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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

On the Frechet-Urysohn property 

in spaces of continuous functions 

Fred Galvin 

A family P of sets is an w -cover of a set 

X i f f for every finite set F C x , there is a 

. set D€P such that F C D . A topological space 

X' has the Gerlits-Nagy property (abbreviated GNP) if, 

for every open u -cover P of X % there is a 

sequence <D .*n€u) >€ P such that X C U O D . 
m<b) JD^n<fa) 

Gerlits and Nagy HID introduced the GNP (which they 

called "property Y") a n d proved that the following are 

equivalent for every completely regular space X z 

(1) X has the GNP ; 

(2) C(X) is a Frechet-Urysohn space; 

(3) C(X) is countably bisequential; 

(4) C(X) is a w -space. 

Here C(X) is the space of all continuous real-valued 

functions defined on X t with the topology of pointwise 

convergence. The notion of a w -space is due to 

Gruenhage L23; a simple characterization of w -spaces was 
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found by Sharma C53. 

Let R be the real line. It vas shovn in C13 that 

every subset of R , vhich has the GNP, also has 

Rothberger's CAD property c'' and is alvays of the 

first category; hence in Laver's C3.3 model, the only subsets 

of R having the GNP are the countable sets. On the 

other hand, it vas shovn in C13 that, assuming MA , every 

subset of R of cardinality x has the GNP; moreover, 

A.Hajnal has shovn that the existence of an uncountable subset 

of R vith the GNP is consistent with ZFC+GCH . The 

following theorem improves Hajnal's result: 

Theorem Assuming CH , there is a set X C R such 

that |x| -- 2 ° and X has the GNP . 

As the GNP is clearly preserved by continuous 

mappings, ve have the following corollary, vhich ansvers a 

question of Sierpinski C6, p.86D: 

Corollary. Assuming CH , there is a set X C R of 

*o " 
cardinality 2 such that every continuous image of 

has property c" and is alvays of the first category. 

Problem. Can CH be replaced by' MA in the theorem 

above, or in the corollary? 
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