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THE POISSON TRANSFORM 

FOR HIGHER ORDER DIFFERENTIAL OPERATORS 

DALIBOR SMID 

ABSTRACT. The Poisson transform maps sections of vector bundles over a parabolic 
geometry C7/P to sections of vector bundles over a symmetric space G/K. The para­
bolic geometry can be understood as a (part of the) boundary of the symmetric space. 
We show that the Poisson transform intertwines invariant differential operators on 
these spaces, generalizing the results of 0rsted and Koranyi and Reimann. 

Invariant differential operators in parabolic geometries were studied in recent years 
by several authors. The articles [12, 15, 10] provide various proofs of the classification 
of invariant differential operators of the first order, the article [3] contains a construc­
tion of some strongly invariant operators of higher order and gives a simple algorithm 
for expressing them in terms of a Weyl structure. These operators were first defined on 
vector bundles over homogeneous spaces of the type G/P where G is semisimple and: 

P parabolic, but they generalize to arbitrary curved parabolic Cartan geometries, as 
shown in [4, 2]. These operators form sequences that are in fact complexes in the flat 
case, the so called BGG complexes. The BGG operators and the spaces between them 
they operate have several interesting interpretations from both the mathematical and 
physical point of view, see for example [5, 1, 6]. 

The classification of differential operators on symmetric spaces is simpler and some 
information concerning the first order case can be found in [14]. In this article we deal 
with the relation between invariant differential operators on a symmetric space G/K 
and on a parabolic geometry that may be viewed as its boundary. A typical example we 
have in mind is the hyperbolic space SO(n+1, l)/SO(n-f 1) considered as a subspace 
in JRn+1,1 and of the projectivization of the null cone in R""1"1*1 that can be identified 
with the conformal sphere SO(n + 1,1)/P where P = CO(n) x (E*)n. There is an 
integral operator analogous to the classical Poisson transform [13, 11] between vector 
bundles over the boundary parabolic geometry and the interior symmetric space. It was 
shown in [9] and [12] that the Poisson transform intertwines the first order differential 
operators over the interior and over the boundary, together with some applications 
of this fact, namely for extensions of quasiconformal maps. In fact, the authors of 
[9] use also an explicitly defined second order operator on the boundary that is also 
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intertwined with a composition of two first order operators over the interior. This 
suggests that the result of [12] can be generalized with the help of the Ricci corrected 
derivatives of [3] to a more general result that Poisson transform intertwines operators 
of arbitrary order. This really shows up to be the case. 

As we noted before, the operators on the boundary (and on any parabolic geometry) 
form a rich structure of BGG sequences. It would be interesting to check whether the 
Poisson transform makes possible to extend some of these data to the interior, for 
example allows to construct there complexes of differential operators or, on the other 
hand, to use the properties of the operators in the interior to obtain some information 
about operators on the boundary similarly as in the programme of ambient metric 
construction [7, 8]. 

I would like to thank my supervisor Prof. Vladimir Soucek for suggesting me this 
topic and many useful discussions. I am also grateful to the participants of the seminar 
of differential geometry at the Charles University for their remarks and comments and 
to the Erwin Schodinger Institute in Vienna for hospitality during the preparation of 
this work. It was supported by MSMT grant no. 113200007 and GACR grant no. 
201/02/1390, which I gratefully acknowledge. 

1. PRELIMINARIES AND NOTATION 

We shall consider a symmetric space where G is a semisimple Lie group and K its 
maximal compact subgroup. Then Cartan involution 9 gives the Cart an decomposition 
0 = t © q onto ±1 eigenspaces. The tangent bundle can be written as T(G/K) = 
GxKq. 

G has the Iwasawa decomposition KAN which translates into the Lie algebra level 
as 0 = t © a © n, where a is a maximal abelian subalgebra of q. If we denote the 
centralizer of A in K by M then P := MAN is a minimal parabolic subgroup of G, 
i.e. G/P is the maximal boundary of the symmetric space G/K. 

The Lie algebra 0 then splits a s n © m © a © n where n = On. The tangent bundle 
of the boundary is then T(G/P) = G xP n. Sometimes m © a is denoted also by 0o, 
n by 0+ and fi by 0_. In fact there is an element E e a that has integral eigenvalues 
acting on 0 such that [E,X] = jX, j is positive for X £ 0+ and negative for i G g . . 
This element induces for certain k £ N a |fc|-grading of 0, i.e. a splitting 

0 = 0-fe © . . . © 01 © 0o © 0i © • • • © 0fc 

that satisfies [0i,0j] C 0t+j, hence E is called the grading element. 

2. INVARIANT OPERATORS IN PARABOLIC GEOMETRIES 

Definition 1 (Cartan connection). A Cartan connection of type (0, P) on a manifold 
N is a 1-form 77 :TQ —> 0 defined on a principal P-bundle 7r: Q —> N such that 

(1) (Vy £ Q) rjy: TyQ —• 0 is an isomorphism 
(2) (Vy £ Q,X £ p) r)~l(X) = £x,y where £x -S the left invariant vector field 

generated by X 
(3) (Vp £ P) Ad(p) -r*rj = ri where rp stands for the right F-action on Q 

Let V be a finite dimensional P-module carrying a representation A and V := QxPV 
the corresponding associated vector bundle. As usual, we will identify the space of 
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sections C°°(M,V) with the space of P-equivariant maps C°°(Q,V)P\ i.e. satisfying 
/(y):=A(p)(/orp)(») . 

Definition 2 (Invariant derivative). Let / € C°°(g, V)p, X£h. Then 

V : C°°(Q,V)p -> C*{9,vT ® V) 

n / := tfOT'PO) 
is called the invariant derivative on V. 

Our interest will be focused on the flat (homogeneous) case where rj is the Maurer-
Cartan form and the invariant derivative is given by the expression 

d\ 

^ * 
(fornix) 

lo 

with the action r^tx on G given by the group multiplication from right. 
The problem with the invariant derivative is that it does not map to C°°(Q> n*®V)p. 

To remedy this, we start to work with semiholonomic jet modules. First we define a 
P-module structure on JlV = V © (n ® V) such that for (0O, 0i) 6 J2V 

where Z E p. It is easy to show that the map ft : f -+ (/, V77/) then maps C°°(Q, V)p 

to C°°(Q) V © (it* ® V))p. This can be a beginning of an inductive definition 

Definition 3 (Semiholonomic jet modules). The first order semiholonomic jet module 
J2V is a set of pairs (0o, 0 I ) € V © (n <g> V) with the action of p given by the formula 
above. Let us suppose that Jk~l is well defined and consider the action of p given by 
the first order action on 

((to,<f>u...,<f>k-i), ( # , & • • •,#_,,&)) e T(J'-'v) 

The fc-th order semiholonomic jet module JkV :=_©o(n*)* ® V is a set of vectors 
(0o, 0 i , . . . , 0*) identified with a P-submodule of PJ^V of elements satisfying 0; = 
<# for 1 < i < k - 1. 

The inclusion j k of J*V into Q xP JkV maps jkf to (/, V77/ , . . . , (V77)*/) and the 
image of / G C°°(Q, V)p is in C°°(Q, JkV)p, thus it is a well defined map of sections 
of bundles. 

Definition 4 (Strongly invariant operators). Let V and W be P-modules and $ : 
jfcy —• W be a P-homomorphism. Then $ induces a bundle map $ : Q Xp JkV —• 
(yXpW and thus an invariant differential operator $ o j k from V to PV. 

The usual strategy for constructing strongly invariant operators ([4],[3]) is to con­
sider $ as a Go-morphism first and then to find algebraic conditions for it being also 
a P-morphism. W is an irreducible P-module, so the action of the nilpotent part of P 
is trivial. On the other hand JkV is Go-reducible and the P-action maps between its 
Go-components. The image of the P-action is a Go-submodule of JkV that must be 
anihilated by $ to obtain P-equivariancy. This leads in [15] to the following lemma 
for first order operators: 
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Lemma 1. Let V, W 6e irreducible P-modules. Then a Go-module homomorphism 
$ : J1 V —> W is a P-module homomorphism iff $ factors through V © (gj ® V) and 
for all Z € 0i, v e V 

$\TYa®[Z,Xa}-v)=0, 

where Ya is a basis o/gi and Xa is the dual basis 0/g_i. 

Further considerations in [15] consisting mainly in computing Casimir operator 
eigenvalues on irreducible C70-components of the so called restricted jet module V © 
(gi ® V) give us the characterization of invariant first order operators: 

Theorem 1. Let & be a graded semisimple Lie algebra and gc its graded complex-
ification. Then g, = g n gc. Let Y\ be a complex irreducible representation of g0 

with highest weight \ and let gc = __̂ - 2i be a decomposition of gc into irreducible 
Qo-submodules and let aj be highest weights of g{. Suppose that 

0i ®R VA = gc ®c VA = Y^Y, YU 
3 H 

be a decomposition of the product into irreducible go-modules and let ir\tfXj be the cor­
responding projections. Let us denote by p0 the half-sum of positive roots for g0 and 
let us define constants c\}flj by 

C\H = 2 Kw. ft + 2Po) - (A, A + 2p0) - (aj, ad + 2p0)] 

Then the operator DjifXj : 7T\iflj o V77 is an invariant first order differential operator iff 
c\}fxj = 0- Moreover, all first order invariant differential operators acting on sections 
of V\ are obtained (modulo a scalar multiple and curvature terms) in such a way. 

This result was generalized in [3] for a certain class of operators of higher order. 
Before we state it, we shall define V*, for a fc-tuple 6 = (6i, . . . , 6*). It is simply the 
6jfc-th irreducible component of ®A:g*_ ® V ^ where Vfcfc_1 is a 6fc_i-th component of 
®fc_1gj ® Ybk_2 and so on, Yx is a 6i-th component of gj ® V for an arbitrarily chosen 
numbering of components. 

Theorem 2. Let a be a positive root in gj. In the case that g has roots of different 
lengths, we shall suppose that a is a long root. Let A,^ 6e two dominant integral 
weights of go satisfying 

Li + po = 0"a(A + Do) = A + po - (A + Do, oc)a. 

Interchanging \ and p, if necessary we can suppose that the integer k := -(A + po, a) 
is positive. Then: 

(1) There is a unique irreducible component VM with highest weight p, in (®fen*) ® 
VA. Furthemore, this component belongs to Skh* ® VA and is of the form Yb 
where Ybj = VA+ia for 6 = (6i, . . . , bk). 

(2) If IT : JkY\ —> V^ is the corresponding Go-invariant projection, then n is in 
fact a P-homomorphism and the operator -K O (V77)* is an invariant differential 
operator of order k from sections ofV\ to sections ofV^. 
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Remark 1. This theorem is in fact in [3] formulated in terms of the differential op­
erators D® called there Ricci corrected derivatives. This involves defining an isomor­
phism of vector bundles mapping (/, V 7 / , . . . , (V*)*/) £ Q xP JkV to (/, D(1>/,..., 
D^f) £ ®Q(&T*M) ® V. This mapping depends on the Weyl structure that we 
choose but the operator n o D^ that we obtain from this is an invariant operator 
independent of the Weyl structure. 

3. INVARIANT OPERATORS ON SYMMETRIC SPACES 

Next we turn to the invariant differential operator on the interior symmetric space 
C7/K. For our purposes it would be convenient to consider a certain simple subclass 
of them, which nevertheless contains all first order invariant differential operators 
between any two vector bundles C7 xK E\ and G xK E2, for E1? E2 irreducible K-
modules, as shown in [14]. 

Definition 5 (Generalized Stein-Weiss gradient). Let E be a K-module, / £ C7°°(C7, E)*, 
K be acting on q by Ad. Then there is a first order differential operator 

Vf(g)(X) := Xf(g) = j\f(gexp(tX)) 
at\o 

where X £ q. Moreover V / £ C7°°(C7, q* ® E)*. 

We can simply check that V / is really If-equivariant. If we denote by p the repre­
sentation of K on E, then for g £ C7, k £ K, / £ C7°°(c7, E)* we have 

Vxf(gk) = ±\f(gketx) 
at\o 

= ^ | / ( f f e x p A d ^ f c ) 
at lo 

= p ( r l ) l l o / ( ^ A d ( " ) X ) 

= p(k-l)VAd{k)xf(g) 

All first order differential operators between vector bundles associated to irreducible 
K-modules are then obtained by projection onto irreducible components of q* ® E. 
Moreover, the operator projjO(V)fc, where proj^ is a projection onto the j - th compo­
nent of (®*q*) O E is an invariant differential operator. 

4. POISSON TRANSFORM 

Definition 6 (Poisson transform). Let V\tU be P-module, E<- a If-module and IA : 
VA.U —> E<- be an M-invariant map. Then there is a map V : C7°°(C7,VA„)P —• 
C°°(G,E<7)

K given by 

(Vf)(g)= ( a(k)h(f(gk))dk 
JK 

Taking into account invariance of the Haar measure, we can readily check that the 
Poisson transform maps into K-equivariant maps: 

(V>f) o rk.)(g) = / a(k'-l)o(Xk)Ix(f(gk'k))dk = ^'^(V f)(g), 
JK 
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moreover regardless of the P-equivariance of /. 
To deal with objects like ^((V77)*/) we must define the map I on 0*n 0 V\yl/. The 

convenient definition is (Ie)x x IA where IQ = Id—9. This really maps X G h into q, 
since 0(Ie(X)) = -I$(X) and q is exactly the (-l)-eigenspace of 9. 

Let us now consider a representation (A', v') such that there exists an invariant 
differential operator of order j between C°°(G/P, V v ) p and C°°(G/P,Vyy)p. This 
means in particular that KomM(V\ty,&n<8) V\tU) is nontrivial and since we have a 
map (I9)

j 0 IA : &n 0 V\>u -> 0 jq* 0 E a, also EomM(V\'y, &q* 0 E^) is nonzero. 
Thus there is an irreducible K-submodule Ea, of 0*q* 0 E<- such that there exists a 
M-invariant IA' such that the diagram 

\>y • 0*n0V A ) I / 

(1*)ť®1A 

Eat • 0*q*0E a 

where the horizontal maps are injections of irreducible constituents, is commutative. 

Theorem 3. The diagram 

C r o o(C7,V v)
p --A-+ C°°(G)J

iV\il/)
p > C°°(G,VA',,')P 

p l V{ V 
C0O(G}Ea)

K • C°°(GyJ
iEa)

K • C°°(G,Ea,)
K 

is commutative. In particular its outer square expresses the fact that Poisson transform 
intertwines the two invariant operators projA/l//(Vr7)* and proj<7(V)1. 

Proof. Let us denote by cr(n).E the tensor product representation 0*Ad*0<7 on 
0*q* 0 Ea and suppose g G G, Ki,... Xi G n. Then 

V((V>)if)(g,X1,...,Xi) 

= / ^ ( n ) i E(fc)(/ í)
<®/A((V)7)(fl*)d*(.Yi,...,*.) 

JK 

-L 
- J Í 

*•(„).•(*) [(/,)' ®h]^\ f(gkélXl k~'k...k-xkéiXi k~lk)dk 
at o 

a(k)h-\ flgetlAd(k^)UAd(k)Xl _ _ ietlAd(*-i)/.Ad(*).V. k)dk 
1* IQ 

K d t 

= [ a(k)lA\ f(get^...etiI°Xik)dk 
JK dt\o 

= ((V)i(Vf))(gJeXh...JeXi) 

Here we write shortly ^ | 0 for - £ | 0 . . . £ | 0 and use (Ad*(k)tu)(X) = w(Ad(k~1)X) for 
a 1-form u and commutativity of 9 and Ad(k). This gives the commutativity of the 
left square and the right one is commutative already on the algebraic level. • 
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