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DECOMPOSABLE SYSTEMS OF DIFFERENTIAL OPERATORS AND GENERALIZED 
INVERSES 

by R. Delanghe 

0. Introduction 
In his páper [4], M.R. Hestenes showed that each closed linear 
operátor L:H-*Hf, H and Hf being Hilbert spaces, admits a genera­
lized inverse L— x :H*-*H and he developed a Mspectral theoryM for 
such operators. As an example he considered the gradient operátor 
which satisfies the relation -A=(-div)grad. In [3] H.G. Garnir 
built up a framework for studying abstract Dirichlet-Neumann 
problems for decomposable systems of differential operators with 
constant coefficients i.e. operators L(9/9x) of the form L(9/9x) = 
L (-9/9x)L(9/9x) where L(9/9x) is a matrix differential operátor. 
In this páper we combine the results of the cited authors in the 
čase where the (D-N)-problém for the operators under consideration 
is well-posed. In particular, a spectral decomposition is obtained 
for the operátor L which factorizes L and for its generalized 
inverse L"1. 

1. Generalized inverses 
Let H,H' be Hilbert spaces and let LiH-̂ H1 be a closed densely 
defined linear operátor with domain dom(L) , kernel n(i.) and range 
R(L). Then the generalized inverse L"1 of L is defined as follows. 
Call C(L)=dom(L)nn(L) ; then dom(L)=C(L)®n(L) whence for each 
v^domL, vsv+v0 with veC(L), v0en(L). As L|C(L) is injective 
and R(L|CU))-R(L) , the inverse Z of L with dom(L)=R(L) and 
R(L)=C(L), may be extended to the linear operátor L_1:H,->H 
defined by 

(i) dom(L"1)=R(L)eR(L) 
(ii) If wedomU"1) with w=w+w0, weR(L), w0eR(L) , then 

I.-1w-~w«v if and only if (L|C(L))T=W. 

This páper is in finál form and no version of it will be submitted for publication elsewhere. 
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From (i) and (ii) it follows that R(L"
1
)=C(L). L"

1
 is called 

the generalized inverse of L (also called pseudo-inverse or 

generalized reciprocal of L). 

Among other properties we mention (see [ 4] , [5] and [ 6] ) 

(i) L~
2
 :H

f
-•H is a closed densely defined linear operator 

(ii) (L-
1
)"

1
^ 

(iii) (L-
1
)*^--*)-

1 

2. Decomposable differential operators 

In this section we first recall the abstract setting for studying 

the Dirichlet-Neumann problem posed for a decomposable system of 

differential operators L(9/9x=L (-9/9x)L(9/9x) as it was worked 

out in [ 3] . As an example we give the case of the negative 

Laplacian which is decomposed by its "square root" the Dirac 

operator. 

In the second subsection we derive spectral decompositions of 

the operators L and L
_1
 in the case where the (D-N)-problem is 

well-posed for L. 

2.1. The (D-N)-problem for decomposable operators 

Let n be an open subset of Rm, let Ne/V (N>1) and let L
 M
(n) 

Nx1
 2 9 

be the Hilbert space of C -valued L
2
-functions in n, i.e. 

ueL
2 > N
(n) if 

u
l 

u
2 

with u.GL
2
(n), j=1,...,N. 

The inner product and norm on L N ( n ) are def ined by 

--> -> -> -> 1N _ 
< u ,v> N =/uxvdx= I / u. ( x ) v . ( x ) d x , 

П j = Щ J J 

íГlД= I / | u . ( x ) | 2 d x . 
І = l n J 

Furthermore, let L=L(9/9x) be an MxN matrix such that its 

elements L-. are linear partial differential operators with 

constant coefficients and put 

L=L(9/9x)=L
+
(-9/9x)L(9/9x) 
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where L =L (-9/9x) is obtained by taking the adjoint of L(9/9x) 

and replacing 9/9x. by -9/9x., j=1,...,m. 

In general, if Llo^(Q) and P(Q;CNx1) denote respectively the 
_ Nx1 ' space of C -valued locally integrable functions in Q and the 

space of C x -valued testfunctions in Q, then the action of an 
MxN matrix differential operator P(9/9x) having constant 

coefficients on ueLlo^(Q) is defined to be element PueLlo^(Q), 
provided that it exists, such that for all v>eP(Q;C ) 

/P(8/3x)ux?dx=/uxP+(-9 9x)?dx. 
Q Q 

Returning to the decomposable differential operator L=L L , put 

Z i , L = { " e L 2 , N ( " ) : L » e L
2 . M ( n ; } 

and equip this space with the inner product 

V<Lu,Lv>M. <u,v>=<u,v>N+<Lu,Lv>, 

Nx1 Then Z , is a Hilbert space containing P (Q;c ). 
Furthermore let Q be the boundary of Q and let QD and ftN be 

two subsets of Q such that Q --^D
unN

 and Q DHQN=0. Then V^ 

stands for the closure in Z, . of the set of functions ueZ1,i 
such that u is identically zero in a neighbourhood of Q D, this 
neighbourhood defending upon u. 
Finally define the subspace W of V# as follows : 
ueJV if and only if QD 
(WO uGL 2 > N(Q), L U G L 2 > M ( Q ) , L U G L 2 ) N ( Q ) 

(A/2) (Dirichlet condition on Q-J ueV 
QD 

(# 3 ) (Neumann c o n d i t i o n on QN) 

<Lu,v>N
as<Lu,Lv>M f o r a l l veV 

QD 

Taking W=-dom(L), then clearly P(Q;c x ) is contained in W. 

Moreover L is a non-negative self-adjoint operator and its 

domain W is dense in V for the Zx^-norm (see [3]). 
^D 

Taking V •dom(L) we have 
Q D 
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2.1.1. Theorem (i) L is a closed densely defined linear operator 

(ii) L=L*L 
* + 

(iii) L is a closed extension of L . 
Mvl 

Proof, (i) As V(ti;C )cv , L is densely defined. 
- > - > • - > • 

Now let (u^)^^ be a sequence in V such that u--ni in L2 N(ft) 

and L U ^ W in Lg M(fi) • Then ( u ^ K ^ is a Cauchy-sequence in 
-• ->• -• 

Z and as V is closed in Z. £, u^V and Lu=w, whence 

^D ^D 

L is closed. 

(ii) Put T=L L. Then T is a self-adjoint linear operator in 
L
2 N(fi) with Wcdom(T) . Moreover T|/V=L. Indeed, take neW and 

-*• Nx1 
^ep(r2;r; * ' ) . Then by virtue of condition (W3) 

<Ln,?>N=<Ln,L^>M 

NY1 * 

while from V(Sl;C A,)cWcdom(L L) it follows that 

<Tn,?>N=<L*Ln,?>M=<Ln,L?> 

whence, by the density of V(Q;C X ) in L M(fi), Ln=Tn and 
2 ,1N 

so T|W=L. 

Consequently T is a self-adjoint extension of L so that, L 

being itself self-adjoint, T=L. 

(iii) Obvious. • 

For examples of decomposable differential operators occurring 

in mathematical physics, we refer to [ 3] . 

Note that since L=L*L is a non negative self-adjoint operator, 

L coincides with its Friedrichs extension. Moreover V is the 

fiD 

energy space of L and hence its square root /E has V. as its 

domain (see [7] Satz 20.5). ^D 

2.1.2. The generalized Cauchy-Riemann operator D 

As a further example of such operators L and L we consider the 

case of the negative Laplacian and the generalized Cauchy-Riemann 

operator (also called Dirac operator) acting on L2(f.; A m ( c ) ) . 

Let A be the Clifford algebra constructed over an orthonormal 

basis (ei,...,em} of Rm with multiplication rules 

eiej+ejei=-26ij, i,j=1,...,m. 
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Consider its basis elements e.=eu eu ...e, where A={hi h } 
A n_ n2 n L ' ' r 

c{1,...,n} is ordered in such a way that 1<hi <h2<...<hr<m, 
e0=eo being the identity of A. Furthermore put for each A^PN, 

e _.r_nn(A)(n(A) + 1)/2 eA l U eA' 

n(A) being the cardinality of A, call 

A_(_)-A_-<7. 

and define for each X=IXAeAeA (C), 
« A A m 

X=lTAeA. 

_, _._ _̂  

B={erjQ :K=1 ,2, . . . ,2
m} whereby er . is taken to be e0 , associate 

to each X^A (C) the linear operator VI,:Am(C)~*Am(C) given by 

l~l (u)=Xu for all ueAm(C) and call Q ( \ ) the matrix representation 

of n A with respect to B, i.e. e(X)K L
=[ Ae (K)^ (L) ' K » L = 1 > • • • » ^ ' 

Then a faithful matrix representation is obtained of A (c) 
2mx2m 

into c and it may be easily checked that for each X^Am(c) 

Q(X) = (6(X)) (see also [1]). Moreover if for each ueA (c) , we 
—> 

put u=[u]g, the coordinate vector of u with respect to £, then 

nx(U)=xu=e(x)u. 
Now consider the generalized Cauchy-Riemann operator 

m . 
D= I e. -—-. Then D2=DD=-Ame0, Am being the Laplacian in R . 

Call LO/9x)=9(D) and L(9/9x) =6 (-Ame0) . Then we have that 

L(9/9x)=L+(-9/9x)L(9/9x). Indeed, 0(D)=6(-D) and 6(D)=e(D)T 

T so that e(D)=6(-D) . But, as 9(D).is a homogeneous first order 
4- T 

differential operator with real coefficients , L (-9/9x)=9(-D) , 
whence L(9/9x)=L+(-9/9x) and 
L(9/9x)=e(-Ameo)=9(D

2)=0(D)e(D)=L+(-9/9x)L(9/9x). 

We may thus define for ueL2 (Q;A__(C)) , w=DueL2 (Q; Am(C)) as being' 

the unique element in L2(Q;A (C)), provided that it exists, such 

that for all v£V(tt;Am(C)), 
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<L(D)u,J>=<u,L+(-D)^> 

= <u,L(D)J*>. 

Call Z ={UGL2(Q;Am(c):DueL2(Q;Am(C)) and equip this space 
1 , L 

with the inner product 

[u,v]=<u,v>+<Lu,Lv> 

Then Z is a Hilbert space and as L (-9/9x)=L(9/9x), 
1 - L 

z =z + . 

Now consider the pure Dirichlet problem for the operator -A e0 

r r m 

acting on L2(Q;Am(C)), i.e. take Q ^ Q . Then, as the set of 

functions u^V, having bounded support is dense in V# , u€V^ 
Q * Q Q 

if and only if ueZi , i and 

<Du,v>=<u,Dv> for all VGZJ =Z. .+ 
9 L l * L 

(see [ 3] , pp.70-71). 

Hence D is symmetric in V • and as D is closed (see also 

Theorem 2.1J(i)), we have 

Theorem. D is a self-adjoint linear operator in L2(Q;Am(C)). 

Corollary. D~ * is self-adjoint. 

2.2. Well-posed (D-N)-problems for decomposable operators 

In this subsection we again consider differential operators of 

the form L(9/9x)=L (-9/9x)L(9/9x) and the associated spaces 

V and N. 
ftD 

The (D-N)-problem for L in N is said to be well posed if for 

each r:€L2 ]sj(0) there exists a unique new such that 

(i) Ln=? 
--> -> _*. _• 

(ii) fv^f in L w(^) implies that n^n in L2 j>j(Q). 

As has been shown in [3], a necessary and sufficient condition 

for the (D-N)-problem to be well-posed in N for L is that there 

exists 0 0 such that for all u€V , 
QD 

lufl* < IflLut^ (2.2) 

Assume hence forth that the (D-N)-problem is well-posed for L 

in W. 
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Condition (2.2) implies that n(L)={0}whence C(L)=dom(L)=V . 
fin 

Moreover it means that L is reciprocally bounded in V# or 

nD 

R(L) is closed in L2 (̂fl) (see [ 4J , Theorem 3.3) and so 

dom(L-1)a=L2)M(fi). 

Condition (2.2) together with the self-adjointness of L in N 

also implies the existence of a spectral measure M in C 

carried by [C,+»[ and of a bounded self-adjoint operator G(Z) 

in L2 N(A) such that 

+ 00 +00 

L=/ X áM and G(z)=/ ---̂  áM 

X-a. 

for all zGp(L), p(L)cc being the resolvent set of L and G(z) 

being the Green's operator corresponding to L-z (see [3]). 

As OGp(L), we thus have for the operator 
+ 00 

Go=G(0)= / -̂ - that LGO^IL N(fi) and G0L=1W whence clearly 

Moreover, as both L and G0 are positive-definite, their square 

roots are represented by 

+ 00 +O0 j| 

/L=l /XdM and /C7=/ -/rdM. (2 . 3 ) 
0 0 / A 

We so obtain 

2.2.1 Theorem. Suppose that the (D-N)-problem is well-posed for 

the operator L(3/3x)=L (-3/8x)L(9/3x) in N. Then there exists a 

partial isometry R : L2 N(n)"*L2 M(Q) such that 

(i) Go-L-1 and /G7«(/T)"x 

(ii)L0-R/E, L"
l-i/G7R* and L*=/ER* 

(iii) (Spectral decomposition of L and L 

L -? /S"d(RM), L*=/ /Xd(/VR*) (2.4) 

(iv) (Spectral decomposition of L"1) : 
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+ oo 

L"
1
-/ 7rd(MR*) (2.5) 
0

 v 

Proof, (i) As we have already remarked, G
0
=L""

1
 and as L is a 

non-negative self-adjoint operator , /L~
I=
(/E)~

l
 (see [4], 

Theorem 5.2) whence /(T7=(/E)"
1
. 

(ii) The polar decomposition of L yields that L=R/L*L or, 

taking account of Theorem 2.1.1.(ii), that L=R/L. Hereby 

R:L
2 N
(Q)-^L

2 M
(n) is a partial isometry with dom(R) = 

^C-T
=L

Z
 N(

fi
)» im(R)=RTTJ

=:
R(L) and satisfying R~*=R* (see [8] 

Satz 7.20 and [4], Theorem 6.2). 

Call D=/G7R*=(/r)""
1
R*

1
 . Then D=L

- 1
. 

Indeed, R* and R*~*=R are bounded while r, (R**) =n (R)=n (L) =n (/57) . 

Hence , using the Corollary to [4] Theorem 3.5, the desired result 

is obtained. As L=R/E with R bounded, we have that L*=(/L)*R* 

= /ER* (see also [8] Satz 4.19). 

(iii) and (iv). As /X and --*-- are M-integrable and R,R* are 

1 * 

partial isometries, /X and -JT- are respectively RM- and MR -
integrable so that, using (2.3) and the results from [ 2] , p. 43, 

the relations (2.4) and (2.5) are obtained." 

2-2.2. Remark.'By means of (2.4) we have that for all veV , 

+ 0O 

Lv=/ /Xd(RMv). 
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