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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 79 (2006), pp. 99-110 

ISOMETRY GROUPS OF fc-CURVATURE HOMOGENEOUS 
PSEUDO-RIEMANNIAN MANIFOLDS 

P. GILKEY AND S. NIKCEVIC 

ABSTRACT. We study the isometry groups of a family of complete p + 2-curvature 
homogeneous pseudo-Riemannian metrics on Rf)+4p which have neutral signature 
(3 + 2p, 3 + 2p), and which are 0-curvature modeled on an indecomposible symmetric 
space. 

1. INTRODUCTION 

Let M := (M,g) be a pseudo-Riemannian manifold of signature (p,q). Let gp := 
g\rPM (resp. VlRp := V1R\TPM) be the restriction of the metric (resp. the zth covariant 
derivative of the curvature tensor) to the tangent space at P G M. We define the k-
model of M at P by setting: 

<mk(M,P):=(TpM,gP,Rp,...,VkRp). 

One says that </> : fflh(Mi,Pi) —> 9Jlk(M2, P2) is an isomorphism from the k-model 
of M\ at Pi to the k-model of M2 at P2 if (j) is a linear isomorphism from TpjMi to 
Tp2M2 with 

0*g2,p2 = 5i,Pi a n d <t>*V2RM2,P2 = V\RMUPI ^ 0 < i < k. 

One says that M is k-curvature homogeneous if the fc-models dJlk(M, P) and iJJl^M, Q) 
are isomorphic for any P,Q € M. 

In the Riemannian setting (p = 0), Sekigawa and Takagi constructed first examples 
of complete 0-curvature homogeneous Riemannian manifolds which are not locally ho­
mogeneous, see e.g. [14], These examples are all noncompact. Compact examples 
(only in large dimensions) can be found in the paper by Ferus, Karcher, and Munzner 
[5]. Although many other examples have been constructed, there are no known Rie­
mannian manifolds which are 1-curvature homogeneous but not locally homogeneous 
and it is natural to conjecture that any 1-curvature homogeneous Riemannian manifold 
is locally homogeneous. 
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In the Lorentzian setting (p = 1), curvature homogeneous manifolds which are not 
locally homogeneous were constructed by Cahen et. al. [4]; 1-curvature homoge­
neous Lorentzian manifolds which are not locally homogeneous have been exhibited 
by Bueken and Djoric [2] and by Bueken and Vanhecke [3]. One could conjecture that 
a 2-curvature homogeneous Lorentzian manifold must be locally homogeneous. 

It is clear that local homogeneity implies fc-curvature homogeneity for any k. The 
following result, due to Singer [11] in the Riemannian setting and to F. Podesta and 
A. Spiro [10] in the general context, provides a partial converse: 

Theorem 1.1 (Singer, Podesta-Spiro). There exists an integer kPA so that if M is 
a complete simply connected pseudo-Riemannian manifold of signature (p, q) which is 
kPtQ-curvature homogeneous, then (M,g) is homogeneous. 

Sekigawa, Suga, and Vanhecke [12, 13] showed any 1-curvature homogeneous com­
plete simply connected Riemannian manifold of dimension m < 5 is homogeneous; 
thus k0,2 = &o,3 = &o,4 = 1- The estimate fcn,m < \ m ~ 1 w a s claimed by Gromov [9]. 
Results of [6] can be used to show kp,q > min(p, q); we conjecture km = min(p, q) + 1. 

If H is a homogeneous space, let DJlk(H) := Wik(H,Q) for any point Q G H; the 
isomorphism class of VJlk(H) is independent of the point Q G H. We say that M is 
k-modeled on H and that VJlk(H) is a k-model for M if fflk(H) and Mk(M, P) are 
isomorphic for any P G M. 

Throughout this paper, we shall adopt the notational convention that 

p> 1. 

In [7], we exhibited complete metrics on R6+4p of neutral signature (3 + 2p, 3 + 2p) 
which are (p + 2)-curvature homogeneous, which are 0-modeled on an indecomposible 
symmetric space, but which are not (p + 3)-curvature homogeneous; these examples 
show that the constants kp,q —» oo as (p, q) —» co. The proof of Theorem 1.1 rested 
on a careful analysis of the isometry groups of the model spaces. In this paper, we 
continue our study of the manifolds introduced in [7] by examining their isometry 
groups and the isometry groups of their k-models. 

We recall the definition of the metrics on M6+4p which were introduced in [7], We will 
be defining a number of tensors in this paper and, in the interests of brevity, we shall 
only give the non-zero components up to the usual symmetries. Let x = (x\,... ,xm) 
be the usual coordinates on Rm. Let 

{x,y,zu...,zp,y,zu..., zp, x*, y*, z\,..., z*p,y*, z\,..., z*p} 

be coordinates on R6+4p. Let F = F(y,zu...,Zp)e C°°(IRP+1). Let 

AT6+4p,F := (M + P,g6+4p,P) 

where g6+4P,F 1s the metric of neutral signature (3 + 2p, 3 + 2p) on R6+4p with: 

56+4P,F(<9X, dx) = -2{F(y, zu... ,zp) + yy + zxzx • • • + zpzp} , 

96+Ap,F(dx,dx*) = 96+4p,F(dy,dy*) = g6+4p,F(9y,dy*) = 1 , 

96+4p,F(dZn9z;) = g6+4p,F(dzi,d~zt) = 1 . 

Theorem 1.2 (Gilkey-Nikcevic [7]). Let M = JV-6+4p,F. Then: 

(1) All geodesies in M extend for infinite time. 
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(2) expp : TPM?+4p -> R6+4p is a dijfeomorphism for all P e R6+4p. 

(3) VkR(dx,d^yd^,dx;d^... ,%+ 2) = -^(%---%+2)g6+4p,F(dxA) arethenon-
zero components of VkR where & e {y, zi,...,zpiy,zu..., zp}. 

(4) All scalar Weyl invariants of M vanish. 

(5) M is a symmetric space if and only if F is at most quadratic. 

1.1 The manifolds -M6+4p,fc = (-R6+4p,g6+4p,fc)- We can specialize this construction 
as follows. Let g6+4p,fc be defined by setting F = fp,k where we let: 

/p,o(y,*i,... ,2p) : = 0 , 

fpAv,zi,-'-,h)-=ziy2 + '-- + Zkl/B+l if l<k<p. 

As exceptional cases, we set: 

/p,p+i(y, zu..., Zp) := zlV
2 + • • • + zpy

p+l + yp+3 , 

/p,p+2(y, zu..., zp) := ziy2 + • • • + zpy
p+l + ey. 

Theorem 1.3 (Gilkey-Nikcevic [7]). Let I < k < p + 2. 

(1) JVl6+4p,o is an indecomposible symmetric space. 

(2) JVf6+4P)fc is an indecomposible homogeneous space which is not symmetric. 

1.2 The manifolds Me+4P^ = (R6+4p,g6+4p,i/;)* Let ip = i/j(y) be a real analytic 
function of one variable such that 

T/>(P+3) > 0, </>(p+4) > 0, and ?/)(p+3) ^ aeby. 

Define a metric g&+4P^ on R6+4p by taking F = fy where ' 

U(y,zu...,Zp):= ip(y) + Ziy2 + • • • + zpy
p+l. 

The following result shows that the geometry of a homogeneous pseudo-Riemannian 
manifold need not determined by the fc-model: 

Theorem 1.4 (Gilkey-Nikcevic [7]). Let 0 < j < k < p + 2. 

(1) -M6+4p,fc is j-modeled on MQ+4PJ; M&+4Pj is not k-modeled on yVf6+4p,fc-

(2) A/6+4Pli/» is p + 2-curvature homogeneous and p + 2-modeled on JVf6+4p,p+2-

(3) A/6+4P,-/, is not p + 3-curvature homogeneous and not locally homogeneous. 

1.3 Isometry groups. Let G(M) (resp. G(Wlk)) be the isometry group of a pseudo-
Riemannian manifold M (resp. of a fc-model fflk). In this paper, we study the 
groups G(yVf6+4p,fc), G(AfMpj), and G(9Jtfc(M6+4p,fc,-p)) for any point P of R6+4*\ A 
byproduct of our study is the following result that shows, not surprisingly, that the 
symmetric space yVi6+4p,o n a s the largest isometry group. 

Theorem 1.5. Letl<k<p. Let np := (6 + Ap) + (p + 1)(3 + 2p) + (2p + 3). 

(1) dim{G(JVl6+4p,o)} = np + (p + \)(2p + 1). 

(2) dim{G(M6+4p,fc)} = np + (2p + 2) + \(2p - k)(2p - fc - 1). 

(3) dim{G(JVf6+4p,p+i)} = dim{G(A^6+4p,p)} - 1. 
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(4) dim{G(A^6+4P,p+2)} = dim{G(JVf6+4p,P+i)} - 1. 

(5) dim{G(yV6-f4p,i/;)} = dim{G(yVf 6+4^+2)} - 1. 

Here is a brief outline to the remainder of this paper. In Section 2, we review some 
results from [7]. In Section 3, we reduce the proof of Theorem 1.5 to a purely algebraic 
problem by showing for any P G R6+4p that for 0 < k < p + 2, we have: 

dim{G(yVt6+4p,fc)} = 6 + Ap + dim{G(Mk(MQ+4p,k, P))} , 

dim{G(yV6+4^)} = 5 + Ap + dim{G(Wlp+2(M6+Ap,p+2, P))} . 

In Section 4, we complete the proof by determining dim{G(2Jlk(Me+4P,k, P))} for 
0 < k < p + 2. 

2. MODELS 

It is convenient to work in the purely algebraic setting. Let 

fmv:=(V,(;-),A°,...,Av) 

where (•, •) is a non-degenerate inner product of signature (p, q) on a finite dimensional 
vector space V of dimension m = p+q and where A** G <g>4+fiv* satisfies the appropriate 
symmetries of the covariant derivatives of the curvature tensor for 0 < fi < v; if v = oo, 
then the sequence is infinite. We say that 9Jt„ is a v-model for a pseudo-Riemannian 
manifold M = (M, g) if for each point P G M, there is an isomorphism 0p : TpM —• V 
so that 

#,(.,.) = gP and ppA" = V^RP for 0 < y. < v. 

Clearly M is iz-curvature homogeneous if and only if it admits a .v-model. 

2.1 Models for the manifolds Me+4P,k and -A/6+4p,-/,. Let 

8 = {X,Y,Z\... ,ZP,Y ,Z\,... ,ZP,X*,Y , Z\,... ,Zp,Y*,Z{,... ,Z*} 

be a basis for K6+4p. Define a hyperbolic inner-product on R6+4p by pairing ordinary 
variables with the corresponding dual *-variables: 

(2.a) (X, X*) = (Y, Y*) = (Y, Y') = (Zu Z\) = (Zu z*) = 1. 

Define _4° G ®4(R6+4p)* with non-zero components: 

A°(X, Y, Y, X) = A°(X, Z{, Zu X) = l. 

Define tensors A1 G cg)4~M(]R6+4p)* for 1 < i < p with non-zero components: 

Ai(X,Y,Zi,X;Y,...,Y) = l, 

Ai(X,Y,Y,X;Zi,Y,...,Y) = l,..., 

Ai(X,Y,Y,X;Y,...,Y,Zi) = l. 

Finally define Ap+l e ®5+p(M.6+4p)* and AP+2 € ® 6 + P(K 6 + 4 " )* by setting 

AP+1(X,Y,Y,X;Y,...,Y) = 1, 

Ap+2(X,Y,Y,X;Y,...,Y) = l. 
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Define models: 

^6+4p,fc : = (R 6 + ^ (.,-), A 0 , . . . , Ak) for 0<k<p + 2. 

Lemma 2.1 (Gilkey-Nikcevic [7]). Let 0 < k < p + 2. 

(1) W6+4Pik is a k-model for Me+4P,k. 

(2) 9Jt6+4p)P+2 is a p + 2-model for M6+4p^. 

3 . ISOMETRY GROUPS IN THE GEOMETRIC SETTING 

In this section we will reduce the proof of Theorem 1.5 to a purely algebraic problem 
by showing: 

Theorem 3.1. Let 0 < k < p + 2. 

(1) dim{G(M6+4M)} = 6 + 4p + dim{G(9JT6+4p,fc)}. 

(2) dim{G(AT6+4p^)} = 5 + 4p + dim{G(9Jt6+4p,p+2)}. 

The proof of Theorem 3.1 will be based on several Lemmas. In Lemma 3.2, we 
review a basic result about group actions. In Lemma 3.3, we relate the full isometry 
group G(-) to the isotropy subgroup. In Lemma 3.4, we relate the isotropy subgroup 
to the isometry group of the co-model. In Lemma 3.5, we relate isometry group of the 
oo-model to the isometry group of an appropriate finite model. 

The following result is well known. 

Lemma 3.2. Let G be a Lie group which acts continuously on a metric space X. If 
x e X, let G - x be the orbit and let Gx = {g G G : gx = x} be the isotropy subgroup. 

(1) We have a smooth principle bundle Gx —• G —• G • x. 

(2) dim{G} = dim{Gx} + dim{G • x}. 

We can relate dim{G(yVf)} to dim{Gp{M)} for M = M6+±p,k or M = N6+AP^. 

Lemma 3.3. Let P e R6+4p. Let0<k<p + 2. 

(1) dim{G(M6+4p,fc)} = 6 + 4p + dim{Gp(JVl6+4pifc)}. 

(2) dim{G(JV6+4^)} = 6 + 4p-l + dim{GP{Af6+4p^)}. 

Proof. We apply Lemma 3.2 to the canonical action of G{M) on R6+4p. Assertion 
(1) follows as MQ+4P,k is a homogeneous space. Let v > 2. Set 

a6+iP,M := ^ + p + 3 H v < ( p + 3 ) r ^ ( p + 4 ) r . 
We showed [7] that if B is a basis satisfying the normalizations of Section 2, then the 
only non-zero components of V+p+lR are given by: 

(3.a) v ^ + 1 I ? ( K , y, y, X; y , . . . , y ) = a6+4p,„(</>) • 

We also showed that the following assertions are equivalent: 

(1) a6 + 4^(^i)(Pi) = a6+4p^2){P2) for all v > 2. 

(2) There exists an isometry <\>: A/6+4P,^1 —• A/6+4p,v»2 with ${P\) = ft-
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The functions a6+4P^(V;) are constant on the hyperplanes y = c; thus the group of 
isometries acts transitively on such a hyperplane. Consequently 

dim{G(JV6+4p^)} > dim{Gp(JV6+4p,v;)} + 6 + 4p - 1. 

Since N§+ip^ is not a homogeneous space, equality holds. • 

Let P e M. We can show that Gp{M) is isomorphic to G(9Jtoo(JVl,P)) under 
certain circumstances. 

Lemma 3.4. 
(1) Let M\ := (Mi,gi) and M2 := {M2,g2) be real analytic. Assume for g = 1,2 

that there are points PQ € MQ so expP : TpeMQ —> MQ is a diffeomor-
phism. If <j> : TprM\ —• Tp2M2 induces an isomorphism from M00{M\,P\) 
to Wloo{M2) P2), then $ := expP2 o0 o expp* is an isometry from M\ to M2. 

(2) If M = M6+4P,fc orifM= yV6+4p^, then GP{M) = G^^M.P)) for any 
point P e E6+4p. 

Proof. An analytic pseudo-Riemannian metric g is uniquely determined, up to local 
isometry, by the tensors I?, Vi?, . . . , VfcIZ, . . . at one point, see Belger and Kowalski 
[1] and Gray [8] for related work. The first assertion now follows; the second follows 
immediately from the first and from Theorem 1.2. • 

We now replace the infinite model by a finite model: 

Lemma 3.5. Let P e E6+4p. Let 0 < k < p + 2. Then: 

(1) G(art0O(M6+4pifc,P)) =G(9Jt6+4M). 

(2) G(9Jt00(JV6+4^,P)) =G(9Jl6+4p,P+2). 

Proof. If M is a pseudo-Riemannian manifold, restriction induces an injective map 

r : G ( 2 J U M ^ ) ) -> G{VJlk{M,P)). 

Suppose that M = M±p+§,k for k < p + 2. Then VjR = 0 for j > k\ consequently any 
isomorphism of the k-model is an isomorphism of the co-model; this proves Assertion 
(1) f o r 0 < i f c < p + l . 

To deal with the remaining cases, we suppose that ^(p+3) and ?/)(p+4) are always 
positive, but drop the restriction that -0^+3) ^ ae^. Choose a basis B for TpM 
satisfying the normalizations of Section 2. If g £ G(9Jtp+2(A/f6+4p,p+2,-D)), then gB 
also satisfies the normalizations of Section 2. We may then apply Equation (3.a) to 
see that g is in fact an isomorphism of the oo-model since g preserves VkR for any 
k > p + 2. The first assertion with k = p + 2 and the second assertion of the Lemma 
now follow; this also completes the proof of Theorem 3.L • 

4. ISOMETRY GROUPS OF THE MODELS 

Let E3+2^ := Span{K, F, Zu. -., Zp, YZU..., Zp} and let B{ G ®4+i(E3+2^)* be the 
restriction of A1 to R3+2p. We introduce the affine models by restricting the domain 
and suppressing the metric: 

% + 2 P , f c : = ( R 3 + ^ / A . . . , £ f c ) . 
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L e m m a 4 . 1 . dim{G(9Jt6+4p,fc)} = dim{G(2l3+2p , fc)} + (p + 1)(3 + 2p). 

Proof . Let 0(5) be Lie algebra of skew-symmetric s x s real matrices. Set 

S : = ( S i , . . . , S3+2p) = (X, Y,Z\..., Z p , V, _ i . . . , Zp), 

C* . _ f Q* C* \ _ ( V* V * 7* 7* V * 7* 7 * \ 

o . — (ol,... ,o3+2p) — [A ,T ,_-_,..., _ p , r , _ ] _ , . . . , _p J, 

/C : = {£ G R6+4* : A°K, ifr, %, r/3) = 0 V r/, G R6+4p} 

= Span{Si, . . . ,S3 + 2 p}. 

Let g G G(9Jt6+4p,fc). The space /C is preserved by g. Thus 

gSi = TLiJ{go,ijSj + gltijS3} and gS* = ^ . { g ^ S * } • 

By Equation (2.a), (gSugSj) = 0 and (gSugS*) = 8{j. Thus 

Efc{̂ o,tfc51,jfc + gi.ifcgojfc} = 0 and £fc{go,ifcg2,jfc} = <Jy • 

for all i, j . Set 7 := g0gi- One then has 

(4.a) go e G(2l3+2p,fc), 7 + 7* = 0, and g0g2 = id . 
Conversely, if Equation (4.a) is satisfied then g G G(9Jt6+4p^). The map g —> (go, 7) 
yields an identification of 

G(9tt6+4p,fc) = G(2l3+2p,i0 x o(3 + 2p) 

as a twisted product. The Lemma follows as dim{o(3 + 2p)} = ^(3 + 2p)(2 + 2p). D 

There is a natural action of G(2l3+2p>fc) on R3+2p. We continue our study by relating 
G(2l3+2p,fc) and the isotropy subgroup Gx(2l3+2p,fc). 

Lemma 4.2. 

(1) dim{G(2l3+2p , f c)} = dim{Gx(2l3+2p, f c)} + 2p + 3 for k < p + 1. 

(2) dim{G(2l3+2p,p+2)} = dim{Gx(2l3+2p,p+2)} + 2p + 2. 

Proof. Lemma 4.2 will follow from Lemma 3.2 and the following relations: 

G(2l3+2p,fc)X = { ^ G R 3 + 2 p : ^ , K * ) ^ 0 } if fc<p + l , 

G(2l3+2p,p+2)K = {£ G R3+2» : (£, X*) = ±1} . 

We first show _ holds in Equation (4.b). Let f G R3+2p. Assume that 

a :=(£,**) ^ 0 . 

Set gX = £ and set 

£o : _ (a 2 )" 1 /^ 3 ) , gY := e0Y, gY := a~%lY, 

Si := {a 2 4 + 1 }- x , gZi'.= SiZi, gZ\ := e-'a^Zi. 
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The non-zero components of V*i? for 1 < i < p + 2 are then given by 

R{gX,gY,gY,gX) = a2e0a~2e0
l = 1, 

R{gX,gZi,gZi,gX) = a ^ e , - ^ " 2 = 1, 

VR{gX,gY,gZ1,gX;gY) = VR{gX,gY,gY,gX;gZl) = a2e2ex = 1, . . . 

VpR{gX, gY, gZp, gX; gY,..., gY) = VpR{gX, gY, gY, gX; gZp, 9Y,...,gY) = ... 

= S7»R{gX,gY, gY,gX;gY,... ,gY,gZp) = a2ep+1ep = 1, 

Vp+1R{gX,gY,gY,gX;gY, ...,gY) = a2ep+3 = 1, 

Vp+2R{gX,gY,gY,gX;gY,...,gY) = a2ep+i = e0 . 

Thus g e G(2t3+2p,p+i). Furthermore, g 6 G(2l3+2p,p+2) if a2 = 1. Consequently: 

{^6lR3+2p:(4,X*)^0}cG(2l3+2P , f c)-X for k<p+\, 

{£ e 1 3 + 2 P : (£, X*) = ±1} C G(2l3+2p,p+2) • X . 

We must establish the reverse inclusions to complete the proof. Let £ 6 R3+2p. Let 
JtiViity) :— - ^ J ^ I J ^ O ^ e ^he Jacobi form. Adopt the Einstein convention and 
sum over repeated indices to expand 

£ = aX + WZi + Mi 

where a = (^X*). We have the following cases 

(1) If a = 0, then J^ = 0 on Span{y, Y, Zu Z{} so Rank (J^) < 1. 

(2) If a ̂  0, then J^(Y, Y)^0so Rank (Jc) > 2. 

If g e G(2t3+2p,fc)» then Rank{J^} = Rank{J^}. Consequently 

(£, X*) = 0 <£> Rank (J^) < 1 «-> Rank (Jgi) < 1 <^ (#£, X*) = 0 

Consequently we have 

G(2t3+2p,*) • X C {£ € R3+2p : (f, X*) ± 0}, 

G(2l3+2p,fc) • Span {Y, Zu Zt} = Span {Y, Zu Zt}. 

Suppose k = p + 2. Since Rank (Jy) = 0, Rank (Jsy) = 0 so {gY, X*) = 0. Expand 

gX = aX + OQY + a0Y + alZ{ + tfZi, 

gY = b°Y + b°Y + blZi + fr'Z,. 

Then 

1 = Vp+1R{gX, gY, gY, gX; gY,..., gY) = a2{b°)p+3, 

1 = Vp+2R{gX, gY, gY, gX; gY,..., gY) = a2{b°)p+i. 

This shows that a2 = 1 and b° = 1 so 
G(2l3+2piP+2)X C {£ e M3+2p : (£, X*) = ±1} , 

G(2l3+2P)P+2)r c tf e M3+2p : (£, X*) = 0 , and <£, Y*> = 1} . 

Equations (4.c), (4.d), and (4.e) now imply Equation (4.b); the Lemma follows. • 

We now consider the double isotropy group 

Gx,y(2l3+2p,fc) = {ge G(2l3 + 2 M): gX = X and gY = Y} . 



ISOMETRY GROUPS OF Jt-CURVATURE HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS 1 0 7 

Lemma 4.3. 

(1) dim{Gx(2l3+2p,o)} = (p+ l)(2p + 1). 

(2) dim{Gx(2l3+2p,fc)} = dim{Gx,y(2t3+2P,fc)} + 2p + 2 for 1 < k < p. 

(3) dim{Gx(2l3+2p,fc)} = dim{Gx,y(2l3+2p,fc)} + 2p + 1 for k = p + l,p + 2. 

(4) Gx,y(2l3+2p,p) = Gx,y (2l3+2p,P+i) = GX,Y (2l3+2p,p+2)-

Proof. As noted above, the Jacobi form Jx(-, •) = R(X, •, -,X) defines a non-singular 
bilinear form of signature (p + l,p + 1) on 

KV :=Span{y,Z1 , . . . ,Zp , l> ,Z1 , . . . ,Zp} = {^ :Rank(J 4 )< l} . 

Let 0(W, Jx) be the associated orthogonal group. If g £ Gx(2l3+2p,fc)> then we have 
gW = W by Equation (4.d). Since gX = K, we may safely identify g with g\w-
Furthermore, 

Jxfov) = J9x(g^gri) = Jx(g^gv) so Gx(2i3+2p,fc) c 0(VV,Jx). 

Conversely, if g is a linear map of W which preserves Jx, we may extend g to R3+2p by 
defining gX = X and thereby obtain an element of Gx(2l3+2p,o)- Thus Gx(2l3+2p,o) = 
G(VV, Jx). Assertion (1) now follows since 

dim{0(VV, Jx)} = \ dim lV(dim W - 1) = \(\ + 2p)(2 + 2p). 

Assertions (2) and (3) will follow from Lemma 3.2 and from the relations: 

Gx(Vl3+2P,k)-Y={teW:(ZyY*)^0} for l < f c < p , 

(4.f) Gx(2l3+2p,p+i) • Y = {£ G W : (£, Y^3 = 1}, 

Gx(2l3+2p,p+2) • Y = U e W : (£, n = 1} . 

If f E W, let St{ri) := V.R(X,£,f,X;T7). Expand 

(4.g) e = &°̂  + ^ + ^ i + ^ . 

We then have that 

St(X) = 0, Ss(Zi) = 0, Si(Y) = 2b%1, 

S^Zt) = (60)2, and S€(Z.) = 0 for . > 2 . 

Thus .% = 0 if and only if 6° = (£, Y*) = 0. It now follows that for fc > 1 we have 

G * ( 2 W ) Y C {£ € IF : (i, Y*) -* 0} , 

ox(2l3+2P,fc) Span {Z., Y, Zt} C Span {£., Y, z.}. 

Since a = 1, the analysis used to prove Lemma 4.2 shows (6°)p+3 = liffc = p + l and 
b° = 1 if k = p + 2. This establishes the inclusions C in Equation (4.f). 

We complete the proof by establishing the reverse inclusions in Equation (4.f). Ex­
pand £ in the form given in Equation (4.g). Assume 6° ^ 0. Let gX = X, gY = £, 
gY = (&°)-iY, 

gZi := Si{Zi - (b^VY} and <?z. := €?& - (b0)^?}. 
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The possibly non-zero components of R are then given by 

R(gX,gY,gY,gX) = l, 

R(gX,gY,gZi,gX) = £i{6« - (ft0)^0)"1?} = 0, 

R(gX,gY,gZi,gX) = e'1^ - ( b 0 ) ^ ) " ^ } = 0, 

R(gX,gZi,gZi,gX) = e-1ei = l. 

The non-zero components of V'i? for 1 < i < p are given by 

VflfoX, gY, gZh gX; 9Y,...,gY) = ... 

= VlR(gX, gY, gY, gX; gY,..., gZt) = (6°)i+1e,. 

We therefore set e, = (60) - ' - 1 for 1 < i < p to ensure g € G(2l3+2P,P). 
The non-zero components of V'fl for i = p + l,p + 2 are 

VlR(gX, gY, gY, 9X;gY,..., gY) = (b°)i+2. 

If (&0)P+3 = 1, theng G G(2l3+2p,p+i); if b° = 1, theng G G(2l3+2p,p+2). This establishes 
the reverse inclusions in Equation (4.f) and completes the proof of Assertions (2) and 
(3); Assertion (4) is immediate. • 

Let W(p) := Span{Zx,..., Zp, Zx,..., Zp}. Let {/?1?..., (3P, J3U ..., J3P} be the cor­
responding dual basis for the dual space W(p) := W(p)*. The curvature tensor 
R(X, •, -,X) defines a non-degenerate form (•, •) on W(p); dually on W(p) we have: 

(Pi,f3j) = 0i,Pj)=O, ((3i,pj) = 5ij. 

Let 0(p) be the associated orthogonal group on W(p). Let 

0(p,k) := {h G 0(p) : h(5{ = fa for 1 < i < k} 

be the simultaneous isotropy group. We set 0(p, 0) = 0(p). Theorem 1.5 will now 
follow from the following result: 

Lemma 4.4. Let 1 < k < p. 

(1) Gxx(%+2P,k) = 0(p,k). 
(2)0^(p,k) = 0(p-l,k-l). 

(3) dim{0(p, k)} = dim{0(p - l,k - 1)}+ 2p - k - 1. 
(A) dim{e>(p, k)} = \(2p - k)(2p -k-1). 

Proof. Let g G Gx,y(2t3+2p,fc). Let ^ G Span {Zu ... ,ZP,Y ,Z\,..., Zp}. We may use 
Equation (4.h) and the relation R(X,Y,g^,X) = R(X,Y,£,X), to see 

gY = Y + dZi + alZi, gZ{ = a{Zj + a\Z^ , gZ-{ = dZj + aiZ] . 

Consequently Span1<i<p{gZi,gZ-} = Span1<i<p{Zi,Z-} and the relation 

R(X,gZi,gY,X) = R(X,gZl,gY,X) = 0 

implies a{ = ci = 0. Thus gY = Y and g : W(p) •—> W(p); this shows that g is 
determined by its restriction to W(p). Let h := *g denote the dual action of g on 
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W(p)> The isomorphism of Assertion (1) now follows as: 

R(x,gZug^R) = R(x^2,x) V6,& &he o(P), 

ViR(X,Y,gt1X;Y,...,Y) = ViR(X,Y,ii,X]Y,...,Y)\/Z&hpi = (3i. 

If h(P\) = pi and h%) = /?i, then h preserves 

Span {A, A } 1 = Span {ft , . . . , /?p ,ft , . . . , PP}. 

The isomorphism of Assertion (2) now follows by restricting h to this subspace and by 
renumbering the variables appropriately. 

We set 

W (p , f c ) : ={{6W(p) : ( ^ > = 0, (£,A) = 1, « , A } = 0 for 2 < i < fc} . 

If h G 0(p, fc), then h preserves (•,•) and h preserves {/?i,... ,Pk}. Consequently 
hfii G W(p, fc) as Pi satisfies these relations. Conversely, £ G W(py fc) if and only if 

^tfPi + ^bW + Pi + ^Wi where 61 + ] £ 6*b* = 0. 

Ki k<i k<i 

Since the variables {b2,..., If, bfc+1,..., If} can be chosen arbitrarily, 

W(p, fc) = RP-1+P-fc so dim W(p, k) = 2p-k-l. 

We show that £ G 0(p, fc)/?i by finding ft G C?(p, fc) so ftft = f. Set: 

ftA = ft f o r l < t < f c , hpi = pi-b
ipl forfc<i, 

hpx=Z, hPi = pi- b{px for 1 < i . 

This shows 0(p,k) • ft = W(p, fc). Assertion (3) now follows from Assertion (2) and 
from Lemma 3.2. 

As dim{0(p-k)} = \(2p- 2fc)(2p- 2fc - 1 ) , Assertion (4) follows by induction. • 
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