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A CLASS OF BANACH LATTICES AND POSITIVE OPERATORS

RYSZARD GRZASLEWICZ

By an operator we mean a bounded linear transformation .

Let B be a real Banach lattice. A set of all positive operators
mapping B into B is denoted by L*(B)' i.e. Te L, (B) if
and only if Tx20 for all x20 . We say that a Banach lattice
B has the property W if the isometric domain

M(T) =,{ xe€B : WTxU=UTUL Uxll }
is a linear subspace of B for all T € L,(B).

In [1] it was shown that LP-spaces , 1{p<e , have the
property W . The proof of this result is based on properties of
doubly stochastic operators established by Ryff [4],[5] . In the
class of Orlicz spaces LQ(R) (with ¢: R, — k, strictly convex
and - 0\0):9 ), equipped with- the Minkowski norm only 1P-spaces
have the property W (see [2]). In view of the above facts it
would be interesting to know whether there exist svaces which are
not ip-spaces and which have the property W .

In this note we give an example of a two dimensional Orlicz
space with the property W, which is not an 12 -space , Next we
congider other properties of the two-dimensional Banach 1lattice
with the property W .

Theorem 1. Let B be a Banach lattice with the property W.
Then B 1is strictly convex.

Proof. To get a contradictjon suppose that B is not strictly
convex. Then there exist &istinct positive vectors Uy, uy such

that | a u; + (1-a) u, ¢ = 1 for all ae[0,1]. Let' £eB® be

such that Il fll= £ (u; + uy) /2 =1 . Then £ (u)=fuy) =1,
Obviously f, ‘u1)=f+(u2) =l|f+n = 1 . Now consider the operator
T defined by Tx = X5 f _(X) , where X5 €B 18 a fixed

vector, x,3 0 , Uxgh=1. We have u,,u,eM(T) and uT-az& M(T); g0
M(T) is not a linear space.This contradiction proves our Theorem.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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The two-dimensional case,

Example. Let B, denote Rz, eatiipped with the norm

hex, YN = \[;2 +axyl o+ 2

(X,y) € R Obviously B, is not an 1p-space. Note that B, is
‘an Orlicz space with the Minkowski norm

U mlg = inf [ ¢ glx/al) + @llyal) €1

where
%‘{E—[:—%t - Va3t2 | for 0<t 4.3@
P(t) =
212!31— t o+ l:Z—z—- for t > gz

It stould be pointed cut that each two-dimensional Banach lattice
w¥ith the norm satisfying |(x,y) =((y,x)l /is an Orlicz space,with
the Minkcwski norm. This description does nct extend to
3-dimensional spaces (see [3])
b
let T = [: d] € L*(Bo) , that is- a,b,c,d 3 0 . We claim
that "¥(T) is a lirear subspace of Bo « We may and do assume that

UT§=1. If M(T) has exactly one linearly independent vector, then
K{T) is obviously a linear subspace. Thus we need to show that if
there are two linearly independent vectors in M(T), say (x1,y1) ’
(Xz5¥5) ther T 1is an isometry. We have | T«x,ﬁﬂgﬁlkx,y>“2 .
Thus Ax2+ Blxyl +Cy2 £ %%+ \xyl + G
where A=a<+ac +c? » B=Zab+ad+bc+2cd , C=b%+bd+d? , and the
equality holds for (x9,5¢) , (xz,yz\ It is not hard to see
that this implies A=B=C=1 . Therefore a8°b2 + c2d2 + (a2+c2)bd+
(b°+d%)ac + 3abed=(B2- AC)/3 =0 .Since a,b,c,d 50 and A=C=1 we
obtain a=d=1 ,b=c=0 or a=d=0 , b=c=1 , i.e. T is an

isometry . Therefore B, has the property W .

o
Remark. Let B havethe property W and dim B=2. Let Te€ [ _(B) be
such that T1 € L (B) .Then _either T/ Ty 1is an/ isometry or
else there exists exactly one x, such that x50 , nxyU=1 and
I Txoll = inf {¥Txt : x€B , |x|l=1}
Indeed,suppose that T 1is not an isometry . Then T is not an
isometry and dim M(T=1)=1. Let 0 # y, € M(T™") . The vector
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X5 = T (¥0) /I|T'1(yom satisfies the above equality .

Theorem 2. Let (Rz,n-“) have the property W and let [I(1,0)1 =4(0,?
Then Lx,y)l =lly,xll for all X,y €R .

0 2-
a O

an isometry for some a 6{0,21_, To-get a contradiction suppose
that dim M(T4) =1 for all ae[0,2]. Put

a
Proof. Consider the operator T, =[ } . We claim that T, is

e, = (cosd,sind

o« = (cosd,sin )/H(cosd,,sinadn
d€ fo, ®/2] . we can define a functior #: [0,2]1—> [0, ®/2]
such that e g.4,€ ¥(Ty) . By the Remark for each a €(c,2) we
can find a unique g(a) €0, /2] such that LTa.eg(a)“=

=inf {uTa xll: Ixn=1§ , and we put g(0)=C ,
gl2)= /2,

It is not hard to see that the functions f and g are continuous.
Moreover #(C)= X/2 and £(2)=0 . By the Darboux property of the
continuocus function f-g. on [0,2] there exists ag such that
f(ag)= 8wap) . Ve have

kT eg(aoﬂ = inf {ITaoxﬂ : uxu=1} & sup { uTaoxll: uxn::}rﬂfef(aoy
Thus ‘Tao /lTaJ| is an isometry. Hence llTac((i.Oﬂl -\ Ta, (LT,
and  ag / UTg ll = (2-30) / ITaJI =1 , so IlTaJ|:a°=1 .

Therefore | (x,y)Il =1 Tao((x.yﬂ Il - ey, sl

Proposition. Sugppose (RE,I~H) has the property W. Then positive
isometries are exactly the operators of the form

3] = [

Proof. In view of Theorem 2 the operators having the above form
are 1sometries. a b.

Now assume that T =[c d] , where a,b,c.d %0 . is an
l1sometry. Then UT ((1,-10 =1 (la=bl,lc=-dD)ll € Wa+d,ced)=IT @,
=4T7((1,-Ml « Thus |a-b| = a+b and |c-dl=c+d. , s0 ab=cd=0,
which completes the proof.

Theprem 3. Let B beatwo-dimensional épace with the property W and

suppose B¥ ig strictly convex. Then BX* has the
property W. )

Froof. Let. T ¢ L(B¥) and UTI=1 . We need to show that if there
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exist two linearly independent vectors ,say vq,v, , in MI(T)
then T is an isometry. Since B and B¥* are strictly convex,
there exists a one-to-one correspondence BEsu® —> u e B such
that <u,u®> =tull tu™ ane iull =hu®N ., Thus we have Hv? 12 -
iTvin® - vl .(Tvi) x> =(vy, ™ ™H*> ana (W]) * e u(¥,
i=1,2 ; also (Tv1)x £ (Tvg\* . Since B has the property W
‘and ('l‘v;[)’t . (Tvg)* are linearly independent , the operator

X e_ua") is an isometry. Therefore,by Proposition, T "is also
an isometry ,which completes the proof .

Problems. Characterize the Banach 1attige8w1th the progerty w
In particular describe the norms pion R~ such that (R™,0-})
has the property W .

Can the atrict convexity of B™ be omatted in the
assumption of Theorem 3 ?
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