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On the Frichet-Urysohn property

in spaces of continuous functions

Fred Galvin
AN

A family 14 of sets is an w =-cover of a set
X if, for every finite set FCx, there is a
. set DED such that FCD. A topological space
X° has the Gerlits-Nagy property (abbreviated GNP) if,
for every open w =-cover 1 of X , there is a
sequence (Dn:nEw yep such that x C U n D .

m<w msSn<w

Gerlits and Nagy [1] introduced the GNP (which they
called "property %") and proved that the following are
equivalent for every completely regular space X =

(1) x has the GNP ;

(2) c(x) is a Fréchet-Urysohn space;

(3) c(x) is countably bisequential;

(4) c(x) is a w -space,

Here c(x) is the space of all continuous real-valued
functions defined on X , with the topology of pointwise
convergence., The notion of a w -space is due to

Gruenhage [2]; a simple characterization of w -spaces was
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found by Sharma [51.

Let R be the redal line. It was shown in [13J that
every subset of R , which has the GNP, also has
Rothberger’s [41] property C’’ and is always of the

first category; hence in Laver’s [31 model, the only subsets

of R having the GNP are the countable sets. On the
other hand, it was shown in [1] that, assuming MA_ , every
subset of R of cardinality ] has the GNP; moreover,

A.Hajnal has shown that the existence of an uncountable subset
of R with the GNP is consistent with ZFC+GCH . The

following theorem improves Hajnal’s result:

Theorem As;uming CH , there is a set X C R such
N,
that |x] = 2 °

and X has the GNP .

As the GNP is clearly preserved by continuous
mappings, we have the following corollary, which answers a

question of Sierpiﬂski [6, p.861:

Corollary. Assuming CH , there is a set X CR of

N
cardinality 2 ° such that every continuous image of b 4
has property c’’ and is always of the first category.
Problem, Can . CH be replaced by’ MA in the theorem

above, or in the corollary?
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