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1989 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

Differential Properties of Measures on Infinite Dimensional Spaces 
and the Malliavin Calculus 

V. I. BOG ACHE v 

Moscow*) 

Received 15 March 1989 

We study measures induced by smooth functions F on spaces X with smooth (in some sense) 
measures fi. In particular, we consider the case, when X is a space of functions, ft is a Gaussian 
measure on X or a measure corresponding to the solution of a stochastic differential equation, 
and F is a polynomial or a functional of an integral type. We also study infinite dimensional 
oscillatory integrals of the form J(t) = j x exp (it F(jc)) //(d*). Some remarks are made on the 
relationship between different approaches to Malliavin calculus. 

§ 1. Notation and terminology 

A Radon measure / i o n a locally convex space X (LCS X) is a <r-additive real-
valued measure, defined on the Borel or-algebra &(X) and satisfying the next con­
dition: for every A e @(X) and e > 0 there exist a compact set K c A with 
|^| (A \ K) < e where \p\ stands for the total variation of \i. X* is the topological 
dual of an LCS X. The Fourier transform of a measure \i is denned by the formula 
fi(l) = J exp (i/(x)) fi(dx)9 leX*. The measure \i is said to be continuous in the 
direction of a vector h e X if 

lim fi(A + t h) = pi(A) 
t-*o 

for each Ae@l(X). This is equivalent to the condition lim |]ju — pith\ = 0, where 
f->0 

fia(A) = fi(A + a) (see [1]). The measure [i is said to be differentiable in the direction 
of h if the function 11-> [i(A + th) is differentiable for each A e&(X). In this case 
the set function A i-> d/df ix(A + th)\t=0 is automatically a bounded measure, called 
the derivative of \i in the direction of h and denoted by the symbol dh\i. The concepts 
of n-fold and infinite differentiability are defined in the natural way. The partial 
derivative of \i of the order n in the directions hl9 ...9hn is denoted by the symbol 
djjj hn/i (it does not depend upon the order of hl9..., hn). We say that [x is n-fold 
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differentiable in directions of elements of a linear subspace L c X if dj^ џЉnџ exists 
for all h!,..., h„ e L. We say that a measure v on LCS X has moments of some order p 
if qe П(v) for each continuous seminorm q on X. A mapping F: X -» У between 
LCS's X and Y is called differentiable in the direction of h if the limit дhF(x) = 
= lim (F(x + th) - F(x))/í exists. 

ř-*0 

We use standard notations for spaces of continuous bounded functions, infinitely 
differentiable functions, infinitely differentiable functions with bounded derivatives 
and e tc : Cb(X), C00^"), Cb(Rn), S(Rn) stands for Schwarz space of smooth rapidly 
decreasing functions. 

Remark 1. Skorokhod [2] suggested another defìnition of differentiability. We 
say that a measure џ is differentiable in the direction of h in the sense of Skorokhod 
if there exists a measure v such that for every / є Cb(X) 

lim Г1 $x (f(x - ttí) - f(x)) џ(dx) = $xf(x) v(dx). 
t-+o 

As shown in [3], this definition is equivalent to the following: for each A eҖX) 
the function 1i—> џ(A + th) is Lipschitzian. Differentiability implies differentiability 
in the Skorokhod sense and the equality v = dhџ. A measure џ differentiable in the 
Skorokhod sense is differentiable if and only if the measure v above is continuous 
in the direction of h. In turn, it is the case if and only if v <ś џ [4]. The Radon-
Nikodym derivative of dhџ with respect to џ is denoted by QҺ(Џ) and called the 
logarithmic derivative of џ in the direction of h. Below the Skorokhod derivative 
is denoted by the same symbol dhџ. 

The discussion of various differential properties of measures on infinite dimensional 
spaces can be found in [1]. 

§ 2. Nonlinear images of smooth measures 

We shall begin with the following example. Let \x be a measure on Rn, possessing 
a density p e S(Rn) with respect to standard Lebesgue measure, and F: Rn -> R 1 

be a polynomial without critical points (grad F + 0). It is well-known that the image-
measure jUoF"1 on R1, defined by the formula p,oF~1(B) = jn(F~1B), also has 
a density Q e S(Rl) and the function cp:t\-*\ exp (it F(x)) fi(dx) belongs to the same 
class. The standard way of proving this consists in direct estimations of (p(k)(t) = 
= J exp (it F(x)) (iF(x))k n(dx) = ik J exp (it F(x)) F(x)k p(x) dx. 

Since Fkp e S(Rn) it suffices to obtain inequalities of the type |^(*) | = cm(l + t2)~m, 
meN, \j/(t) = J exp (it F(x)) g(x) dx, g e S(Rn). For this end we introduce a vector 
field v = grad F on Rn and consider the operator dv of differentiation along v. In­
tegrating by parts- we have: 

it ^(i) = j 5„(exp (it F(x)) (dv F(x)Y1 g(x) dx = 

= - | exp (it F(x)) (a„a(x)/5pF(x) - g(x) d^x)^^))2) ^ • 
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Notice that dvg e S(Rn)9 g dvF e S(Rn)9 dvF = (grad F, grad F) is a polynomial 
without real zeroes. Hence, by Seidenberg-Tarski theorem (see [5] p. 277) dvF(x) ^ 
= c(l + ||x||)"d for some c9 d > 0 and \dvF\~pfe L1^") for all p>09fe S(Rn). 
Thus, our integration by parts is justified and we can repeat it. Therefore we get the 
desired estimates. 

We are going to study analogous problems for measures \i on infinite dimensional 
spaces and more general functions F. The first and evident difficulty which we face 
is nonexistence of any analogue of Lebesgue measure. Certainly, this obstacle could 
be avoided by defining the action of vector fields directly on measure instead of 
densities and it will be done below. But the main difficulty which arises here is that 
the class of vector fields along which a measure is differentiable turns out to be very 
restricted. As a rule this class does not contain gradients of functionals which are 
being studied. For example no Gaussian measure y on an infinite dimensional 
Hilbert space H can be differentiable along a vector field v(x) = 2x which is the gra­
dient field of the function F(x) = (x9 x). Another example: in the infinite dimensional 
space only zero measure is differentiable (or continuous) in all directions. So, car­
rying out the programme described above we have to introduce special "smoothed" 
gradients. The second serious problem is to prove integrability of the function 
\jdvF. The aim of this paper is to discuss the ways of solving these problems. The 
next abstract definitions will be useful for the sequel. 

Definition 2.1. A collection (X9 M', £) is called a measurable manifold if (X9 $) 
is a measurable space and £ is an algebra of bounded J'-measurable functions such 
that for allfi, . . . , /„ e £ and <p e C°°(Kn) the composition <p(fl9 ...,/-,) belongs to £. 

Definition 2.2. We say that we have a vector field v on a measurable manifold X 
if there exists a linear map dv: £ -> Lm where L% is the space of all ^-measurable 
functions, such that 

(2.i) <UHfi /.)) = t T~(A. •••>/«) d°fi 
i = l OXi 

forallfl9...9fne£9 <peC°>(Rn). 

Definition 2.3. A measure ju on £8 is said to be differentiable along a vector field v 
if there exists a measure v on ^ such that 
(2.2) \dj(x)n(dx)= -\f(x)y(dx) 

for al\fe£ with dvfe l}(/i). 
The measure v, satisfying (2.2), is called the derivative of \i along v and denoted 

by dv}i. We don't require the uniqueness of dvjx9 but in the most interesting examples 
it takes place (it is the case if the class £ distinguishes measures on $). An M-fold 
differentiability is defined in the natural way. For example we say that a measure \i 
is twice differentiable along v if dvfi can be Jaken differentiable. The symbol d"/i 
stands for the derivative of the order n. 

We need the following lemmas. 
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Lemma 2.1. Suppose that an LCS X is a topological sum of an LCS Yand separable 
Frechet space F, {a,} <= F and a measure jn on X is n times different-able along 
span {aj} (or Skorokhod differentiate, or continuous). Then we can choose con­
ditional measures py on F + y with the same differential properties (correspondently 
diflferentiable, Skorokhod differentiable or continuous) such that for all A e @(X)y 

k ;= n, hl9..., hk e span {a j 

(-•3) dl..hAA) = h<..MkH
y(A)v(dy) 

where the measure v on Y is the image of \p\ under natural projection X -> Y. 
We omit the proof because it is not difficult and uses the same ideas as in [2], [6] 

where more special cases were considered. 

Corollary. If a measure p on an LCS X is differentiable in the direction of h e Xy 

fe l}(dhp) and dhfe l}(p) then the following equality holds: 

(2.4) J dhf(x) »(dx) = - Sf(x) d^(dx) 

Proof. There exists an LCS Y such that X = 7 + R1h. Hence by lemma 2.1 we 
can consider the case X = R1. In this case ^ has an absolutely continuous density p 
with p' e I}(R). Besides we have inclusions f'p e l}(R), p'fe l}(R) (since for almost 
all y e Ythe function 1i-> dj(y + fh) is /^-integrable and the function t i->f(y + th) 
is d/./x

y-integrable). In our special case the formula (2.4) is almost evident, but the 
accurate proof is not, however, very short, because we have to verify absolute con­
tinuity of fp in the case when f need not be absolutely continuous and p need not 
be differentiable everywhere. So we don't enter the details, but only mention that 
the desired statement may be deduced from the fact that everywhere differentiable 
on [a, b] function g is absolutely continuous if g' e l}[a9 b] (see [7]). This fact is 
applied to segments on which p has no zeros. 

Lemma 2.2. If p is a measure on R1 , 

r e N , p= 1 , - + - = 1 
P q 

and for all cp e C^K1), k = r 

(2.5) \hik)(t)p(dt)\ = M(r9p)\\cp\\LP 

then p admits a density f, which is r — 1 times differentiable, fik) e I3(RX) (k ^ 
^ r — 1); f ( r _ 1 ) has the bounded variation if p = oo. 

Corollary. If p = oo and J(t) = J exp (itx) p(dx) then 

KOI^Var/fr-^l-'-I^IIH-'. 
The proof is standard and can be found, for example, in [8]. 
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Remark 2.1. If ft is a measure on Rn and (2.5) holds for all <p e C%(Rn) where <p(k) 

means dh...dik(p, dj = d/dxj, il9..., i* e {1,. . . , n}, then the conclusion of the 
lemma is also true, but f ( k ) should be understood in the Sobolev sense (hence if the 
condition above holds for each r then f can be taken in C%(Rn)). 

For the sequel it is convenient to extend the notion of differentiability of a function 
on an abstract measurable manifold X with a measure \i. But first we consider 
examples of such manifolds. 

Example 1. Let X be an LCS with a Radon measure \x, 08 = 08(X), heX,£ consists 
of all functions of the form f(x) = cp(n(x)) where n: X -> Rn is a continuous linear 
mapping and q> e C™(Rn) (or £ can consist of all bounded Borel functions which 
are infinite differentiable in the direction of h). Then ft is differentiable along the 
vector field h, defined by the operator fh-* dhf, if and only if \i is Skorokhod dif­
ferentiable in the direction of h. 

Example 2. Suppose that M is a finite dimensional smooth manifold with the 
Borel a-algebra 08, £ is the algebra of bounded C00-functions on M, a measure X 
on M has a compact support and in local coordinates is defined by a smooth density. 
Then X is differentiable along each continuous vector field on M. 

Example 3. If (Xn, 01 n, £n) are measurable manifolds with probability measures mn, 
differentiable along vector fields vn, then the space 

00 00 

(X = ® Xn , ® 48n) 
n = l n = l 

has a structure of measurable manifold if for £ we take a class of all functions of 
the formf = <p(fx o nl9 ...>fno nn) where <p e Cco(Rn),fi e £t, nt: X -> Xt are natural 

oo 

projections. The measure m = ® mn is differentiable along any vector field 
n = l 

І = l 

defined by the formula 

svf = E ~ ( / i ° nl9 ...,fn o nn) dv^ o nt. oxt 

Under some additional assumptions it is possible to define a vector field 

i = l 

If Xn = S1 then X can be called an infinite dimensional torus. Notice that in the 
last case the measurable manifold X has no structure of Banach manifold or LCS-
modeled manifold. 
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Now we return to the problem of extension of the class of differentiable functions. 
The standard way of such extension is to consider limits (for example in LP) of se­
quences of functions with derivatives converging with respect to some norm (say 
in E). For this see [8], [9]. In this paper we choose the simplest way (for some 
problems it is not the best): we say that / is an infinitely differentiable function on X 
if there exists a sequence of functions /„ e $ converging to / in every U(ii) such that 
dk

vfn e $ for each k and {dk
vf„} are fundamental in all If(fi). 

Theorem 2.1. Suppose that X is a measurable manifold, a measure \i is infinitely 
differentiable along vector fields vl9,..9vn9 measurable functions <pl9...9<pn are 
infinitely differentiable along vl9...9vn (in the sense mentioned above), F = 
= (<pl9 ..., <pn)9 dr

ilmmJji = Q(il9 ..., ir) fi, 0(*i, ..., ir) e f| Lp(fi)9 a^ = dVi<pj. If A = 
= det (cTij) =# 0 almost everywhere and p 

A-'enudi) 
p 

then the measure [i o F~ x on Rn has a density p e C^(Rn). 
Proof. Denote by (yij) the inverse matrix for (<7l7) and by Aij the signed minor of 

the element a^ in the matrix (crl7). Then yik = Aik\A and dty
Jk = (A dtA

Jk -
— AJk diA)\A2

9 where we write dt instead of dVi. By the condition of the theorem 

dff^eOL'Oi). 

L e t / b e in C"(K"). Then /i-a.e. 
P 

(2.6) K „ F(y) = ~ f\y) ajy) $- . F(y) = 
OXt k,m OXm 

= ~ yik(y) dk<pm(y) T~ ° FW = I yttW W°F) W • 

If <p and i// are infinitely differentiable along vk then it is easy to see that dk(<pil/) = 
= <p dk\j/ + \j/ dk<p and 

I Sk(<P^) (x) fi(dx) = - J ^(x) (p(x) dk fi(dx) . 

For the proof it is sufficient to establish these equalities for <p9 \J/ e &. In this case 
the second equality follows from the first one and the definition, and the first one is 
easily deduced from the chain rule indicated in Definition 2.2. Therefore we get the 
following integration by parts formula: 

(2.7) jV(x) dkxl/(x) fi(dx) = - Ji//(x) dkq>(x) fi(dx) - j>(x) \j/(x) djji(dx) . 

Let $ be infinitely differentiable along vk. According to (2.6) and (2.7) we have: 

(2.8) f ^ o F(y) <P(y) n(dy) = ~ \f\y) dk(f. F) $(y) »(dy) = 
JOXi k 
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= - I Sf°F(y)W*)(y)»(<ly) ~lSf<>F(y)yi'<(x)4>(y)dkp(dy) = 
k k 

= -Y$f°F(y)dky
ik(y)*(y)n(<iy) -Z$f°F(y)y

a'(y)dk<P(y)n(dy) -
k k 

-l$f°F(y)yik(y)My)dkn(dy). 
k 

Let r be a fixed natural number. Take <P = 1 and apply (2.8) to drf\(dxh ... dxir) 
instead of df/dx^ In the right hand of (2.8) we obtain the sum of expressions of the 
form \g o F(y) G(y) X(dy), where g = dr~1fjdxil ... dxir_l9 G is a polynomial of yik 

and dky
ik

y k = d{\i. The conditions of the theorem permit to apply (2.8) to these 
expressions. Having fulfilled this procedure r times we represent the integral 

f—*f—-mvM) W ÕX: 
*r 

as the sum of integrals of the type jfoF(y) G(y) X(dy) where G is a polynomial 
of yik and mixed derivatives of yik along vk (of the order less than r + 1), .4 is a mixed 
derivative of \i along vk (also of the order less than r + 1). Now the desired statement 
follows from Lemma 2.2 and Remark 2.L 

Remark 2.2. It is clear from the proof that sufficient conditions of r-fold dif­
ferentiability of the density p can be obtained using restrictions on derivatives of <pt 

and n of orders s ^ r + 1. 
Denote by Ha the space of all functions on [a, h] satisfying the Holder condition 

of the order a e (0, 1], and by Wm the space of all functions f on [a, b] with absolute 
continuous f ^ " 1 ' and f ( m ) e L2[a, 6], f(0) = 0. Recall that a Radon measure y 
on an LCS X is said to be Gaussian if each continuous linear functional I has Gaussian 
distribution on (X, y). If all leX* have mean zero then y is called symmetric. It is 
known that the Fourier transform of a symmetric Gaussian measure y on a Hilbert 
space H can be written as y(y) = exp (—(Ay9 Ay))9 where A is nonnegative Hilbert-
Schmidt operator. The subspace H(y) = A(H) is called the reproducing kernel of y. 
It coincides with the subspace D(y) of all vectors in directions of which y is dif-
ferentiable. We are going to present applications of our general Theorem 2.1 to 
smooth functions defined on locally convex spaces with Gaussian or more general 
differentiable measures. We shall consider vector fields of the form 

OO 

v(x) = X a» ^/iM <*» 
n = l 

where an > 0, <pn are nnsmooth" (in some sense) functions and vectors an are such 
that our measure is differentiable in their directions. Notice that according to the 
corollary of Lemma 2.2 the measure \i is differentiable along a vector field v(x) = 
= <p(x) h provided that <p and pi are differentiable in h and dh<p e l}(ii), <p e Il(dhfj). 
In view of what has been said it is clear that the structure of the subspace D(fi) of all 
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vectors along which \i is differentiate has great importance for our considerations. 
The next result, obtained in [10], clarifies the situation. 

Theorem 2.2. Let \x be a Radon measure on an LCS X, D(pi) and Dc(fi) are sub-
spaces in X consisting of all vectors along which fi is differentiable and Skorokhod 
differentiable. Then Dc(fi) can be equipped with the norm p possessing the following 
properties: 

1) (-9C(A0> P) *S a Banach space isomorphic to a conjugate space 7*, 
2) natural embedding of Dc(fi) in X is a compact operator (that is: a closed unit 

ball of Dc(fi) is compact in X), 
3) D(n) is a closed subspace in Dc(y), 
4) for p we can take p(h) = \dhn\. 

The fact that Dc(n) is isomorphic to a conjugate space is not indicated in [10] but 
follows immediately from Mackey's theorem and compactness of the set {h e Dc(n): 
lld f̂l ^ 1} in X which results from Theorem 5 in [10] or Theorem 1 in [3]. 

Theorem 2.3. Let y be a symmetric Gaussian measure on C0\a, fe] such that for 
some a, m0 y(Ha) = 1 and Wmoe D(y), F(x) = \b

af(x(i)) At where fe C+2(R) satisfies 
the following conditions: 

l) | /^2>(0|^cexp(^|r |) , 
2) for some p, v, 8 > 0 \f'(t)\ = p\t\v if \t\ g 5. Then y o F"1 has a density p 

with integrable derivatives p',..., p(r) and p(r) eBV(R). 

Proof. We shall regard y on H = l}\a9 &]. Without any loss of generality we can 
assume that [a, fe] = [0,1]. The closed graph theorem together with Theorem 2.2 
and inclusion Wmo c: D(y) gives us the following inequality which holds for all 
heWmo: 

(2.9) \da\*c\hU. 

Here by || • [|m we mean \h\m = \h\Li + Jh(m)||L-. It is easy to show that y is infinitely 
differentiable along D(y) and for every reN there exists d(r) such that for all hl9... 
.~,hreD(y) 

(2.10) \K...nA = d^)¥hM\ I M . 
(it is possible to take d(r) = f12, see [1] for details). Fix reN and m > 2m0r. 
Let en(t) = j2sm((n - %)nt) (see [11]) ({en} is a base in L2[0,1], in particular 
\\e„\\m ^ nm + 1) and define an operator A[ in if by Aen = (xnen, a„ = n"m. The vector 
field 

w = l 

will play the main role in our proof. Notice that dhF(x) = J«/'(*(*)) h(t) dr. Hence F 
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is r + 2 times differentiable along v and for k = r + 2 d£F e f) ^60- From the 
p 

considerations above it is clear that y is r + 2 times differentiable along i? and d2y = 

= g(k9v)y with g(fc,t>)entf(y)- Indeed rf„y = £a2 S2
enFy + £a 2 d.Fd€ny. Ac 

cording to (2.9), (2.10) for hl9..., hk e {el9..., es} 

\dl...hj\=c(k.m0)s
m°. 

This estimate permits to differentiate dvy along t; because after differentiation we 
obtain the series converging in variation: 

dh = L \ 2 dlFd„y + YJXI dFQft dk dnFd„y + 
k k n 

+ a2 ^ F d ^ y + a2 dkd
2Fy + a2 d2Fdfcy) , 3, = 3 e i . 

Now we should examine the function dvF(x) = £a2(denF(x))2 and prove estimates 
n 

y(x: dvF(x) < e) ^ xfce
fc, fceiV. Possessing these estimates we can apply the method 

of Theorem 2.1 and get r-fold differentiability of the density of y o F"1. For x e 
e C0[a, b] dvF can be represented in the following form: dvF(x) = (A grad F(x), 
/lgradF(x)) where (gradF(x), h) = jbf'(x(t)) h(t) dt. Therefore, denoting by S 
the unit ball in H we have: 

dvF(x) = \\A grad F(x)||2 = sup (A grad F(x), h)2 = 
heS 

= sup (grad F(x), Ah)2 = sup (grad F(x), y)2 . 
heS yeA(S) 

The set A(S) contains the unit ball Sm in Wm (with the norm [] • ||w). It is seen from 
direct calculations. Hence 

dvF(x)Z sup(jf'(x(t))h(t)dt)2. 
heSm 

Denote by pa the standard norm in Ha: 

Pa(x) = |x(0)| + sup \x(t) - x(s)\l\t - s\". 
t,s 

Introduce sets 5(e) = {x e C0[a, b}: ||x[|H <Z s} and E(e) = {xe Ha: pa(x) ^ lje}. 
Since y(Ha) = 1 then by Fernique's theorem (see [11]) pae f) I?(y) and hence for 
every fc e N we can choose .% such that for all e p 

y(E(e)) = 1 - rjke
k. 

The condition Wm c D(y) gives smoothness of finite-dimensional projections of y. 
This implies the following estimates: 

y(S(e)) Z & . 
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Let xeM(e) = £(e)\,S(e) and e < min(<5, £). Then there exists t0e [a, b] such 
that |x(*0)| = e/2 and for |*| = e3/flt |x(f0 + t) - x(t0)\ = e^ff = e2. Thus, |x(f)| e 
e [e/4, e] for t e [t0 - e3/a, t0 + e3/a] and so/'(x(f)) = jS(e/4)v or/'(*(*)) ^ -.S(e/4)v. 
Fix a function cpeC™ with the following properties: 0 ^ <p ̂  1, supp <p c= [— 1, 1], 
<p = 1 on [—i, J ] . Let Cm = (2 + 2sup l^"0))"1 . For the above mentioned x 
and t0 define h by the formula: 

/.(<) = cy"<p((t-t0)le
3*). 

Then ||h||m ^ 1 and we have the following inequality: 

0-JWO) *(0 dt)2 = ( / W V3*"*3")2 = (/?cm 4-Y s" 

where d = (6m + 6)/a + 2v. Therefore we have proved the estimate 

y(x: dvF(x) < (f*cm 4"v)2 sd) <. fa + &) sk 

with jS, cw, v, d not depending on fc and e. This completes the proof. 

Remark 2.3. The analogous theorem can be proved for measures on the space 
of vector-valued functions (that is, for distributions of vector-valued processes). 
It is clear from the proof that the same is valid for more general (not necessarily 
Gaussian) measures on C0[a9 b]9 differentiable along Wm9 provided some additional 
restrictions concerning the moments are imposed. 

Corollary. J exp (it F(x)) y(Ax) = 0(|f |~ r - 1) when t -> GO. 

Remark 2.4. The last corolary can be used to prove the following result: if functions 
/ u •••>/» are such that for all (a l s . . . , ad) + (0 , . . . , 0) the function a1f1 + . . . + u.Jn 

satisfies the conditions of Theorem 2.3 (for each r) then the mapping F = (Fl9 ..., FB): 
X -+ Rn induces the measure y o F'1 on Rn with the density p e S(Rn) (so Fl9 ..., Fn 

have smooth joint distribution). 
Our previous results have the following character: finite-dimensional smooth 

images of differentiable measures are also differentiable. The natural question arises 
whether the same is true for infinite dimensional images. In general the answer is 
negative: even a polynomial of the second order on a Hilbert space can transform 
a Gaussian measure in a nondifferentiable measure (see [1] for details). Finite-
dimensional polynomial mappings are discussed in § 3. If we are interested only in the 
existence of densities or their boundedness the conditions of the theorems above 
can be considerably weakened. The results of this type are discussed in § 4. The 
next lemma is also a statement of this sort. 

Lemma 2.3. Let \i be a measure on Rn continuous in the directions of the standard 
base el9..., en. Then ju admits a density p with respect to Lebesgue measure. If, 
moreover, the measure dn

ei_eji exists (even if in the Skorokhod sense) then p can be 
chosen bounded with sup \p(x)\ ^ ||d^...*„."||• 
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Proof. The first assertion is trivial (see [1]). The second one can be proved by 
approximating \i in variation by convolutions fi*y with Gaussiah measure y (see 
[12] for details) and verifying the desired estimate for measures. 

§ 3. Distributions of polynomials and infinite dimensional oscillatory integrals 

A polynomial on an LCS X is a function of the form 

P(x) = tvk(x,...,x) 
fc = 0 

where Vk: Xk -> R1 are continuous k-linear forms (we are discussing real-valued 
polynomials; polynomial mappings between locally convex spaces are defined in the 
same way, see [13] for equivalence of different natural definitions). The function 
Q(x) = V2(x, x) is called a quadratic form on X. It can be written in the following 
way: Q(x) = (Ax) (x) where A: X -> X* is a symmetric linear map. If dim A(X) = oo 
the form Q is said to be infinite dimensional. 

Lemma 3.1. Given d e N there exists c(d) > 0 such that for every polynomial 
p(t) = td + ... and each measure \i on R1 

(3.1) M(,:|p(0|^^)IIMh1/<'-
Proof. This follows from Lemma 2.3 and the estimate (see [14]): 

mes(f:|P(f)| = e) £c(d)e1/d. 

Theorem 3.1. Suppose that a Radon measure /* and a polynomial Q of the degree d 
on an LCS X satisfy the following conditions: 

1) X is the topological sum of LCS'sX09 ...9Xn and Q(x) = Q0(x) + ... + Qn(x) 
where Qt are polynomials depending only on the projections of x on X0 and Xt; 

2) there exist such hteXi9 i = 1,..., n9 that deg Qt = deg Qi\Rihi > 0 and 
fi is r + n times differentiable along span (hi9..., hn) and all its derivatives of 
orders s ^ r have moments of the order 2r2(d — 1); 

3) n > 4(d — 1) (r + 1). Then JJL O Q"1 admits a density p with integrable 
p'9..., p<'-» and pfr-1) e BV(tfx). 

Proof. We give only a sketch of the proof. Define a vector field v on X by the 
formula 

v(x) = tdHiQ(x)hi. 
» = i 

Q is infinitely differentiable along v. It is not difficult to check r-fold differentiability 
of ft along v. Acting in the same way as in the proof of Theorem 2.1 we meet our 
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familiar problem of integrability of ljdvQ. In the present case 

G{x) = dvQ{x) = t{KQ{x)Y 

is a polynomial of the degree Q ̂  2d — 2 with the following properties: G(x) = 
= Gi(x) + ... + Gn(x)9 where non-zero polynomials Gf depend only on the pro­
jections of x on X0 and Xi9 deg Gt = deg Gi\Rihi. For our aims it suffices to get the 
estimate 

|v|(x:G(x) = e) g c(v9 G)en/Q. 

for every measure v n times differentiable along span (hl9 ...9hn). Use the induction. 
Let E = {xeX0 + ... + Xw_x: Gx(x) + ... + G„_i(x) <; e}, A be the natural 
projection of |v| on Y = X0 + ... + X„_i. According to Lemma 2.1 it is possible 
to choose conditional measures vy on Xn + y to be differentiable in hn. Hence by 
Lemma 3.1 

|v| (x: G(x) ;g e) = J* \vy\ (x: Gn(x) g e) l(dy) <Z 

^c(dcgGn)e1/^E\\dhnvy\\X(dy) = 

= c(deg G„) ei/6\dhnv\ (x: G,(x) + ... + G„_i(x) g e) ^ const (G, v) ew/< , 

because dhv is n — 1 times differentiable along hi,..., h„_i and the inductive as­
sumption is applicable. It remains to notice that dr

v\i is n times differentiable along 
hi,..., hn. Thus, we have integrability of inverse powers of dvQ and can realize the 
method of Theorem 2.1. 

Corollary 1. If the conditions of Theorem 3.1 are fulfilled for all n and r then p e 
e S(R1) and for each k 

J exp (it Q(x)) n(dx) = 0(|f|-fc) , t -> co . 

Corollary 2. Let Fl9..., Fd be polynomials such that for all (ai , . . . , ad) 4= (0, . . . , 0) 
polynomials aiFi + ... + adFd satisfy conditions of Theorem 3.1 (for all n9 r). 
Then the mapping F = (Fl9..., Fd) induce a measure on Rd with a density belonging 
to S(Rd). 

Corollary 3. Let X = L°(T)9 where Tis a space with a finite measure a, supp a = T, 

fi(*) = J _('. *(0) <Kd')> _ M = -" + flu-iW-*"1 + •-. + «o(0> aiel}(T). Sup­
pose that y is a Gaussian measure on K and for each m there exist hl9 ...9hme D(y) 
with disjoint supports. Then the conclusion of Corollary 1 is true. 

For the proof of the last corollary take Xt = i^h,- and denote by X0 a topological 
complement to span (hl9..., hm) (it exists). 

Example 3.1. Suppose that \i is a measure on .R" with a density g e S(Rn)9 F = 
= (Fl9 ...9Fd): Rn -> Rd

9 Ft are polynomials and g vanishes with all derivatives 
on the set Z = {x: A(x) = 0} where A(x) det ((gradFh gradFy)fJ=1). Then the 
measure fioF'1 onRd has a density p e S(Rd). 
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Proof. Consider vector fields vt = grad Ft. Let Gtj = dViFj = (grad Fi9 grad Fj). 
Applying dVi to a measure X with a density \j/ e S(Rn) vanishing with all derivatives 
on Z we obtain the measure with the same properties. So the only thing we need to 
verify is the inclusion A'1 e f] IF(X) where the measure X has a density \j/ e S(Rn) 

p 

vanishing with derivatives on Z. For each meN there exists cm > 0 such that 
\\l/(x)\ ̂  cm dist (x9 Z)m. By Seidenberg-Tarski theorem 

(3.2) A(x) = c(dist (x9 Z))a (1 + | x [ ) - ' , a, j3 = 0 . 

The desired statement directly follows from these estimates and Theorem 2.1. 
The example considered in § 1 is a special case of Example 3.1. It is unknown 

whether the analogous statement is valid for infinite dimensions (even for poly­
nomials without critical points). In this connection it is important to stress that in 
Seidenberg-Tarski's theorem one can't obtain the estimate (3.2) with fi not depending 
on the dimension of the space Rn (see [15]). In view of what has been said above it is 
clear that the realization of our programme depends considerably on successful 
solving of the problem of finding asymptotics of expressions n(x: \G(x)\ ^ e) where \i 
is a smooth measure on an infinite dimensional space and G is a regular function. 
Our investigations are also closely connected with studying of oscillatory integrals 
f h-* Jexp(if F(x))}i(dx). In finite-dimensional situation similar questions are much 
more worked out but even in this case not everything is clear (some positive results 
and further discussion can be found in [15]). On the one hand the infinite dimensional 
case is more complicated but on the other hand in this case Gaussian (or smooth) 
measures of small balls decrease very quickly so that we get some compensation". 
In the next two theorems we shall see how this circumstance can work. 

Theorem 3.2. Suppose that a Radon measure \i on an LCSK is infinitely dif-
ferentiable along a dense linear subspace D e l and all its partial derivatives have 
moments of all orders. If quadratic forms Ql9..., Qn on X are such that for each 
(al9 ...,a„) 4= 0 the form OL^QX + ... + unQn is infinite dimensional then the map 
Q = (Qi> •••> Qn) induces the measure, possessing a density peS(Rn). In particular 
it is true for each nondegenerate Gaussian measure jn on X. 

Proof. Again we only sketch the proof. It suffices to show that the function 
n 

<p(tu • • •> 0 = I exp (i Z h 6/(*)) Md*) 
1=i 

belongs to S(Rn). Partial derivatives of cp have the form ik J exp (i ̂ tj Qj(x)) v(dx) 
where v = Qh QJkfi possesses the same properties as \i. Thus, we need only 
estimates 

\cp(tl,...,tn)\^ckqt\\ + i)-k. 

For this end consider first the case n = 1 and take vectors alf ...,areD with linearly 
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independent lt = Aau ...,lr = Aar. Define a vector field 

v(x) = idtlQ(x)at = 2ili(x)ai. 
i = l i = l 

Then 

3,e(x) = 2X;(/i(x))2 

i = l 

is a quadratic form non degenerating on L = span (al9..., ar). It is clear that \i is 
infinitely difierentiable along v and by induction we obtain that dk

vii is a finite sum of 
measures of the form v = <Pj(lx(x)9..., lr(x)) d{ltttij(i where #,- is a polynomial, 
deg <Pj ^ j . For example 

din =- 4CE /.(a,-))2 /* + (4 £ /,(a,)) £ lAn + 
i i i 

+ 2 E £ CX )̂ WIP + /X'I(«J) M + hdln). 
1 i 

Now estimate |v| (x: dvQ(x) ^ e), v = d^/n. Take a topological complement Y to L, 
denote by a the image of |v| under the natural projection on Yand choose smooth 
conditional measures vy on L + y. We can supply L with the standard Lebesgue 
measure m using the natural isomorphism J: L<r+ Rr

9 at <-+ et. The slices L + y are 
provided with the measures m_ r By Lemma 2.3 vy = fym-y and/* can be chosen 
with sup l/^z)) ^ fl<C1...,rv||. Let C = {xeX: dvQ(x) ^ e}. It is easy to show that 

z 

m-y(c n(L+ y)) ^ m(c n L) for all y. Denote by M(Q9 L) the minimum of dvQ 
on the unit sphere in L (determined by the isomorphism J). Then m(C) ^ c(r) . 
. M(Q, L)"r /2 er/2. Hence we have 

|v|(C) = c(r)M(e,L)- / 2fl^... f l rv||^ / 2 . 

From these observations we can conclude (integrating by parts as in Theorem 2.1 that 
for each fixed a e Rn> flafl = 1: 

\<p{tOL)\^Ck(«)\t\-k. 

Moreover, the constant ck((x) depends only on fc, norms of dq
vQ in I}(de

vfjt) and M(Q, L). 
From continuity arguments it is clear that for every (<xl9..., a„) = a in the unit 
sphere in Rn there exists a neighbourhood V(a) such that vectors al9 ...9ake D can 
be chosen common and forms dv(s1Q1 + ... + snQ„) are uniformly nondegenerate 
provided (sl9..., sn) e V(a). The compactness of the sphere in Rn gives us the desired 
uniform estimates of <p. 

Remark 3.1. The same arguments are valid for general polynomials of the second 
order. 
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Consider a stochastic differential equation 

(3.3) dtt = A(t9Zt)odwt + B(t9Zt)dt9 £0 = 0, / e [ 0 , T ] , 

where w is a standard d-dimensional Wiener process, 

A: [0, T] x Rd -> L(Rd) , B: [0, T] x Rd -> Ra 

are C*-mappings (see [9], [16] for basic definitions; here stochastic differentials 
can be understood no matter in the sense of Ito or in the sense of Stratonovich). 
Real-valued symmetric function K: [0, T] x [0, T] -> Rx will be called non-
degenerate if for each n it is possible to choose such tl9 ..., fne [O^T] that functions 
&-(•) = K('9 tt)9..., kn(') = K(>9 tn) are linearly independent on [0, T]. Operator-
valued mapping K: [0, T] x [0, T] -• L(Rd) with K(t9 s) = K(s, t) will be called 
nondegenerate if for every n there exist tl9..., tn e [0, T] such that for all s l f . . . , sn e 
e Rd with J] |JS|[| = 1 the map s h-> £ K(s, f-) sf is not identically zero. 

Theorem 3.3. Suppose that inf (det.A) > 0, K: [0, T] x [0, T] -> L(#d) is a sym­
metric nondegenerate Holder mapping, £t is the solution of the SDE (3.3), Q((o) = 
= JJ JJ (K(s, t) £s(co)9 £t(co)) ds df. Then Q has infinitely differentiate distribution 
and its density belongs to S(RX). 

Proof. The details of the full proof are too hard to be presented here, so we sketch 
only the main steps in the case d = 1. First we notice that the measure \i on Co[0, T] 
which corresponds to the solution rjt of (3.3) with A = 1 is infinitely differentiable 
along subspace W1 (defined before Theorem 2.2) and all its derivatives are absolute 
continuous with respect to \i and the Wiener measure W while their densities with 
respect to \i and W belong to f] IF(/i) and f] U(W) correspondently. It can be deduced 

p p 

from the Girsanov's theorem according to which jx ~ W9 \x = QW where Q has an 
explicite form, simple for investigations (see [14], [16], [17]). Let g(t9 z) = 
= J0 A~x(t9 y)dy9 f(t9 •) be the inverse diffeomorphism to g(t9 •). Ito's formula 
(see [16]) 

dg(t9 Q = dwt + \?f (t9 Q + B(t9 ft)lA(t9 (t) + \dli2 (t9 St) A(t9 QA At. 
Lor 2 ox* J 

Hence £t = f(t9 rjt) where rjt is the solution of SDE with .4 = 1. Thus we have to 
study the functional 

F(x) =- Jf JJ K(s, t)f(t, x(t))f(s, x(s)) d. ds 

defined on X = Co[0, T] with the smooth measure n corresponding to rjt. Follow 
the scheme of the proof of Theorem 2.3. Direct calculations show that for all h 

dhF(x) = 2 J0
r A(t9f(t9 x(t)) h(t) (f J K(s9 0/(5, x(s)) ds) dt. 

As above we have to obtain estimates 

fi(x: sup (^F(x))2
 = e) = o(ek) . 

heSm 
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It was shown in the proof of Theorem 2.3 that for this aim it suffices to establish 
the estimates 

fi(x: sup |J0
r K(s, t)f(s, x(s)) ds\ = s) = o(ek) . 

t 

It can be done in the following way. Fix n and prove that the mapping ! P : X H 
I-> (JJ K(s, t^)f(s, x(s)) ds,..., JJ K(s, f„)/(s, x(s)) ds) induces a measure on Rn with 
bounded density. Here tt are chosen so that K(*, tt),..., K(% *„) are linearly indepen­
dent (this is the only place where we need the existence of such t(). For proving the 
boundedness of the density of fi o *F_1 it suffices to have an estimate 

Jexp(iXa,^W)^) = 0(|a|r2). 
Now we have to resort to the method of Theorem 3.2. We omit the details, the full 
proof will be published elsewhere. 

Corollary. For every k J exp (it Q(x)) pfi(dx) = o(t~k), t -• co, tf being a measure 
on Co[0, T], induced by \ . 

Remark 3.2. The same result is valid (with a simpler proof) for quadratic forms 
Q(x) = JJ (K(t) x(t), K(t) x(t)) dt, K 6 L(Rd), []det K[|Li =f= 0. In the one-dimensional 
case it is a consequence of Theorem 2.2. Certainly, this is the form of another type: 
it is non compact while the form considered in Theorem 3.3 is of Hilbert-Schmidt 
type (therefore the last one is more „degenerate" and more difficult to deal with). 
One might ask whether Theorem 3.3 is a consequence of Theorem 3.2. It would be 
the case if the measure p* were differentiable along some linear subspace. We have 
already mentioned that this is true when A is constant. In 1961 T. Pitcher [17] 
conjectured that if d = 1, A(t, x) = A(x) 4= const then whichever be a function 
ft -̂  0 on [0, T] there does not exist any measure a on C[0, T] with n*+ah <£ a 
for all a e R1, where (£> + ah)t = %t + a h(t). According to [1] it is the same as to 
say that pfi can not be continuous in a nonzero direction. We shall prove Pitcher's 
hypothesis and in the same time give a negative answer to the question posed by 
Uglanov in [14]. 

Theorem 3.4. Denote by \i the measure on C[0, T] induced by the stochastic 
process f, satisfying the SDE (s. 3) where d = 1, A and B are Lipschitzian, A(t, x) = 
= A(x) is not a constant, A e Cl(R), A > 0. Then \i has no nonzero directions of 
continuity. 

Proof. We again present only a scheme of the proof. Denote by / the solution of 
the Cauchy problem f(t) = A(f(t)), /(0) = 0. It is well-known that this solution 
exists on the whole line. The process rjt = /(wf) by the Ito's formula satisfies the 
equation 

drjt = A(rit) dwt + \A (rjt) A(t]t) dt, rj0 = 0 , 

and by the Girsanov's theorem induces the measure v ~ \i. So from the very beginning 
we can assume that £t = f(wt). For t e [0, T] write 
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Lt<p = lim sup \<p(t + s) - <p(t)\ly/(2s log log s) . 
S-+0 + 

It follows from the law of the iterated logarithm (see [16]) that for /z-almost all 
x e C[0, T] 

Ltx = A(x(t)) . 

Suppose that \i is continuous in the direction of h and for some t h(t) > 0. The 
crucial point of the proof is to get an estimate 

(3.4) lim sup \h(t + s) - h(f)|/Vs < °° • 
S-+0 + 

Suppose it is not valid. Then there exists a sequence tn [ 0 with sw = (h(f + tn) — 
— h(t))\yjtn -> co (or sn -+ - c o ) . Let an = s"1 . Then a,. -> 0 and by the continuity 
of p. lnanh — /x|| -> 0 (see [1]). Hence 

(3.5) sup |(exp (ice, /(h)) - 1) fi(l)\ = sup \pj(t) - fi(l)\ -> 0 . 
JeX* leX* 

Let /. e Z * , Z„(x) = (x(t + tn) - x(t))j^/tn. By (3.5) sup j(exp (la, ln(h)) - 1) fi(ln)\ -> 
n 

-^ 0 and hence /?(/,) -> 0 because an /n(/i) = 1. On the other hand direct calculations 
(which are omited) show that 

1 C+co 

lim //(/.) == -L-\ exp ( - i A ( / ( z ) ) 2 - iz2/f) dz > 0 . 
n-*oo V ^ U - o o 

This is a contradiction and so (3.4) holds. Hence L,h = 0. Take a segment 7 = 
= [s — 25, s + 25] without zeros of A'. Suppose inf A! = m > 0. Let L = 

j 

= {x: Ltx = ^(xff)), x(f) G (s — 5, s + 5)}. It is easy to show that JLI(E) > 0 and 
from the continuity of/z we have: E n (E — Ah) 4= 0, |A| ^ r(F). Find some x in this 
intersection. Since Lth = 0 and, therefore, Lt(x + Ah) = Ltx, we get the following 
equality: A(x(t) + A h(f)) = A(x(t)). On the other hand for all a e (0, 5jh(t)) A(x(t) + 
+ a h(r)) = -4(x(f)) + a h(f) A'(x(f) + 0) where 6 e [0, a h(f)], and consequently 
y4(x(f) + a h(f)) > ^4(x(t)). This is a contradiction. 

Corollary. The conjecture of Pitcher [17] is true. 

Remark 3.3. a) If a coefficient A depends on both variables t and x, the measure \i 
can possess nonzero directions of continuity or differentiability only when there 
exists an interval U such that A(t, x) = A(t, 0) for all teV.b) The analogous results 
are valid also for multidimensional diffusion processes, but in this case an L(Rd)-
valued coefficient A should be considered nonconstant if for every nonconstant 
smooth h: [0, T] -> Rd with h(0) = 0 the map 11-> A(t, h(t)) is nonconstant. 

We conclude this section by noticing that Theorem 3.1 considerably strengthens 
the result of [18] where Xl9..., X„ were supposed to be one-dimensional and X was 
a Banach space. Theorem 3.2 for Hilbert spaces was also proved by Uglanov [18], 
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[19]. His methods differ very much from ours though he also uses the theory of 
differentiable measures. Integral-type functionals of the Brownian motion and related 
oscillatory integrals were studied in [20], [21]. We shall compare this approach with 
our one in § 5. 

§ 4. Absolute continuity of distributions 

Many assumptions on measures and functions can be weakened if we are interested 
only in absolute continuity of image-measures. 

Proposition 4.1. Suppose that a Radon measure \i on an LCS X is continuous in 
directions {an} and a Borel mapping F:X -> Rd satisfies the following condition: 
for ju-almost every x eX it is possible to choose vx(x),..., vd(x) e {an} such that the 
vectors co^x) = lim (F(x + tv^x)) — F(x))/r, i = 1,..., d, exist in Rd and are 

t-+o 

linearly independent. Then fx o F"1 has a density on Rd. 

Proof. It is well-known that sets Dt = {x: daiF(x) exists} are Borel and so the fol­
lowing sets are also Borel: 

D(h> •••> h) = {xe Ditri... n Did: dtjF(x) are linearly independent} . 

Since the measure A*|i>(ilf....fd) is also {an}-continuous, it suffices to examine the case 
when vt = al9 ..., vd = ad are common for jU-almost all x. By Lemma 2.1 this is 
reduced to the case X = Rd. So we have to prove the following lemma: if E c Rd 

has positive Lebesgue measure and a Borel map F: Rd -> Rd possesses linearly in­
dependent partial derivatives in every point of E then F(E) is also a set of positive 
Lebesgue measure. For locally Lipschitzian F it is a direct consequence of the co-area 
formula of Theorem 3.2.5 in [22]. According to Theorem 3.1.4 in [22] F is ap­
proximately differentiable almost everywhere on E and by Theorem 3.1.8 [22] 
E can be covered (except some set of measure zero) by compact sets En on which F 
is Lipschitzian. It remains to notice that for almost all x e En partial derivatives 
daiFn(x) are linearly independent (this fact follows from the condition and Fubini's 
theorem), Fn being any Lipschitz extensions of F\En. 

Proposition 4.1. considerably improves some analogous results obtained in [23], 
[24] where additional restrictions were imposed (in particular, mapping were assumed 
to have almost everywhere continuous Gateau derivatives and the choice of vt was 
not arbitrary as in our case). 

Remark 4.1. The mapping F in Proposition 4.1 can be assumed only ju-measurable 
if \xian ~ fi for all t, n or if it is indicated that sets Dt are /x-measurable. 

Proposition 4.2. Suppose that a Radon measure JLL on an LCS X is differentiable in 
Skorokhod's sense in directions {a,-} and a function F: X -> Rl satisfies the following 
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conditions: 1) F is the limit of the sequence of ^-measurable functions F„ converging 
in measure (or a.e.); 2) functions F„ are differentiable along {at} and there exist 
such measurable functions gt that for each compact set K c X: lim j * \daiF„(x) — 

«->oo 

— 9i(x)\ M (d*) = 0; 3) the set of points where all gt vanish is null for |//|. Then 
/ l o F 1 has a density. 

Proof. Let K be a compact in X and i e N. We can assume that n is nonnegative 
since |/z| is also differentiable in at (see [3]). As shown in [3] there exists a Borel 
function <p: X -> [0,1] which has a compact support S, equals to 1 on K and possesses 
the bounded derivative daiq>. Then A = <pn is compactly supported and differentiable 
in Skorokhod's sense in at. It is clear that [|o\.Fn - 0,||L-(A) -> 0. For all \\f e CJ(R1) 

J*'(*(*)) tf i(*) W = lim J TO) a./.W A(d*) = 
n->oo 

= limj3ai(^oF„)(x)A(dx). 
»->oo 

By (2.4) we have J dat(f • F.) (x) A(dx) = - J *(*.(*)) dflf A(dx) . Hence |J p(F(x)). 
. gt(x) X(dx)\ ^ sup \*l/(s)\ \daiX\. This estimate in view of Lemma 2.2 signifies the 
absolute continuity of (gtX) o F"1. Since K and i were arbitrary the same is true for 
/ / o F " 1 . 

This result strengthens the theorem of Davydov [25] in several directions (he 
considers Gaussian measures ft and F„ are supposed to be Frechet differentiable 
along the reproducing kernel of \i and absolutely continuous on lines x + R}h 
for all h e D(JJ)). In particular our results cover those of Shigekava [26], Nualart-
Zakai [27]. 

Remark 4.2. The analogous results can be formulated and proved for functionals 
on abstract measurable manifolds. 

Corollary. Let X = C([0, T], Rd) or X = L2([0, T], Rd), / i b e a measure on X 
induced by the solution £t of SDE (3.3) with Lipschitzian A, B. Suppose that A(*, •) 
is nondegenerate and a locally Lipschitzian map F: X -> Rn satisfies the condition: 
n(xeX: Gateau derivative F'(x) exists and F'(x)(X) + Rn) = 0. Then fioF'1 is 
absolutely continuous. 

§ 5. Different approaches to the Malliavin calculus 

Another way of studying distributions of functionals is presented in [28], [8], [29]. 

Definition 5.1. An Ornstein-Uhlenbeck-Malliavin operator on a probability space 
(Q, &9 P) is a symmetric linear operator Lin L2(P) defined on a dense linear subspace 
0t <z fl LP(P) and taking values in f] -C(P) such that 1) for all <pu ...9(p„e0t and 

p p 

fe C™(Rn) the composition f(cpl9..., <pn) belongs to 0k\ 2) for all cp e& r(cp9 <p) = 0 
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a.e., where T(<p, \\i) = L(<p\l/) - cpLxj/ - ij/Lcp; 3) for all <pl9..., <pn e®, fe C?(Rn) 

L(f(q>u...,<p„)) = £—(<pu...,<pn)Lwi + iYT—r- (<Pu• • •><pn)r(<pti(Pj). 
i OXt ij OXi OXj 

In [8] analogous operators were defined as generators of symmetric diffusion 
semigroups on L2(P). For convenience Definition 5.1 differs in nonessential details 
from that one given in [29]. 

Proposition 5.1. Let L be an operator of Ornstein-Uhlenbeck-Malliavin and 
fi, • •.,/-, e 0!. Then: 1) (Q, 01,0t n L00) is a measurable manifold in the sense of § 2; 
2) mappings <p i-> F(f, <p) on 01 are defining vector fields on Q denoted by vt (in 
particular the Malliavin matrix r(fi9fj) coincides with dvjj); 3) the measure P is 
differentiable along vt and J...P = ( -2L f )P . 

The proof consists of simple calculations. 

Proposition 5.2. Suppose that a measure / i o n a measurable manifold (X, 01, 8) is 
differentiable along vector fields vu ..., v„, dVi\i = g,/i, of e f| LP(/J) and the set 0t = 

p 

= {<pe&: dVi<p, dVicp e f] U(JLI)} is dense in L2(/*). Then the formula 
p 

n 

Lv = E (^^ + e*3t;^) 
i = l 

defines on 01 an Ornstein-Uhlenbeck-Malliavin operator. 
The proof is not difficult. 
The Malliavin calculus is a branch of differential calculus for functions and mea­

sures on infinite dimensional spaces. In more narrow sense it is a method of studying 
differential properties of distributions of functional of random processes (especially 
Gaussian) which is based on the integration by parts formula in infinite dimensions. 
Originally it was created by P. Malliavin for investigating transition probabilities 
for diffusion processes £f (in other words, measures on Rd induced by the simplest 
map a>i-> £t(co), t being fixed). An interesting discussion of this method (including 
different approaches) is presented in [30]. Proposition 5.1, 5.2 show that these 
approaches are equivalent at the abstract level (for example, compare our Theorem 
2.1 with analogous results in [8], [9], [29] —[33]). Some diversities are explained 
by various choices of vector fields along which measures are differentiable. Besides, 
different authors apply abstract theorems to different concrete classes of measures 
and functionals. For instance, Smorodina [31] deals with stable measures. We have 
discussed differentiable measures. The theory of differentiable measures was suggested 
by S. Fomin (1966) and developed in [34], [2], [4], [35], [1] (relevant ideas belong 
also to Pitcher [17]). For the connection of the topics being discussed with stochastic 
calculus see [27], [36]. 

In the conclusion I would like to thank the Organizing Committe of the 17-th 
Winter School on Abstract Analysis for the invitation to participate and Dr. D. 
Preiss for useful discussions and valuable suggestions concerning our § 4. I am par­
ticularly indebted to Dr. L. Zajicek for kind attention. 
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