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In [7] H. Radstrom has proved that every additive set-valued function defined 
on (0, oo) with compact values in a locally convex topological vector space Y is of 
the form A(x) = a(x) + xK9 x e (0, oo), where a: (0, oo) -> 7 is an additive function 
and K is a compact convex subset of Y. The purpose of this paper is to prove an 
analogous representation theorem for midconvex set-valued functions. 

Let X and Y be vector spaces and I) be a convex subset of X. A set-valued function 
(abbreviated to s. v. function in the sequel) F: D -> 2Y is said to be convex if 

tF(x) + (1 - t)F(y) cz F(tx + (1 - t) y) 

for all x, ye D and all t e [0,1]. We say that F is midconvex (or Jensen convex) if 

(i) '.F{x) + iF{y)cF^±y) 

for all x9 ye D (cf. [1] and the bibliography therein). It is apparent that an s.v. 
function F is convex (midconvex) if and only if the graph of F, Gr F := {(x9 y) e 
eX x Y: x e D9 y e F(x)}9 is a convex (midpoint convex) subset of I x Y. A func­
tion a: X -> 7 is said to be additive if it satisfies the Cauchy functional equation 

a(x + y) = a(x) + a(y), x9yeX . 

Given a topological vector space Y (which always is assumed to be Hausdorff) we 
denote by C(Y) the family of all compact non-empty subsets of Yand by CC(Y) the 
family of all compact convex and non-empty subsets of Y. The symbol IR stands for 
the set of all reals. We say that an s.v. function F: IR -» 2Y is continuous if it is 
continuous with respect to the Hausdorff topology on 2Y. 

The main result of this paper is the following 

Theorem. Let I cz IR be an open interval and Y be a locally convex space. An s.v. 
function F: I -» C(Y) is midconvex if and only if there exist an additive functions 
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a: U -> Y and a convex continuous s.v. function G:I -> CC(Y) such that F(x) = 
= a(x) + G(x) for all x e J. 

We shall start from three lemmas which play a crucial role in the proof of this 
theorem. Recall that a function/: D -> Yis said to be a selection of an s.v. function 
F: D -> 2y if / (x) e F(x) for all xe D. We say that a function /:£>-> 7 is a Jensen 
function if it satisfies the Jensen functional equation 

(2) f(^)-\W*)+f(y)h x,yeD. 

If the equality sign in (2) is replaced by "fg" ( "^" ) we say that / is midconvex 
(midconcave). 

Lemma 1. Every midconvex s.v. function F:I -> C(U), where I c R is an open 
interval, admits a Jensen selection. 

Proof. Assume that F:I -> C(R) is midconvex and consider the functions fuf2: 
I -> R defined by 

ft(x) : = inf F(x), / 2 ( x ) : = sup F(x) , x e / . 

It is easy to check that / x is midconvex and/ 2 is midconcave. Moreover ft ^ f2 o n / 
If J = R, then f± must be of the form /x(x) = a(x) + c, xeU, where a: U -> R 
is an additive function and c is a real constant (cf. [5, Th. 2]). Therefore f1 is a Jensen 
selection of F. Now let us assume that I = (a, $) where a > — oo and {} g + oo (the 
proof in the case where a ^ - oo and /? < + oo is analogous). Then there exist an 
additive function a: R -> R, a convex function g±:I -> R and a concave function 
g2:7 -> R such that 

(3) /x(x) = a(x) + gi(x) and /2(x) = a(x) + g2(x) 

for all x e I (cf. [3] or [5]). Let us extend the functions gl9 g2 on [a, /?) putting 

gt(a) : = lim gx(x) and a2(a) := lim ^f2(x) 
x-+<x+ x-*a + 

(these limits exist and are finite because gt is convex, g2 is concave and g± ^ g2 

on I). Using the fact that the differences quotiens of convex (concave) functions 
are increasing (decreasing) we get for all x e I 

(4) lim 
x-+ß~ 

and 

9i(x) - 9i(a) > 9i(x) ~ gi(a) 

(5) ш9Ы^ZlM = lim 02(x) - 9г(*) + И m 9г(*) " gi(^) g 

x->ß- x — a x-*ß- x — a x-*ß- x — a 

< giW - 9г(*) + g2(og) - 9i(*) = g2(^) ~ gi(og) ^ 
"~ x — a x — a x — a 
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Let us put 

« : - M m " ( * > - ' - ( " > 

x-+p- x — a 

and consider the function f: I -> R defined by 

f(x) : = a(x) + m(x — a) + gx(a), x e / . 

Clearly, f is a Jensen function. Moreover, by (3), (4) and (5), 

(6) fx(x)^f(x)^f2(x) for all xel. 

Since for every xel the set F(x) is closed and, in view of (1), 

F(x) = ғ(^)ci[F(x) + F(x)], 

we infer that F(x) is convex. Therefore F(x) = [fi(x),f2 vx)]5 xel. This, together 
with (6), shows that f is a selection of F : : 

Remark 1. A midconvex s.v. function F: D -> C(R), where D is a convex subset 
of R", n ^ 2, need not possesses any Jensen selection. For instance, let D : = {(x, y) e 
e R 2: |x| + \y\ g 1} and let S c R3 be the simplex with vertices ( - 1 , 0, 0), (1, 0, 0), 
(0, - 1 , 1) and (0,1, 1). Then the s.v. function F: D -> C(R) whose graph is equal 
to S is convex and has no Jensen selection. 

The idea of the proof of the next lemma is due to A. Smajdor and W. Smajdor 
(cf. [8]). 

Lemma 2. Let D be a convex subset of a vector space and let 7 be a locally convex 
space. If every midconvex s.v. function F: D -> C(R) has a Jensen selection, then every 
midconvex s.v. function F: D -> C(Y) has a Jensen selection. 

Proof. Let F: D -> C(Y) be a midconvex s.v. function. Consider the family 
& : = {G: D -> C(Y): G is midconvex and G(x) c F(x), xe D] endowed with 
a partial order -< defined by Gt -< G2 :o Gx(x) c G2(x), x e D. Every chain JS? 
of elements of ^ is lower bounded by the s.v. function H: D -> C(Y) given by H(x): = 
: = f) G(x), xe D. So, by the lemma of Kuratowski-Zorn, there exists a minimal 

element F0 of SFm We shall show that F0 is single-valued. For the indirect proof 
suppose that for some x0e D there exist two points yi9 y2 e F0(x0), yx =j= y2. Take 
a linear continuous functional j * : Y -> R such that y*(yi) + y*(y2)

 a n d P u t F*(x) : = 
: = y*(F0(x))9 xe D. Then F*: D -> C(R) and it is midconvex. Therefore, by the 
assumption, there exists a Jensen selection f: D -> R of F*. Consider the s.v. function 
Ft: D -> C(7) defined by F±(x) := F0(x) n y*_1(f(^)), xeD. This s.v. function 
is midconvex, Fi(x) <=• F0(x) for all x e D and Fi(x0) 4= Fo(*o)> which contradicts 
the minimality of F0. Thus F0, being midconvex and single-valued, is a Jensen 
selection of F : : 

127 



The next lemma gives some condition under which midconvex s.v. functions are 
continuous. 

Lemma 3. ([6, Cor. 3.1 for K = {0}). Let X, Ybe topological vector spaces and D 
be an open convex subset of X. Assume that F: D -> C(Y) is midconvex s.v. function 
andf: D -> yis its selection. If fis continuous at a point of D, then F is continuous 
on D. 

Proof of Theorem. Let F: I -> C(Y) be a midconvex s.v. function. Notice first 
that F is convex-valued. Indeed, for every x e I the set F(x) is closed and F(x) = 
= F(i(x + x)) c i[F(x) + F(x)]. This implies thatF(x) is con vex. In view of Lemma 
1 and Lemma 2 there exists a Jensen selection f: I -> yof F. Being a Jensen function f 
is of the form f(x) = a(x) + c, xel, where a: U -> y is an additive function and 
c e y(cf. [2, Lemma 2]; to be sure, the lemma is formulated for real-valued functions 
but the proof given there holds for vector-valued functions, too). Consider the s.v. 
function G:I -> G(Y) defined by G(x) := F(x) — a(x), xel. This s.v. function is 
midconvex and the constant function c yields its continuous selection. Therefore, 
by Lemma 3, G is continuous on I and hence it is convex ([4, Th. 2]). Thus F is of the 
required form. The converse implication is obvious ! I 

Remark 2. Recently A. Smajdor and W. Smajdor proved [8] that every midconvex 
s.v. function F:Ku {0} -> C(Y), where Y is a locally convex space and K is an 
open convex cone in a locally convex space, has a Jensen selection. Using the same 
method as in the proof of our Theorem we can show that such s.v. functions can be 
also representated in the form F = a + G with an additive function a and a convex 
and continuous on K s.v. function G. 

Remark 3. If an s.v. function A: (0, oo) -> C(Y), where yis a locally convex space, 
is additive, then it is con vex-valued (cf. [7]). Consequently, it is midconvex because 

2A(Z±*) = A(1±*) + A ( ^ ) = 4* + y) = A*) + My). 

x9ye (0, oo) . 

On the other hand, additive and continuous s.v. functions A: (0, oo) -> CC(Y) are 
of the form A(x) = x A(l), x e (0, oo). Using these facts we can obtain the theorem 
of R&dstrom mentioned at the beginning as a consequence of our Theorem. 
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