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LOCAL CONVEXITY OF TWISTED SUAMS

Pawel Uomandski

he basic notion of this paper is the notion of a twisted sum.
A topological vector space (tvs) X is called a twisted sum for
a pair of tvs Y, 4 it X contains an isomorphic copy 11 of Y such
that X/x]== Z. ln terms of diagrams it may be expressed equi-
valently (and more precisely) as follows: diagram of tvs and
continuous relatively open linear mappings (homomorphiems)
of the torm
(%) ) sY 3 sx -3 52— 59

~

is said to be a twisted sum of Y and 2 if it is a short exact

seyuence (i.e., the image of every map is equal to the kernel
of the next map).

There are two main problems in the theory of twisted sums
which we study in the present paper. lbe first one is the three
space problem tor local convexity, i.e., the gyueetion for what
pairs of tvs all or their twisted suuws are locally convex. 1t is
known (and proved independeatly in [7], [14] ana [i15] ) that there
is a nonlocally convex twisted sum of the one-dimensional- space &
ana the Banach space 1.

We say that a locally convex space (lcs) 2 is a ISC-space
(iwisted Sum Convex, comp. [4]) if, for every lcs Y, every
twistea sum of Y and 4 is locally convex. We study this class of
lcs in our paper in detail (characterizations, permanence
properties). lhis class is closely related to the second main
problem which we examine: the problem of splitting.

e say that the twistea sum (%) splits if the space j(Y) is
complemented in X, in fact then (%) is a direct sum of Y and Z.

A tve 4 belongs to the class S(Y) if every twisted sum of Y and
Z gplits.

In Section 2 we characterize ISC-spaces as lcs & such that
every twisted sum of l,o(A) and 4 splits (i.e., % €S(1.0(A))) for
every set A.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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In Section 4 we consider the opea pruolem whether every
locally convex K-gpace 4 (i.e., such that Ze s(K), dim K = 1,
see [Y]) is necessarily a TSC-space (the converse is trivial). we
give some partial answers; for example, the answer is positive for
arbitrary products o1 countable direct sums of metrizable lcs.

The first partial answer was givea by S. bierolf [3], Theorem 2.4.1
and by M. J. Kalton [7], Theorem 4.10.

In Section 3 we study permanence properties of the classes
of all TSC-spaces, X -spates, and 5(Y). The table given there
containg all such properties known to the author.

Section 1 is of technical nature. It contains a study of
the so=-called Quasilinear technique -~ a general method of
constructing all twisted sums for the given pair of tve Y and Z.
This method is used throughout the paper. The first general
description of the techniqQue was given in [4], Sections 2 anda 3,
but the present description includes some new facts and
improvements, including some better proofs. Those proofs which
have not been changed, are omitted. lhe applications of this
techniQue given in this paper and in [4] fully motivate
an extensive stuay of it.

The Quasilinear technique for constructing twisted sums o1 two
locally boundea tvs was used for the rirst time in [/] and [14].
The first splitting condition for the locully boundea case was
given in [7]. In [10] it was shown that all twisted sums of locally
bounded spaces can be obtained by using Quasilinear homogeneous
maps. A similar results for the pairs consisting of the one-aimen-
gional space ana a iréchet space was given in [8]and for the pairs
consisting of two nuclear ¥réchet spaces, the second one with
a basis, in [12]. This latter result is even stronger, all twistea
sums of such pairs of tvs can be obtained with use of linear maps
instead of Quasilinear. It can be generalized to pairs ot arbitrary
nuclear spaces or even pairs consisting of an arbitrary lcs
and a 1ISC-space. The generalization as well as some other
applications of the Quasilinear technique will be given in
the author's next paper "Twisted sums of nuclear and Banach spaces!
Some other considerations and results related to the two probleas
mentioned above are contained in [4].

We finish the introduction with some auxiliary notions
and facts.

In this paper we consider only tvs over the field of real
or complex numvers whick is denotea by K. The same notation is used
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for the one~dimensional tvs.

A palanced subset U of a tvs X is called pseudoconvex if there
is ¢ >0 such that U + U ©€cU and it is called r-convex, where
0O<r<l, if al + bU = U holds for all a, b =0 with a¥ + of = 1,
The tvs X is said to be locally pseudoconvex (r-convex) iff it has
a U-neighbourhood base consisting of pseudoconvex (r~convex) sets.

by Theorem 6.8.3 [6]and its proof (the so-called Aoki-Kolewicz
Theorem), a tvs X is locally pseudoconvex iff it has
a U-neighbourhood base (Ua)EleA such that each Ua is r -convex tor
some O <r 1. It is obvious that every r-convex set is pseudo-

convex and that the gauge functionals of r-convex sets are r-semi-
norms.

A metrizaole complete tvs is called an F-space, and a locally
convex F-space is called a Fréchet space. by X we denote
the completion of the tvs X (i.e., the direct sum of the closure
of zero ana the completion of its Hausdorff associated tvs). If j
is a continuous linear mapping, then 3 denotes its (unique)
extension to the completion of its domain. In diagrams, the arrow

<> is used to inaicate topological linear embeddings. For other
notions we refer to [o]land [l6] in general.

1. Quagilinear technique. First, let us recall some deriniiii_.s
from [4], Section 3. Let Y, Z be tvs. Two twisted sums of Y and %,

(1.1) 0—->1JL_>X__‘*_>Z__>0
j1 ‘i]
and V] ———a—Y-———a-X,-——+ Z——>

are eyuivalent if there is a topological isomorphism (which
establishes the eyuivalence) 1: x-—->x1 such that the following
diagram commutes:

O—3Y 4 ox-% 5450
(1.2) lm l'r lid
d1 ¥V 4y
0 > Y > X >2 > 0o

1
Let F: Z—>Y be an arbitrary map, and let us define two other
maps AF: iXL—>Y, JF: KXZ—Y by
Ak(z1,za) = F(z, + z,) = #(3,) - F(z,),
JF(a,z) = F(az) - aF(z).
%e say that the map F is quasilinear if AF, JF are continuous
at zero and F(V0) = O,

For i = 0,1,2,3,4 we define the sets QY(Z,Y) of maps F: Z—» Y
as follows:
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Q%z,Y) = {F: F is quasilinearj ,

Q'(Z.Y) = {Pe Q°(z,Y)s F is homogeneous} ,
Q%(z,Y) = {PeQ°(Z,Y)= Ay and Jg are continuous?} ,
Q3(£ Y) = {F ECZ(Z Y): Ay is continuous} ’

Q4(2,Y) = {F: P is linear}.

Now assume that Y is a subspace of another tvs !1, and let
q H Y1""YI/Y be the natural quotlent mape. Then we will denote
by Q*(z,Y, Y, ) the set of all FeQ(Z Y ) such that g, F: Z—»YI/Y
is continuous at zero. We will say that a map between two tvs
belongs to ut (i = 0,1,2,3,4) it it is, respectively,

- continuous at zero (i = v),
- continuous at zero and homogeneous (i = 1),
- continuous (i = 2),
- contiiuous and homogeneous (i = 3),
= continuous and linear (i = 4).
The superscript i = 0 is often omitted.

Using Quasilinear maps we can construct twisted sums. Let
PGQ(Z,Y.Y1); then Y@FZ will denote the product linear space Y X4
endowed with the topology generated by the O-neighbourhood base
consisting of the sets of the form:

wg(u,n = {(y,8) € Yxu: y = P(z) € U, z €V},
where U, V are arbitrary O-neighbourhoods in 11. 4, regpectively.
It is proved in [4], Proposition 3.1 that the following diagram

V——y—d oyt si—>s0
forms & twisted sum, where j and 4 are the natural embedding and
projection, respectively.
Remark 1.1, If is ¥ &ﬂ, is the natural embedding, then
the following diagram commutes:

0 ——n,—Jln ®pl —1>2 —>0 ,

where j, and 44 are again the natural embedding and projection,
respectively. #doreover, 1‘.><:LdZ is a topological embedding. ln fact,
the condition "y °¥: 4—>Y,/Y is continuous at zero®
in the definition of Q(Z,X.Y,) is equivalent to the fact that
q = q1°(i xidz) is open or, equivalently, that the "restriction"
of the twistea sum Y,QFZ to Y@FZ is a twisted sum too.

We will say that a map s is a section for the twisted sum (1.1)
iff 81 2—X, 8(0) = 0 and Q+s = id;. Further, a map p: X—>Y is
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said to be projection for the twisted sum (1.1) if p(0) = O and
p(x + j(y)) = p(x)+y for every x€X, y€Y. The latter condition is
tulfilled by every additive map p with plj(Y) = 3'1.

Remar k 1.2, Let us observe that if s is a sectinn for (1.1)
then p = §~'e(id, - s°4) is a projection for (1.1). Un the other
hand, if p is a projection for (1.1), then we can define
a section s for (1.1) by s(4(x)) = x = jep(x) for every x€ X.
Theretore there is a bijective correspondence between projections
and sections, )

LEMMA 1.1, For an arbitrary twisted sum (1.1) of tvs Y, 2
the following conditions are equivalent (i = 0,1,2,3,4):

(a) For every algebraic isomorphism T: X —s Y x Z for which
(1.2) with )(1 = Y x4, commutes, there is a map FeQi(z.X) such that
(11) is equivalent to the twisted sum

0 ——)Y——)YQPZ—)Z—>O,
and the equivalence is established oy I (recall that YX 2 =~Y$PZ
algebraically).

(b) The twisted sum (1.1) has a sectiuu s eMt,

(¢) The twisted sum (1.1) has a projection pemi.

Proo f: (a)é&>(b) is proved implicitly in [4], Lemma 3.2.

(b) —>(c): The projection p defined as in Remark 1.2 belongsg
to Mt irr s cul.

(¢) =>(b): If p is continuous at zero, then for every
O-neighbourhood Vo ¥ there is a O-neighbourhood UcX. such that
p(U)c V. Hence for z2€q(U), s(z)€U - j(V) whenever s is defined
as in Remark 1.2. Therefore s is continuous at zero too. The other
cases are similar.

LEMiA 1.2. (Compe [4], Lemma 2.1) Let

(1.3) 0 —> (1, - (£,%) 35 (2,y;) —> 0
and
(144) 0 -—>(Y,L)—J—>(X.?2)—Q—>(Z.Y,)-—>0

be twisted sums, where T, )“cz.

Let s (Z,y'2)—>(1,?:2) be a section for (1.4) be.onging
to the class Ali; then s: (Z,Ya) —>(X,?.'1) is a section for (1.3)
belonging to the claes Mi, to00.

P r oo f. Using Lemma 1.1 and the remarx before it, we may
consider respective projections for the twisted sums (1.3)
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end (1.4). This makes Lemma 1.2 obvious.

PROPOSITION 1.1, Let (Ya)agA be a family of tvs and let Z be
a tvs. If for every a€ A and for every twisted sum of Y and 2
there is a projection peﬂl, then for every twisted sum
of Y = | | Ya and Z there is a projection peMi (i = 0,1,2,3,4).
acA
Proof. Let us consider the following twisted sum

oy d sx %,z 5.
#0r every ac A, let r.: Y—)Ya be the natural projection. Then,

for the natural quotient map T : x—»x/j(belAJ{a Ya) = X, there
are maps ja: Ya-—> Xa and LW xa—> Z such that the following

diagram commutes and the second row forms a twisted sum:

0 —sy—3d 3x-% 3240

o b

0 —> Ya-—*‘>xn—“>z —>0.

Let Pyl Xa—bYa be a projection for the twisted sum xa.

The desired projection p: X—>Y is then given by the formula

P(x) = (poT (x)), cp

Indeed, let x€X, ye¥Y, a€A, then

P To(x + 3(y)) = p (T o(x) + T e ily)) = p (T (x) + jor (y))

= pe T (x) +r (y).

Finally,

p(x 4+ 3(y)) = (pr T (x)) g cp + (r(¥)) e p = 0(x) + 50
Clearly p€ M~ whenever Py belongs to the class W~ for every a€A.

PROPOSITION 1.2. Let Y be a Fréchet space and let Z be
an F-space.

(a) (E. Michael, [13] s [2], Theorem II.7.1) Every twisted sum
of Y and 2 admits a continuous section.

(b) If Y is a Banach space, then every twisted sum of Y and 2
admits a continuous section s such that s(az) = as(z) for every
z€2, a€K,|al= 1.

(c) If Y is a Banach space and % is locally bounded, then
avery twisted sum of Y and Z2 admits a continuous homogeneousp
section.

Pro ' f. (a): It is proved in [2], Theorem LI.7.1.
(b): Let us denote bv T the multiplicative group {a€K: |als 1],
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Let us conaider en arbitrary twisted sum of Y and Z. By part (a),
it possesses a coatinuous gection m. For every xey (%), s€4,
we have (1/a)e{az) - x&j{¥), a€X, where j, 4 are "associated®
to the givea twipted pum embedding of Y end guotient map onto Z,
respectively. Hence the function f: KXZ — ¥ auch that

f(ayz} = (1/a)e{az) - s(z), s€kK, z€ 3,
ie continuous. Thus we can define:

8,(z) = 8(z) + [ £(a,z) da ,
T

where the integral ia tbe bochner integral taken with reepect to
the normalized Hazar measure on the group T.
la the real case we have simply 8,(s) = (8(s) + 8(~%))/2 &0
that the section 8, is continuous. we will show it in general.
First, note that if ¢ is a compact subset of Z, then-
the function I restricted to TXC is uniformly continuous. Hence.
if 2,—> 2 in &, then f(-.zn) —» £(*,2) uniformly for s€ T, n—res,

Therefore, since a(zn)—-—-ha(z). we have
8,(2,) = a{z) +{ f(a,2,) da —s(z) +.£ t(a,z) da = 8,(2),

and 8, iy continuous. Ubviously, s, is the desired waction.

(c): It is known (see for example [3] or [’?],‘-,_ Thaorem 1.1) that
every twisted suw of Y end Z is locally bouaded whenaver Y ahd 2
are locally bounaed. By the part (b), every twisted sum of Y and z
possesses & section s such that s{az) - sa{g)} for every a€k,
lal= 1, 2€ 4, Let V be a closed bounded reconvex O-neighbourhood
in Z such that 8(V) is bounded mnd let py be its gauge functional.
Obviously it is a continuous r-norm. #e can dafine a new
homogenaeous gection s, as followe:s

[V for z = Oy
51(5) -
pylz)ele/py(2)} for z 4 O,

By the coatimelty of Pyr 84 ie continuous at every point z # O.
But alz/pw(m)) ca(¥) and the letter set is bouanded, Hence, if
z.—> 0. thén pv(z} — 0 and a,(z)-——»ﬂ, too. Therefore s, is
continuoun at every naint and it i# the desired aection.

BROPOSITIVN 1,3 ( [4], Corollary 2.1), Let Y be a semimetrizable
tva und let Z be a Hausdorff tva. II
0 —>y A x-S,z .—50
is a twisted sum, then

0—»?—3_—)?3.—»‘2'——-—)0
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is a twisted sum too.

Now, the following theorem establishes the existence
of sections for some twisted sums. The parts (a) and (c¢) can be
strenghthened, comp. [4], Theorem 2.1.

THEVREM 1.1. Let Y, Z be tvs. Then every twisted sum of Y and 2

possesses a section s which is:

(a) continuous at zero, whenever Y is an arbitrary proauct of
P-gpaces; .

(b) continuous, whenever Y is an arbitrary product of Fréchet
spaces;

(¢) vuntinuous at zero and homogeneous, whenever Y is an arpitrary
product of locally bounded F-spaces;

(d) continuoda and homogeneous, whenever Y is an arvitrary product
of Banach spaces and Z is locally pseuaoconvexe

Y roc f. rroposition 1.1 shows that it is enough to prove
the theorein omitting the phrases "an arvitrary product of". Hence
the parts (a) and (c) are containea in [4] , Theorem 2.1. Part (b)
is an easy conseyuence of Fropositions 1.2 (a), 1.% and Lemua 1.2.

(d): Let us consider a twisted suu

0 — (X,I-1) —— (£,72) L (4,y) —> 0,
where (Y,ll-ll) is a Banach space and (Z,y) is a locally pseudoconvex
space. By [4], Theorew 1.1, (X,®) is locally pseuaoconvex. Let U
be an r-convex (baianced) O-neighvourhood in (X,?) such that
i~1(U) is contained in the wait ball of (Y,I).
by Lemma 1.2, it is enough to prove the existence of a reyuired
gsection for the twisted sum

0 —— (¥, 1) - (%, 7)) 4 (%, v7) —> 0,

where T, (ya, respectively) is the linear topology generated
by the O-neighbourhood base {n"1Uzxxeu}({n'1q(u):xxeu}, respece
tively).

Let us observe that q(ker T;) = ker yy (where ker 7, ie
the closure or {0} in (X, %)) because (Y,ll-ll) is complete. Hence
we have topological direct sums

(x,2)) = (Xy,2ynX,) B (ker 2,, 7, nker ;) for some X',l._:.D'JUI'),
and (Z,y;) = (2;,¥3n%,;) @ (ker yy, ¥y nker y,) for Z, - 4(Xy).
In consequence, the following diagram forms a twisted sum of.
Hausdorff locsally r-convex spacess
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q
Q0 —— (Y, 1) ——J-—->(11,f’n x1) '—1> (zjvr«,n Z’) —0,
where q, = qlx . By Propoeition 1.3, also the next diagram forms

a twisted sum:

0 —— (Y, —3—>(X,.z-,nx )—>(Z1,Y'nz ) —>0.
This twisted sum fulfils the assumptions of Proposition 1.2 (c),
hence it admits a continuous and homogeneoua section 8. It is
easily seen that s‘|21: Z1-——>X‘ is a section for the.previous

twisted sum. Let ps Z —>ker yy be a linear ( and obviously con=-
tinuous) projection with ker p = z,. and let 92= ker g3-—->ker ta
be the linear map such that
{az(z)} = ker Z1r1q'1(z)
for every z € ker Yie Of course, 8, is continuous. How, we can
define a homogeneous continuous section s as follows:
8 = 8,°p 4-91-(idz - ple

This completes the proof.

Kemark. 1t igs not known to the author if the assumption
that 4 is locally pseudoconvex is necessary in the part (d).
The above method of proof is not applicable in general because
the existence of Py with the properties as required in the above
proof jmplies that there is a O-neighbourhood in Z1 which does
not contain any line. It is not the case, for instance, when
Z2 = L,(0,1)/K, and so the author does not know if the twisted sum

0 —> K—>1L(0,1) —> 1L (0,1)/K —>0

admits a homogeneous continuous section (it has a homogeneous
gection continuous at zero and a continuous section, comp.
the parts (b) and (c)). .

The following result mav be called an "extension theorem":

THEOREW 1.2. Let us consider a tvs I,, the following twisted
sum of tvs Y and 2Z:
‘ 00— >y >x-3% 52 >0,
and a topological linear embedding i: Y CL>Y1..Then there exist
a tvs 11, a topological embedding T: XlCL>X1 and maps 31. 4 such
that the following diagram commutes and the second row forms
a twisted sum:

0 ——> Y-—;—%»X;;SH%VZ —3>0

\Pi; l\r . Lid

0 ———>Y,—>1 X,——>2 —>0,
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Remar ke This theorem is an easy conseyuence of B],
Corollary 3.2 (d). The twisted sum X, may be called an extension
of the twisted sum X to the twisted sum of Y, and Z.

Proof. Algevraically, we define )L1 = Y1/Y XYX4Z, let us
choose a linear isomorphiem j, from Y, onto Y, /YXY = Y1/YXYX{0}
with J,(Y) = {0} xY, ana let us denote by 44 the patural projection
from xl onto Z. Then there is a unique linear isomorphism T from X
onto YX2Z = {0} xY x Z 'such that the above diagram commutes. Next,
we equip I, with the strongest linear topology such that T and 31
are continuous. The family of sets of the form

({o}x 2(U)) + (§,(V)x{0}) ,
where U, V are O-neighbourhoods in X, !1, respectively, forms
a O-neighbourhood base for this topology. It can be easily seen
that 11 is as desired.

The following theorem is the main result concerning
the quasilinear technique; it is an immediate consequence
of Lemma 1.1, Theorem 1.7 and Theorem 1.2 (comp. femark 1.1),

THEOREM 1.,%. Let Y1:3Y. Z be tvs. Then every twisted sum of Y

and 2 is equivalent to a twisted sum of the form Y(BFZ. where

¥e Q'(2,Y,Y,) and

‘a) 1 = 0 when 11 is an arbitrary product of F-spaces;

{b) i = 2 when Y is locally convex and Y, is an arvitrary product
of Fréchet spaces;

(¢c) i = 1 when Y is locally pseudoconvex and Y, is an arpitrary
product of locally bounded F-spaces;

(d) 1 = 3 when Y is locally convex, Y, is an arbitrary product
of Banach spaces and Z is locally pseudoconvex.

Hemar k. Comp. BJ, Theorem 3,1 for a weaker version
of the parts (a) and (¢)e.
The last fact is proved in [4] , Corolilary 3.1:

THEOREM 1.4. The twisted sums
0 ——>y—d» Yo,z 54 —>0,
where Y<=Y,, % are tvs and Fe Q(z.!.x,) splits iff there is
8 linear map L: % —»Y such that ¥ - L: Z2—>Y; is continuous
at zero. ’
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2. Characterization of TSC-gpacese Let us recall that a lcs 4
is a TSC-space if for every lcs Y every twisted sum of Y and Z is
locally convex. By loo(A) we denote the Banach space of all bounded
functions £¢ A —> K with the sup-norm. First, we prove an easy

Lemma:

LENMA 2,1. Let B be a Hamel basis of 4 and let 1 oe an arbit-
rary family of quasilinear homogeneous maps F: Z —>K such that
F(e) = U for every e€ B, F€ I. Assume that the associated family
of mappings AF: Z2x2—>K, FelI, is equicontinuous at zero. Then
for every x¢€ Z, sup |F(x)|< oo,

Fel

Proof. Let r v: a continuous seminorm on Z such that
if x, y€2 and r(x)g1, r(y)g1, then IAF(x,y)I < 1 for every Fel.
Thus IAF(x,y)l £ r(x) + r(y) for all x, y€4 and F €I, Now, if
n
X = Z a.e, € 4 for e € B, a8 € K, x=1,...,n,

k=1
then (as easily checked)

n -1
P(x) = :L:‘-Z Aplage,, j; ajej)
k=1
Bl <m = 3 rlmge) + 3 5 DERRES

where the constant m s :ndependent of Fel.

and hence

The following theorem characterizes 1SC-spaces.

THEOREM 2.1. For every lcs Z the following conditions are
equivalent:

(a) 4 is a TSC-space.

(b) 2€5(leoll)) for every set ..

(c) 2€S(loof(l)) for a set I the -.ardinality of which is equal
to the d;ensity character of 4.

(d) 2€8(1oo(I)) for a set I the cardinality of which is equal
to the carainality of a U-neighbourhood base of Z.

(e) If ICQ‘(Z,K) is a family of maps such that the associated
family (AF)FEI is equicontinuous at zero, then there is a
family of linear (not necessarily continuous) mappings
Lgs 4—>K, F€I, such that the family (F - ‘[‘F)FGI is equi-
continuous. at zero.

(£) 1f ICQP(2,K) is a family of maps such that the associated
fanily (Aj)ﬁ.el is eqQuicontinuous at every point in Z2XZ, the-
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there is a family of linear (no6t necessarily continuous) mappings
Lyt 2—K, FE€I such that the family (F - Lplper is
equicontinuous at zero (or eguivalently: equicontinuoue at every
point in 2).

Proof. (a) =>(b): This is an immediaste conseyuence of
the well-known fact that isomorphic copies of 1leoo(I)'s are
complemented in every locally convex space.

(b) = (a): Every locally convex space Y may be empedded into
a suitapnle product l I 1*(113) = Y,o Let us consider the following

beb
twisted sum

0—sy -4 sx-% 57 3o,
By Theorem 1.2, it may be extended to a twisted sum in the upper
row of the diagram below a
o—> 1 —tex—tz—>0
7
0—>y -4 >x-34 5250
80 that the diagram commutes. by Corollary 1.1 and (b), 4 €S(Y,)
and then X, =¥ Y,®Z is locally convex. Hence so is X as
a subsgpace of x,.
(a)&(c): The proof is quite similar as above.
(b) —=>(d): It is obvious.
(d) =) (e): Let C be a VU-neighbourhood base in Z. Let us assume
that (e) does not hold: there is a U-neighbourhood U€C in Z such
that |Ap(UXU)l <1 tor every FEI but

for every U € C there exists FUEI such that for every linear
map L: Z—>K one can find xeU with I(Eu - L)(x)I >1.
Obviously; for the family J, J = {F;s U€C}, the condition (e)
does not hold, too.
Choose any Hawel basis b for Z. Then for each Fe€dJ there is
a linear map h,: Z—>K such that (F - hF)(e) = Q for all e€B;
clearly A(P-hF) = Age Using Lemma 2.1 we get

sup |(F = hy)(z)l < oo for every z €4.
red
we can define a map F 3 L—>1.05(Jd) by

P(z) = ((F = np)(z))pey i
clearly it is quasilinear and homogeneous. By (d),the twisted sum
0 —— Loo(J) ——>1°°(J)®F°Z —>.—>0
splits; hence, by Theorem 1.4, there exists a linear umap
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Lt Z—>1c0(d) such that F, = Lt 2—>1o0(J) 1is continuous at zero.
Now, if (x3)p cg &re the coordinate functionals on loo(J)' then
for the linear maps I‘P = hr-f- Xp *.L: 2 —>K we have xro (P=1L) =
= P = Lp and the family (F - L )j. cqg 18 equicontinuous at zero;
a contradiction.

(e) =>(£): This is obvious.

(f) =>(b): Consider a twisted sum (B is an arbitrary set)

(2.1) 0 — >leo(B) 4 5x-% 52 5o,
By Theorem 1¢3 (d), it is equivalent to
(2.2) u———>l°°(B}——>1°°(B)G)FZ —>Z —>0

for a suitably chosen homogeneous quasilinear map F: Z —>1,,(B)
such that Ag: 4X 2 —>1go(B) is continuous at every point. Let
(x:)b cp be the coordinate functionals on l.o(8)e. Then

1 = {p = bars Z—>K : b€B} form a family of quasilinear maps
such that AF = xb'AF are eguicontinuous at every point. By (f),

there is a 1amily of linear maps Lbz Z — K, such that

(P I‘b)b p 1is equicontinuous at zero. It follows easily that

Ls xv—-)(L (x))b eh is a linear map from Z to 1loo(B) and that

F =L is continuoua at zero. By Theorem 1.4, (2.2) splits and then
(2.1) splitse This completes the proof.

3, Permanence properties. In this section we will consider
the permanence progerties of the class of all ISC-gpaces.
The respective theorems will be obtained as immediate consequences
of Theorem 2.1 ((a)¢&(v)) and of "permanence theorems" for
the classes S(Y) for some tvs Y. The first fact is very simple.

THEVREM 3.1, For an arbitrary tvs Y, the class S(Y) is closed
under arbitrary direct sums (in the category of all tvs).

Proof. Let us consider a twisted sum
0o—>y—d 5y 5 EB i,—>0,

where Z €S(Y) for every a €A. It is obvious that for every a €«

the diagram '
v >y —3 >X—85z — >0,

where X = 4 1(Z ) and g = qlx , forms alau a twisted sum.

By the assumption, there is a linear continuous section 8, for

the latter twisted sum. Then, of course, @ s, is a linear
ach

continuous section for the origina. tvwisted sum.
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It is w.ll known (see for example [1], 3(6)) that for countable
families of les their locelly convex direct sum and their direct
sun (in the category of all tvs) coincide.

COROLLARY 3.1, cvery countable locally convex direct sum
of ISC-spaces is a ISC-space.

For twisted sums the above facts hold as well. The original
author's proof of the following result was very complicated
and therefore we will give much simpler proof due to L. Drewnowski.

THEOREM 3.2. For every tvs Y and every Z,, %, €5(Y) every
twisted sum of 2, and Z, belongs to s(Y).

Proo f. (L. Drewnowski) Let us consider the following
twisted sums

J q
0—>2—253 Z‘22 >0,
0—>yY—d sx -8 55— 50,

Let X, = 4~ '(j;(4,)), thus j(¥) =X, =X and we get the follow-

ing twisted sum:
b I

J
(¢] >Y > Xy 44 > 0,
where q1 = jz oq|x « By the assumption, the above twisted sum
splits, and hence there is a subspace £1c: L, 1somorphlc to &1 such
that X,-is a topological direct sum of Y and Z,. Let X, = x/z
and let q H x———>42 be the natural guotient map. It is easily seen
that 32 4 °js Y-——>12 is an isomorphic embedding. ¥%e can obtain
the following twisted sum
J2 42

0 "Y sz 4*22 > 0,
because X2/j2(Y) = (x/z,)/(x,/z,) is naturally isomorphic to x/x,==
z(x/g(x))/(x,/:(x)) zz/z, 2 Z,. Obviously, by the assumption,
the latter twisted sum splits; let p: 12———>¥ be a continuous
linear projection for it, i.e. p°32 = idy. Then the map
P = Peq,: X—>Y is a continuous linear projection for the given
twisted sum of Y and Z, because Poj = p-qooj = poj2 = idY. This
completes the proof.

The following table collects all the permanence properties
of the classes of all TSC-spaces, A -spaces and S(Y) known to
the author. For instance, the word "Y£S" in the column " -spaces"
and the row 3.(a) "finite products®™ means that every finite product
of J-spaces is a A -space. References for proofs and
counterexamples ere given in Remarks below,
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X -spaces | TSC-spaces
1. Subspaces
(a) closed KO NO NO
(v) complemented YES YES YES
(¢) dense ?, YES for Y F-space YES YES
or g-minimal
2. Quotients NO see remark below YES
3¢ Products
(a) tinite YES YES YES
(b) arbitrary NO,YES for Y locally YES YES
bounded complete
4. Reduced projective | NO,YES for Y locally Y&S YES
limits bounded complete
5. Direct sums
(a) countable
locally convex YES YES YES
(b) general YES YES C——
6. Countable locally
convex inductive ? YES YES
limits for 1lcs
7. Iwisted sums YES YES YES

Remark s. Let us observe that the classes of all J-spaces

and all TSC-spaces are particular cases of the classes S(Y) (comp.
Theorem 2.1 (a)&> (b)), therefore it is enough to prove positive
results only for the first column of the table above.
1+(a)s It waes proved by N. J, Kalton and J. W. Roberts [I1] .
that 1o, ie a FH~space and, by Theorem 2.1 and [7], Theorem 4.10,

lco is a TSC-space. On the other hand 1,

is isomorphic to

a subspace of loo and, by [7], [14] and [i5], 1, is not a A -space
and obviously not a. I'SC-space,
1.(b)s This was proved very simply in [4], Theorem 4.1 (a).



28 P. DOMANSKI

1.(c): The answer. YES for Y semimetrizable complete may te
easily deduced from Proposition 1.3. L. Drewnowski ( [5],
Corollary 2.6) proved that every quotient of a complete tvs by its
Qeminimal subspace is complete.(A Hausdorff tvs X is called
Q-minimal if none of its Hausdorff quotients admits a strictly
weaker Hausdorff vector topology). This result allows us to prove
a strict analogue of Proposition 1.3 for Y Q-minimal and 2
an arbitrary tvs. Using this fact we may justify the answer YES
for Y gq-minimal. The only known qQ-minimal tvs are K~ for every
set 1.

2: N, J. Kalton and N, T, Peck ( [9], Theorem 5.2 and 5.3)
proved that a yuotient 2/Z, of a Hd-space Z is a A -space iff
the subspace Z1 has the HBEP in Z, i.e., every continuous linear
functional on Z‘ can be extended to the whole space 4. Of course,
this assumption is satisfied when Z is locally coavex. It is proved
in [4], Lemma 4.1 that if Z, is a subspace of a tvs Z, i €s5(Y)
and every continuous linear map Ls Z,——a-Y can be extended to
the whole space Z, then Z/Z,E S(Y)e Of course, by the Hahn-Banach
theorem, for every lcs 2, 4, every continuous linear map
Ls Z'——e-loo(A) can be extended to a map defined on 4. Hence,
by Theorem 2.1, the class of all TSC-spaces is closed under
quotients. For the direct proof of the latter fact see [4],
Theorem 5.3 (c). .

3.(a)s This was shown very simply in [4], Yheorem 4.1 (b).

3.(b)s D. Vogt ( [17], proof of Lemma 1.6 or [18], Theorem 2.4)
constructed a twiz 2d sum of s and sN which is isomorphic to s
(s is the kréchei auclear space of rapidly decreasing sequences).
Of course, su is_not isomorphic to s because the latter has
a continuous norm. Hence BNE S(s). by [17], ‘heorems 1.3 and 1.5,
every locally convex twisted sum of s and s splits. But s is
nuclear and all nuclear spaces are 1SC-~spaces ([4], Theorem 5.5 (¢)
comp. Cornllary 4.1 below), so finally s €S(s). Therefore the
answer iz NO even for S(Y), where Y is a Fréchet space and for
rountable products. Nevertheless, the answer is YES for S(Y), where
Y is locally bounded complete, as proved in [4], Theorem 4.3 (b).
by Theorem 2.1, the class of all ISC-spaces is closed under
arbitrary products.

43 Every product is a reduced projective limit of its finite
subproducts. Hence part 3.(b) implies the answer NO for S(Y).
The answer YES is proved in [4], Theorem 4.3 (a).
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5: This is contained in Theorem 3.t and Corollary 3.1.

63 For I5C-apaces this i a1 consequence of the parta 5 and 2.

7: This was proved ian Theorem 3.2. For T5(U-gpaces it may be
proved directly (eand rather simply), comp. [4], Theorea 5.3 (a).

4. The main open problem, In view of Theorem 2.1 it may be
interenting if 8(K} = S(15(A)) for every set A. This seems
unlikely but sll the examples of K -spaces kanown to the author
belong to 5{lce(4j). (For instance, by [9], Theorem 3.6 and [7],
Thecrem 3.6, Lp(0,1) €8(2 ald)}, 0 gp <1, for every net 4}, For
locally convex spaces 2 this problem {by Theorem 2.1) i1a eguivalent
to the following one (comp. .[4] ).

PRUBLEM. Do the clasges of all I3C-gpaces and all locally
convex J4-speces coincide?

8. Dierolf in [3], Theorem 2.4.1 {implicitly) and H, J. Kalton
in [7], lheorem 4,10 bave proved that every twisted sum of two
metrizable lcs ¥ and &, with 2 €5(£)}, is locally convex. From this
it may be easily deduced (see [4], Corollary 5.1) that locally
convex metrigable A-ppaces are 'SC-ppaces. Using the latter fact
and the permanence properties given in the previous section we get
immediately (Part (b) i= proved by a different ergument in [4],
Theorem 5.1):

THROREM 4.1, (a) An arbitrary product or countable direct sum
of metrizable lcs is a TSC-apace iff it is = JX -space.

(b} Every reduced projective limit of metrizable locally convex
I-spaces is a TSC-apace.

Every nuclear lcs is 8 reduced projective limit of Hilbery
epaces ( [16], 7.3 Corollary 3) but, by [7], Theorem 4.9, every
Hilbert spmce is &8 JH-space. Hence we obtains

CUROLLARY 4.1. {[4], Theorem 5.5 (c)) Every nuclear lca is
a T50-ppace.

The following theorem may be proved directly ms well.

THEOREM 4.2, Every twiptod mum of a lcs ¥ with a wesak topology
and a locally convex -space Z is locally convex.

Proof. The tva Y can be embedded into the product P I,
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for some I. Using Theorem 1.2 we may extend our given twisted sum
to a twisted sum X, of Y, and Z, which splits, by Corollary 1.1,

and hence is locally convex. Oobviously, the given twisted sum is

locally convex as a subspace of X;-

In view of Theorem 2.1 ({a)¢&)(e)), the positive answer to our
problem implies a kind of "Banach-Steinhaus theorem" for
quasilinear mappings. It is interesting that N. J. Kalton has
shown airectly ([7], Eroposition 3.3 (iii)) the condition (e)
from Theorem 2.1 for Banach [J-spaces. by Theorems 4.1 (a) and 2.1,
the same is true for a larger class of tvs, in particular, for
metrizable locally convex J-spaces but the author's atteampts
to prove it directly were unsuccessful.
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