ct — 0, is spanned 
by the vector (1, —<fiz). Hence, there is only one nonzero term in (1.1), and the Levi 
form on dD is given by \ A*. Consequently, dD is pseudoconvex if and only if \P is 
subharmonic. 

Next we consider the Taylor expansion of # at p. By our choice of coordinates, 
it starts with second order terms 

#(*,*) = o n k l 2 + 2Re(a20z2) + 2Re(a30^3) + 2Re(a2i*2*) + 0(\z\4). 

By assumption, L(p) = \—^(p) = an = 0, and pseudoconvexity implies also a21 = 
0. The harmonic terms are absorbed into v in a standard way, by replacing w by 
w + 2ia2oz2 + 2iasoz3. # then starts with fourth order terms. After a normalization 
by a linear change in the z variable we have 

(2.1) 9(z,z) = \z\4 + 2aRe *2 |z|2 + 26Re z4 + 0(\z\4). 

Evaluating the Levi form we get a necessary condition for pseudoconvexity, a < | . 
In [K3] we considered the case a < | (without assuming rigidity), and proved that 
in this case D is locally convexifiable near p. Here we consider the limiting case, 
a=§. 

The leading fourth order polynomial can be transformed by another linear change 
in z and a suitable change of the harmonic term into (*^)4 ~ x4. 

Hence we assume that 
oo 

(2.2) V(x,y)-x4+ ~Z hHxiyJ-
t+i=5 

We will consider only transformations which preserve this form, therefore it is 
enough to consider the 2-dimensional surface M = dD D {u = 0}, and identify dD 
with M x R. Our aim is to show that there exist new coordinates in which the 
defining function is convex near p. 



254 MARTIN KOLÁŘ 

3. PROOF OF THEOREM 1.1 

Pseudoconvexity of dD is equivalent to ^fzz > 0. On the other hand, it is easily 
verified that in terms of complex variables ^ is convex if and only if \^zz\ < *&zz. 
Note that the Laplacian of the leading term vanishes identically on the y-axis. We 
split \)J into two parts, ^ = \17i + \.?2, where 

- з oo 

ФI(-T, ) = -- 4 + X У £ І W , 
»=0 j=5-i 

V2(x,y) = ±x4 + o(x4). 

The first part includes all terms which are relevant for the sign of the Hessian of 
\3? along the y-axis. By a suitable change of variables we can achieve that b\j and 
b3j- vanish and b0j and b2j have the same sign. More precisely, in order to attain 
convexity of ^ i we will make ^zz and &xxx vanish along the t/-axis to a sufficiently 
high order. 

Lemma 3.1. For every n > 4 there exist local holomorphic coordinates in which \£ 
has form (2.2) and satisfies 

(i) <мo,г/) = o + 0(y*-2), 
(ü) Фxxx(0,y) = 0 + o(2/n-3). 

(З-D „ ,т. In .л n . ,,,_3 

Proof. Let us consider holomorphic transformations of the form 

n n-3 

(3.2) w* = w + £ Uz\ z* = z + Yl g{z\ 
i=Ъ i=2 

Using induction we will determine the coefficients /*, 5 < fi < n and </$, 2 < gi < 
n - 3 , so that after the polynomial transformation conditions (i) and (ii) are satisfied. 
Let \1/* be the defining function in coordinates z*,w*. The general change of variables 
formula (cf. [CM]): 

**(z + g(z,u + i^(z,z,v)),z + g(z,u + i^(z,z,v)),v + Im f(z,u + i^(z,z,v)) 

(3.3) = W(z, z, u) + Re f(z, u + lm f(z, u + i^(z, z, v)) 

now reduces to 

(3.4) V*(x*,y*) = V*(x + Re g(x,y),y + Im g(x,y)) = V(x,y) + Im f(x,y). 

It follows from (3.4) that the coefficients of \1/* of order k depend only on fi for i < k 
and gi for i < k — 3. Also, it follows that the Taylor expansion of \Il* has also form 
(2.2), and we can equate the coefficients of xxyi, i + j = k in (3.4). We get 

(3.5) b*j + 4(Re gk-3Zk-3)i-3j + A = b{j + (Im fkz
k)ij , 
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where (h)ij denotes the coefficient of xly* in a polynomial h, and A is a number 
depending on Qi with i < k - 3 and on 6̂ - with i + j < k. Now we proceed by 
induction. 
1. For k = 4 we take the identity transformation. 
2. Assume that for some integer k > 4 the coefficients /», i <k and <fc, i < k — 3 are 
already determined, so that after the polynomial transformation the conditions are 
satisfied for n = k - 1. Using (3.5), with A being some already determined number, 
we will determine fk and gk-z> 

First we will use (3.5) for (z, j) equal to (0,n) and (2,n - 2). The following 
formulas hold for n even: 

6un = 6on + ( - l ) ? I m / n - - 4 

62\n-2 = *2,n-2 + ("I) ? + 1 (2) I m / » - A-

For n odd we have to replace Im / by Re / in both rows, and the sign by (-1)~^~ 
in the first row and by ( - l ) " 2 in the second row. We want (6on,62)n_2) t° De a 

multiple of (2, n(n — 1)) in order to get Re ^*z*z* (0, y) = 0 + o(|z|n~2). Considering 
Im / n as a variable, the right hand side forms a line in R2 in direction (1, -(2))-
The same direction is obtain for n odd. It follows that there exists Im fn such that 

(65n> &3,n-2) = c(2> n(n - *)) f o r s o m e c e R-
For the other two terms involved in (i) and (ii) we get for n even 

6_,n-i = fci,n-i + ( - l ) ? + 1 n R e / n - _ 4 

65jn_3 = 4 Re <?n_3 + 63,n-3 + ( -1)* u |J Re fn - A . 

The first equation gives Re / n , the second one then Re <7n_3. Im <7n_3 may be 
arbitrary. For n odd the formulas are modified as before. • 

This sequence of changes of coordinates will either reveal an integer for which 
6on 7-= 0 in the coordinates given by Lemma 3.1, or we always get 6un = 0. In the 
first case, let s be the smallest such integer. Lemma 3.1 gives coordinates in which 

(3.6) tf (z, y) = x4 + o(x4) + b2,8-2x
2y<-2 + b0ay

s + o(\z\n). 

Here 62,5-2 = (2)60.9 > 0. from condition (ii) and positivity of A\&(0,y). In the 
second case we have 

Lemma 3.2. If 6on = 0 in the coordinates from Lemma 3.1 for all n, then there 
are local holomorphic coordinates in which 

(3.7) tf(x,y) = x4 + o(x4). 

Proof. First we notice that M has to contain a curve of weakly pseudoconvex 
points passing through p. Indeed, if there were no such curve, then by the curve 
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selection lemma applied to A\I>, p is an isolated weakly pseudoconvex point in M. 
By Lojasiewicz inequality A\l/ > e\z\m for some e > 0 and ra E N. Taking ra = n in 
Lemma 3.1 we have b0n = 62,n-2 = 0, hence A\l/(0,2/) = o(ym), a contradiction. 

Let 7 be such a curve and let 7(0 = (71 (0.72(0) be ^ s coordinates in the z-
plane and u-axis. First we transform coordinates so that 7 lies above the y-axis, i.e., 
Re 7X = 0. This is achieved by a transformation z* = g(z), w* = w, where g is the 
holomorphic extension of a real analytic map from the image of 71 to the y-axis. In 
the new coordinates we omit stars and parametrize 7 by y, so that 7(2/) = (iy, 72(2/))-

Now we want to extend the function 72(2/) into a harmonic function h(x,y) which 
satisfies hx(0,y) = ^(0,?/), in addition to ft(0,y) = 72(2/)- This is an initial value 
problem for the Laplace equation, hence there is a unique solution ft in some neigh­
bourhood of 0. Let h be a holomorphic function such that Im ft = ft. After the 
change of coordinates z* = z, w* = w - h(z) we get 

tf* = # - I m h = 9-h. 

That gives, after dropping stars, \£(0, y) = 0 and ^ ( 0 , y) = 0. Since L > 0 and L 
vanishes at (0,2/), we have L(0,y) = %xx(0,y) = 0 and Vxxx(Q,y) = Lx(0,y) = 0. 
In other words, ^ has form (3.7). • 

Now we transform the second part of ^ into a convex function, not changing the 
form given by (3.6) and (3.7), and complete the proof of Theorem 1.1. 

Lemma 3.3. There exist local holomorphic coordinates such that & satisfies (3.6) 
or (3.7), and moreover, 641 = 0 and 642 = 1. In such coordinates, Sk is convex in 
a neighbourhood of p. 

Proof. Consider first the case when ^ has form (3.7). Let us take a change of 
coordinates whose inverse is given by 

z = z* +i(-b41)(z*)2, w = w*. 

After substituting for x and y in 

v* = v = x4 4- b4\x4y + o(x4y, xb), 

the 5-th order term cancels while form (3.7) is preserved. In the new coordinates, 
with stars omited, we have 

v = x4 + b42X4y2 + o(x4y2> xb). 

In the same way we use these coordinates to define new ones by 

* = **+i-(&42-l)(**)3i w = ™*-

That gives 6J2 = 1. 
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If \P has form (3.6), the same argument applies. We only need to notice that 
the leading n-th order term (c\x2yn~2 + C2yn) is not affected by the two changes of 
variables. 

In order to prove convexity of ^ , we first consider (3.6) and split \£ into two parts, 

* i (*>!/) = ^ 4 + x4y2 + o(x4y2,x5) 

M*> V) = \x* + clX
2yn-2 4- c2y

n + o(\z\n), 

where ci, C2 are positive constants. It is straightforward to verify that the Hessian of 
both is positive semidefinite in a neighbourhood of p. For (3.7) the same calculation 
applies. • 

REFERENCES 

[D] J. D'Angelo, Orders od contact, real hypersurfaces and applications, Ann. of Math. 115 

(1982), 615-637. 

[DF] K. Diederich and J. E. Foгnaess, Support functions for convex domains of finite type, Math. 

Z. 230 (1999), 145-164. 

[DM] K. Diederich and J. D. McNeal, Pointwise nonisotropic support functions on convex domains, 

Progгess in Math. 188 (2000), 184-192. 

[FS] J. E. Foгnaess and B. Stensones, Lectures on Counterexamples in Several Complex VariaЫes, 

Princeton Univ. Pгess 1987. 

[HL] G. M. Henkin and J. Leiteгeг, Theory of functions on complex manifolds, Biгkhauseг 1984. 

[K] J. J. Kohn, Boundary behaviour ofд on weakly pseudoconvex manifolds of dimension two, J. 

Diffeгential Geometгy 6 (1972), 523-542. 

[KN] J. J. Kohn and L. Niгenbeгg, A pseudoconvex domain not admitting a holomorphic support 

function, Math. Ann. (1973), 265-268. 

[Kl] M. Kolář, Necessary conditions for local convexifiability of pseudoconvex domains in C 2, 
Rend. di Ciгc. Mat. Paleгmo (2002), 109-116. 

[K2] M. Kolář, Convexifiability and supporting functions in C?, Math. Res. Lett. 2 (1995), 505-513. 
[KЗ] M. Kolář, On local convexifiability of type four domains in C 2, Diffeгential Geometгy and 

Applications, Pгoceeding of Satellite conference of ICM in Berlin (1999), 361-371. 

[M] J. D. McNeal, Convex Domains of finite type, J. Func. Anal. 108 (1992), 361-373. 

[R] M. Range, Holomorphic functions and integral representations in several complex variables, 
Spгingcг Verlag 1986. 

DEPARTMENT O F MATHEMATICAL ANALYSIS, MASARYK UNIVERSITY 

JANÁČKOVO NÁM. 2A, 662 95 B R N O , CZECH REPUBLIC 
E-mail: mkolar<Dmath. muni. cz 


