Inverse systems and pretopological spaces

Persistent URL: http://dml.cz/dmlcz/701831

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Given a pretopological space $S=\langle X,P \rangle$, we associate to any interior covering X of S a symmetrical pf-space S_X on the set X. Precisely, to obtain the pretopology of S_X, we take for each point x of X the principal filter of base the star of x with respect to X. Taking the pf-spaces S_X as terms, we obtain the inverse system \hat{S} of the pretopological space S. Generally the inverse limit S^* of \hat{S} is different from S; yet $S^*=S$ when S is a Tychonoff topological space.

For each dimension n, we associate to \hat{S} an inverse system of prehomotopy groups $\Pi_n(S_X,a)$ and an inverse system of singular homology groups $H_n(S_X)$. Taking the inverse limits $\lim_n \Pi_n(S_X,a)$ and $\lim_n H_n(S_X)$, we obtain the shape groups $\check{\Pi}_n(S,a)$ and the Čech homology groups $\check{H}_n(S)$ of the pretopological space S.

Our shape groups have the characteristic properties of the classical shape groups. Similarly we can say for our Čech groups. All proofs, except those for the homotopy conditions, are similar to the classical ones.

The relations between our groups and the classical shape groups or Čech homology groups of a compact topological space will be expounded in another paper.

1. The inverse system of a pretopological space.

Let X be a nonempty set and $P=\{F_x(x \in X)\}$ a family of filters of X such that $\bigcap F_x$ for each $x \in X$. Such a family P is called a pretopology in X, and the pair (X,P) is called a pretopological space (see [2]). Here we will denote by S the pretopological space (X,P), since we need to consider different pretopologies on the set X.

We recall that S is a pf-space, if each filter F_x is principal, i.e. $F_x=\{A_x\}$ with $x \in A_x$. Moreover we say that the pf-space S is symmetrical, if $y \in A_x$ implies $x \in A_y$ for any $x, y \in X$.

We also recall that (see [1]) a covering X of X is an interior covering of S, if for any $x \in X$ there is at least one element A of X such that $A \in F_x$.

Now we consider the collection Cov(S) of all interior coverings of S and we preorder it by the following:

1.1 Definition Let $X, X' \in$ Cov(S). We write $X \leq X'$ iff X' is a refinement of X.

This paper is in final form and no version of it will be submitted for publication elsewhere.
1.2 Remark. Clearly \((\text{Cov}(S), \triangleleft)\) is a directed set, since \(X, X' \in \text{Cov}(S)\) implies \(X \triangleright\! X' \in \text{Cov}(S)\).

1.3 Definition Given \(X \in \text{Cov}(S)\), we denote by \(P(X)\) the pretopology in \(X\), that we obtain taking for each \(x \in X\) the principal filter of base the star \(\text{St}(x, X)\) of \(x\) with respect to \(X\). Then we put \(S_X = (X, P(X))\).

1.4 Remark. \(S_X\) is a symmetrical pf-space, and the identity \(P_X: S_X \rightarrow S_X\) is a precontinuous map. Moreover, if \(X, X' \in \text{Cov}(S)\) and \(X \triangleleft\! X'\), the identity \(P_{XX'}: S_X \rightarrow S_X\) is precontinuous, and \(P_X = P_{XX'} P_{X'}\).

1.5 Definition We will denote by \(\tilde{S}\) the inverse system \((S_X, P_{XX'}, \text{Cov}(S))\), and we will call it the inverse system of the pretopological space \(S\). The projection \((P_X): S \rightarrow \tilde{S}\) will be denoted by \(\tilde{p}\).

1.6 Remark. The inverse limit \(\lim S_X\) is the pretopological space \(S^* = (X, P^*)\), where \(P^*\) is obtained taking for each \(x \in X\) the filter on \(X\) of base \(\{\text{St}(x, X)\}(\forall x \in \text{Cov}(S))\). Generally the pretopology \(P^*\) is coarser than \(P\); yet \(S^* = S\), if \(S\) is a completely regular topological space.

2. The morphism induced by a precontinuous map.

Let us consider two pretopological spaces \(S\) and \(T\), their inverse systems \(\tilde{S} = (S_X, P_{XX'}, \text{Cov}(S))\) and \(\tilde{T} = (T_Y, q_{YY'}, \text{Cov}(T))\), and the projections \(\tilde{p}: S \rightarrow \tilde{S}\) and \(\tilde{q}: T \rightarrow \tilde{T}\).

2.1 Proposition Any precontinuous map \(f: S \rightarrow T\) induces a morphism from \(\tilde{S}\) to \(\tilde{T}\).

Proof:

a) For any \(V \in \text{Cov}(T)\), the family \(\{f^{-1}(Y))(\forall \in V)\) is an interior covering of \(S\). So \(f^{-1}\) induces a function from \(\text{Cov}(T)\) to \(\text{Cov}(S)\), which preserves the preorder. We will denote this function by \(f^{-1}\).

b) For each \(V \in \text{Cov}(T)\) we obtain a precontinuous map \(f_V: S_{f^{-1}(V)} \rightarrow T_V\) putting \(f_V(x) = f(x)\) for any \(x \in X\).

c) \((f_y, f^{-1})\) is a morphism from \(\tilde{S}\) to \(\tilde{T}\). In fact, given \(V, V' \in \text{Cov}(T)\) such that \(V \preceq V'\), clearly \(f^{-1}(V) \preceq f^{-1}(V')\) and the following diagram commutes:

\[
\begin{array}{ccc}
S_{f^{-1}(V)} & \xrightarrow{P_{f^{-1}(V)} f^{-1}(V')} & S_{f^{-1}(V')}
\end{array}
\]

2.2 Definition The morphism \((f_V, f^{-1})\) will be denoted by \(\tilde{f}: \tilde{S} \rightarrow \tilde{T}\), and we will call it the morphism induced by \(f\).

2.3 Remark. Let us define another function \(\phi: \text{Cov}(T) \rightarrow \text{Cov}(S)\), taking for each \(V \in \text{Cov}(T)\) an interior covering \(\phi(V)\) of \(S\), such that \(f^{-1}(V) \preceq \phi(V)\). Then for each \(V \in \text{Cov}(T)\), consider the precontinuous map \(f_V': S_{\phi(V)} \rightarrow T_V\) given by \(f_V'(x) = f(x)\) for any \(x \in X\). It is easy to see that \((f'_V, \phi)\) is a morphism from \(\tilde{S}\) to \(\tilde{T}\), which is equivalent to \(\tilde{f}\).
2.4 Remark. The morphism \hat{f} induced by f makes commutative the following diagram:

\[
\begin{array}{ccc}
S & \overset{f}{\longrightarrow} & T \\
\downarrow{\hat{p}} & & \downarrow{\hat{q}} \\
\hat{S} & \overset{\hat{f}}{\longrightarrow} & \hat{T}
\end{array}
\]

Moreover, any morphism $g = (g_V, \psi)$ from S to \hat{T} such that $g\hat{p} = \hat{f}\hat{p}$ is equivalent to \hat{f}.

3. The morphism associated to a prehomotopy.

Let us consider two pretopological spaces S and T, the closed interval $I=[0,1]$ of the real line with the pretopology $\{U_t\}_{t \in I}$ (where U_t is the neighbourhood filter of the point t), the pretopological space $Z=S\times I$, and the inverse systems $\hat{S} = (S_x, p_{XX}, \text{Cov}(S)), \hat{T} = (T_y, q_{YY}, \text{Cov}(T))$ and $\hat{Z} = (Z_x, R_x, \text{Cov}(Z))$. Then let $f:S\rightarrow T$ and $g:S\rightarrow T$ be homotopic precontinuous maps, and $H:S\times I\times T$ a prehomotopy of f to g.

3.1 Theorem We can associate to the map $H:Z\times T$ a morphism $K:Z\times \hat{T}$, which is equivalent to \hat{f} and has properties analogous with those of homotopies.

Proof:

a) Define a function $\Phi:\text{Cov}(T)\rightarrow \text{Cov}(Z)$ as follows.

Given $V \in \text{Cov}(T)$, consider $H^{-1}(V) \in \text{Cov}(Z)$. For each point $(x,t) \in Z$, take $C_{x,t} \in H^{-1}(V)$, and then $A_{x,t} \subseteq C_{x,t}$ and an open interval $V_{x,t} \subseteq U_t$ such that $A_{x,t} \times V_{x,t} \subseteq C_{x,t} \times U_t$. Then, for any $x \in S$, the family $(U_t)_{t \in I}$ is an interior covering of Z which refines $H^{-1}(V)$.

For any $x \in S$, the family $(U_t)_{t \in I}$ is an interior covering of the subspace $(x) \times I$ of Z. Since $(x) \times I$ is compact, there is a finite number $n(x)$ of points t_h of I such that $1_{x \in C_{x,t_h}} \subseteq (x) \times I$. Now observe that $A_{x,t_h} \times V_{x,t_h} \subseteq C_{x,t_h}$ belongs to the Φ-filter \hat{F}_x, and put $R_x = \{W_{x,t_h} \mid 1_{x \in C_{x,t_h}} \subseteq (x) \times I\}$, where W_{x,t_h} is the set $A_{x,t_h} \times V_{x,t_h}$. Then consider the family $R = \bigvee_{x \in S} R_x$.

Clearly R is a covering of Z; moreover R refines $H^{-1}(V)$, since $W_{x,t_h} \subseteq C_{x,t_h}$. Given any $(x,t) \in Z$, we have $(x,t) \in V_{x,t_h} \subseteq W_{x,t_h}$ for some positive integer $h \leq n(x)$. Since $A_{x,t_h} \times V_{x,t_h} \subseteq C_{x,t_h} \times U_t$, we have $W_{x,t_h} \subseteq C_{x,t_h} \times V_{x,t_h}$.

So $R \subseteq \text{Cov}(Z)$, and we put $\Phi(V) = R$.

b) For each $V \in \text{Cov}(T)$, we consider the map $K:Z \rightarrow T$ by $K(x,t) = H(x,t)$. K is a precontinuous map, since for each $(x,t) \in Z$ we obtain $H(St((x,t),\Phi(V))) \subseteq C_{x,t_h}$.

c) $K = (K_V, \Phi)$ is a morphism from \hat{Z} to \hat{T}.

In fact, given V, $V' \in \text{Cov}(T)$ such that $V \subseteq V'$, consider $\Phi(V) = \bigvee_{x \in S} R_x$ and $\Phi(V') = \bigvee_{x \in S} R_x'$, where $R_x = \{A_{x,t} \times V_{x,t_h} \mid 1_{x \in C_{x,t_h}} \subseteq (x) \times I\}$ and $R_x' = \{A_{x,t} \times V_{x,t_h} \mid 1_{x \in C_{x,t_h}} \subseteq (x) \times I\}$.
Then we take the family R^n of all subsets of Z of form $A_x^\times V_h,k$ with $A_x=V_h,k$ and $V_x=h,k$.
and put $R^n=\bigcup_{x\in S} R^n_x$.
Given a point $(x,t)\in Z$, we have $A_x^\times V_h,k$ iff $t\in V_h,k$, since $A_x=V_h,k$ is an open subset of I.
But we find two positive integers $h<n(x)$ and $k<m(x)$ such that $t\in V_h,k$ and $V_x=h,k$. Hence $R^n\in\text{Col}(Z)$.
Clearly R^n refines both $\Phi(V)$ and $\Phi(V')$. Moreover the following diagram commutes:

\[
\begin{array}{ccc}
Z & \xrightarrow{\pi_Y} & Z' \\
\Phi(V) & \xrightarrow{\psi} & \Phi(V') \\
K_y & \xrightarrow{\phi} & K_{y'} \\
T_y & \xrightarrow{\psi} & T_{y'}
\end{array}
\]

d) The morphism K is equivalent to \tilde{H}, since, for each $V\in\text{Col}(T)$, $\Phi(V)$ is an interior covering of Z which refines $H^{-1}(V)$.
e) Observe that, for each $t\in I$, the map $h_t:S\to T$ given by $h_t(x)=H(x,t)$ is precontinuous.
Then define a function $\phi:\text{Col}(T)\to\text{Col}(S)$ as it follows.
Given $V\in\text{Col}(T)$, consider $\Phi(V)=\bigcup_{x\in S} R^n_x$ where $R^n_x=(A_x^\times V_h,k)$ with $A_x=V_h,k$.
Clearly $A_x\in\text{Col}(S)$, since $A_x\notin F$ for any $x\in S$. Hence we put $\Phi(V)=A_x$.
Now consider the function $h^t_\gamma:S\to T'$ given by $h^t_\gamma(x)=h_t(x)$ for any $x\in S$.
To prove that h^t_γ is precontinuous, we have to show that $h_t(\text{St}(x,A))\subseteq\text{St}(H(x,t),V_t)$.
To this purpose take a point $x_0\in S$ such that $x_0\in A_{x_0}$. For any positive integer $h<n(x_0)$ such that $t\in V_{h,t}$, we have $A_x^\times V_{h,t}\subseteq\text{St}((x,t),\Phi(V))$; therefore (see b) $h_t(\text{St}(x_0,V_{t,h}))\subseteq\text{St}((x_0,t),\Phi(V))$.
Hence (h^t_γ, ϕ) is a morphism from S to T'.
Moreover (h^t_γ, ϕ) is equivalent to the morphism $h_t:S\to T$ induced by h_t, because the interior covering $\Phi(V)$ of S is a refinement of $H^{-1}(V)$.
Observe that the covering $\Phi(V)$, and consequently the function $\phi:\text{Col}(T)\to\text{Col}(S)$ do not depend on the point t of I.

For $t=0$ we have $h_t=\gamma$; therefore the morphism (h^t_γ, ϕ) is equivalent to γ.
Then for $t=1$ we have $h_t=\gamma$; thus the morphism (h^t_γ, ϕ) is equivalent to γ.

3.2 Remark. We proved in b) that H is a precontinuous map from $(S\times I)$ to T' for each $V\in\text{Col}(T)$. But generally we cannot say that H is a precontinuous map from $S\times I$ to T'.

4. Inverse systems of pairs.
Let us consider a pretopological space $S=(X,P)$ and a subset A of X.
4.1 Definition. Let J' be a subset of the index set J, and for each $i\in J'$ let $A_i\subseteq X$.
We say that $A=\{A_i\}_{i\in J'}$ is an interior covering of the pair (S,A) with
(J, J') as indexing pair, if:
(1) \(\{A_i\}_{i \in I} \in \text{Cov}(S, A) \);
(2) for each \(x \in A \) there is at least one index \(j \in J' \) such that \(A_j \subseteq F_x \).

The collection of all interior coverings of the pair \((S, A)\) will be denoted by \(\text{Cov}(S, A) \).

4.2 Remark. Let \(A=\{A_i\}_{i \in I} \in \text{Cov}(S, A) \). The families \(\{A_i\}_{i \in I} \) and \(\{A_j\}_{j \in J} \) will be denoted by \(A^J \) and \(A^J \), respectively. \(A \) induces in \(X \) the pretopology \(P(A^J) = \{ \text{St}(x, A^J) \mid x \in X \} \) and in \(A \) the pretopology \(P(A^J) = \{ \text{St}(x, A^J) \mid x \in A \} \).

Clearly \(P(A^J) \) induces in \(A \) a pretopology \(P(A^J) \) which is coarser than \(P(A^J) \).

The pair \((X, P(A^J), (A, P(A^J))) \) will be denoted by \((S, A^J) \).

Clearly the identity \(p_A: (S, A) \rightarrow (S, A^J) \) is a precontinuous map.

4.3 Definition. Let \(A=\{A_i\}_{i \in I} \) and \(B=\{B_j\}_{j \in J} \) be interior coverings of the pair \((S, A)\). We write \(A \leq B \) if:
(1) \(B \) is a refinement of \(A \);
(2) \(B \) is a refinement of \(A \).

4.4 Remark. \(\text{Cov}(S, A) \), \(\leq \) is a directed set.

If \(A, A' \in \text{Cov}(S, A) \) and \(A \leq A' \), the identity \(p_{AA}: (S, A) \rightarrow (S, A') \) is a precontinuous map, and \(p_A = p_{AA} p_{A'^A} \).

4.5 Definition. The inverse system \((S, A), p_{AA}, \text{Cov}(S, A)) \) will be called the inverse system of the pair \((S, A)\), and it will be denoted by \(\text{Cov}(S, A) \). \(\beta = (p_A) \) will be called the projection from \((S, A)\) to \(S, A) \).

4.6 Proposition. Let \(S \) and \(T \) be pretopological spaces, \(A \) a subset of \(S \), \(B \) a subset of \(T \), \(S, A) = ((S, A), p_{AA}, \text{Cov}(S, A)) \) and \(T, B) = ((T, B), q_{BB}, \text{Cov}(T, B)) \).

Any precontinuous map \(f: (S, A) \rightarrow (T, B) \) induces a morphism \(f: S, A) \rightarrow T, B) \).

Proof: Given \(B=\{B_j\}_{j \in J} \in \text{Cov}(T, B) \), the family \(f^{-1}(B) = \{f^{-1}(B_j)\}_{j \in J} \) belongs to \(\text{Cov}(S, A) \). Then, for each \(B \in \text{Cov}(T, B) \), we define a precontinuous map \(f_B: (S, A) \rightarrow T, B) \) by putting \(f_B(x) = f(x) \) for each \(x \in S \). \(f_B \) is a morphism from \(S, A) \rightarrow T, B) \) and we will denote it by \(f \).

4.7 Remark. For each \(B \in \text{Cov}(T, B) \), let us take \(\phi(B) \in \text{Cov}(S, A) \) such that \(f^{-1}(B) \leq \phi(B) \).

We obtain a precontinuous map \(f_B: (S, A) \rightarrow T, B) \) putting \(f_B(x) = f(x) \) for any \(x \in S \). \(f_B \), \(\phi \) is a morphism from \(S, A) \rightarrow T, B) \) which is equivalent to \(f \).

4.8 Theorem. Let \(S \) and \(T \) be pretopological spaces, \(A \leq S \) and \(B \leq T \). Then let \(f \) and \(g \) be homotopic precontinuous maps from \((S, A)\) to \((T, B)\), and let \(H: (S, A) \rightarrow (T, B) \) be a relative prehomotopy of \(f \) to \(g \). We can associate to the map \(H \) a morphism \(K: (S, A) \rightarrow (T, B) \), which is equivalent to \(H \) and has properties analogous with those of relative homotopies.

Proof: To simplify notations, we put \(S \times I = Z \) and \(A \times I = C \).

(a) Given \(B=\{B_j\}_{j \in J} \in \text{Cov}(T, B) \), observe that \(H^{-1}(B) = \{H^{-1}(B_j)\}_{j \in J} \) belongs to \(\text{Cov}(Z, C) \).

For each \((x, t) \in Z \), take \(C_{x, t} \in H^{-1}(B) \) such that:
(1) \(C_{x, t} \subseteq F_{(x, t)} \).
(ii) if \(x \in A \), then \(C \in H^{-1}(B_j) \).

Afterwards, with the same process of Theorem 3.1, for each \(x \in S \) we construct a finite refinement \(\mathcal{R} = \{ W_{x,t} \} \) of the family \(\{ C_{x,t} \} \), such that each \(W_{x,t} \) is of form \(A \times t \), where \(A \in F \) and \(t \) is an open interval of \(I \) containing \(t \). The family \(\bigvee_{x \in S, A} \mathcal{R} \) belongs to Cov(\(Z, C \)), and we put \(\phi(B) = \bigvee_{x \in S, A} \mathcal{R} \).

b) For each \(B \in \text{Cov}(T, B) \), we obtain a precontinuous map \(\phi_B : (Z, C) \to (T, B) \) putting \(\phi_B(x, t) = H(x, t) \) for any \((x, t) \in Z \).

c) \(\phi(B) : \text{Cov}(S, A) \to \text{Cov}(T, B) \) is a morphism from \(Z, C \) to \(T, B \), which is equivalent to \(\phi \).

d) For each \(B \in \text{Cov}(T, B) \) consider \(\phi(B) = \bigvee_{x \in S} W \) and put \(\phi(B) = (A, x) \) (\(x \in S \)).

Clearly \(\phi(B) : \text{Cov}(S, A) \to \text{Cov}(T, B) \) is a morphism from \(S, A \) to \(T, B \), which is equivalent to the morphism \(\phi \). Finally, for each \(t \in I \), we obtain a precontinuous map \(h_t : (S, A) \to (T, B) \) putting \(h_t(x) = H(x, t) \) for any \(x \in S \).

The proofs of b), c), d) are analogous to the corresponding ones from Theorem 3.1.

5. Shape groups and relative shape groups.

Let us consider a pretopological space \(S \) and its inverse system \(\mathcal{S} = (S_x, p_{XX}, \text{Cov}(S)) \).

Let \(x \) be a point of \(S \). For any \(x \in \text{Cov}(S) \) and each dimension \(n \), we can calculate (see [2]) the prehomotopy group \(\Pi_n(S_x, x) \) of \(S \) based at \(x \). Moreover, given \(X \in \text{Cov}(S) \), the precontinuous map \(p_{XX} : S_x \to S_x \) induces a homomorphism \(p_{XX}^* \) from \(\Pi_n(S_x, x) \) to \(\Pi_n(S_x, X) \). So, for each positive integer \(n \), we obtain the inverse system \((\Pi_n(S_x, x), p_{XX}^*) \).

5.1 Definition We put \(\Pi_n(S, x) = \lim_n \Pi_n(S_x, x) \). The group \(\Pi_n(S, x) \) will be called the \(n \)-dimensional shape group of the pretopological space \(S \) based at the point \(x \). We will write \(\Pi_n(S) \) instead of \(\Pi_n(S, x) \), when \(\Pi_n(S, x) \) does not depend on the point \(x \) of \(S \).

5.2 Remark. If \(S = \{ x \} \), clearly \(\Pi_n(S) = 0 \) for each dimension \(n \).

Now take a subset \(A \) of the pretopological space \(S \), and consider the inverse system \(S_A = ((S_A, x), p_{AA}^*, \text{Cov}(S, A)) \) of the pair \((S, A) \).

Let \(x \) be a point of \(A \). For each dimension \(n \), we can consider the inverse system \((\Pi_n(S, A, x) A, p_{AA}^*, \text{Cov}(S, A)) \) of relative prehomotopy groups. (Observe that \(\Pi_n(S, A, x) A \) denotes the \(n \)-dimensional relative prehomotopy group of the pair \((S, A) \) based at the point \(x \).)

5.3 Definition We put \(\Pi_n(S, A, x) = \lim_n \Pi_n(S, A, x) A \). The group \(\Pi_n(S, A, x) \) will be called the \(n \)-dimensional relative shape group of the pair \((S, A) \) based at \(x \). We will write \(\Pi_n(S, A) \) instead of \(\Pi_n(S, A, x) \), when \(\Pi_n(S, A, x) \) does not depend on the
point x of A.

6. Homomorphisms between shape groups.

Let S and T be pretopological spaces, $\hat{S}=(S', P_{XX'}, \text{Cov}(S))$ and $\hat{T}=(T', q_{YY'}, \text{Cov}(T))$ their inverse systems, $f:S\rightarrow T$ a precontinuous map. Then consider the morphism $\hat{f}=(f_Y, f^{-1})$ from \hat{S} to \hat{T} induced by f.

For each dimension n, the precontinuous map $f_y:S_{f^{-1}(Y)}\rightarrow T_Y$ induces a homomorphism $f_y^*:\Pi_n(S, f^{-1}(Y), x)\rightarrow \Pi_n(T, f(x))$.

6.1 Definition We denote by $\hat{f}^*:\Pi_n(S, x)\rightarrow \Pi_n(T, f(x))$ the homomorphism $\lim f_y^*$, and we say that it is induced by the precontinuous map $f:S\rightarrow T$.

6.2 Remark. Similarly, given two subsets A of S and B of T, and given a point x of A, for each dimension n we obtain the homomorphism $\hat{f}^*:\Pi_n(S, A, x)\rightarrow \Pi_n(T, B, f(x))$ induced by a precontinuous map $f:(S,A)\rightarrow (T,B)$.

6.3 Proposition If $f:(S,A)\rightarrow (S,A)$ is the identity, then $\hat{f}^*:\Pi_n(S, A, x)\rightarrow \Pi_n(S, A, x)$ is the identical isomorphism.

6.4 Proposition Let $f:(S,A)\rightarrow (T,B)$ and $g:(T,B)\rightarrow (Z,C)$ be precontinuous maps and $h=gf$. Then $\hat{h}^* = \hat{f}^* \circ \hat{g}^*$.

7. The homomorphisms $\delta :\Pi_n(S, A, x)\rightarrow \Pi_{n-1}(A, x)$, $\gamma :\Pi_n(A, x)\rightarrow \Pi_n(S, x)$, and $\lambda :\Pi_n(S, x)\rightarrow \Pi_n(A, x)$.

Let us take a pretopological space $S=(X, P)$, a subset A of X carrying the pretopology P^* induced by P, and a point x of A. Then consider the following three functions.

1) $\psi: \text{Cov}(A) \rightarrow \text{Cov}(S, A)$ associates to $\{A_i\}_{i \in \mathcal{J}}$ the family $\{A_i \setminus \{i \in \mathcal{J} \setminus \{i'\} \}}$, where $\mathcal{J} = \mathcal{J} \cup \{i'\}$ (with $j \notin \mathcal{J} \setminus \{i'\}$), $A_{i'} = X \setminus \{X \setminus A\}$ for $i \in \mathcal{J}$.

2) $\psi: \text{Cov}(S) \rightarrow \text{Cov}(A)$ associates to $\{A_i\}_{i \in \mathcal{J}}$ the family $\{A_i \setminus \{i \}}$, where $\mathcal{J} = \mathcal{J} \setminus \{i\}$.

3) $\psi: \text{Cov}(S, A) \rightarrow \text{Cov}(A)$ associates to $\{A_i\}_{i \in \mathcal{J}}$ the family $\{A_i \setminus \{i\}}$, where $\mathcal{J} = \mathcal{J} \setminus \{i\}$.

For any $R \subseteq \text{Cov}(A)$ we can define a boundary homomorphism $\delta^*: \Pi_{n-1}(A, x) \rightarrow \Pi_n(S, A, x)$ to $\Pi_{n-1}(A, x)$ in the usual way (see [2]). It is easy to prove that (δ^*, ψ) is a morphism from $(\Pi_n(S, A, x), p^{\psi}$, Cov(S,A)) to $(\Pi_{n-1}(A, x), p^{\psi}, \text{Cov}(A))$.

Afterwards, considering the usual homomorphisms $i^*: \Pi_n(A, x) \rightarrow \Pi_n(S, x)$ and $j^*: \Pi_n(S, x) \rightarrow \Pi_n(A, x)$, we obtain the morphisms $i^*: \Pi_n(A, x) \rightarrow \Pi_n(S, x)$ and $j^*: \Pi_n(S, x) \rightarrow \Pi_n(A, x)$ from $(\Pi_n(A, x), p^{\psi}, \text{Cov}(A))$ to $(\Pi_n(S, x), p^{\psi}, \text{Cov}(S))$ and $(\Pi_n(S, x), p^{\psi}, \text{Cov}(S))$ to $(\Pi_n(S, A, x), p^{\psi}, \text{Cov}(A))$.

7.1 Definition We put $\delta_n = \lim \delta^*, \gamma_n = \lim \gamma^*, \lambda_n = \lim \lambda^*$.

With a standard proof we obtain:

7.2 Proposition Let $f:S\rightarrow (T,B)$ be a precontinuous map, $g:(T,B)\rightarrow (Z,C)$ be precontinuous maps and $h=gf$. For each dimension n, the following diagram commutes:
7.3 Proposition Let S be a pretopological space, $A \subseteq S$, and $x \in A$. We obtain the following 0-sequence:

$$
\cdots \xrightarrow{\delta_n} \Pi_n(A, x) \xrightarrow{\gamma} \Pi_n(S, x) \xrightarrow{\delta_n} \Pi_n(A, x) \xrightarrow{\gamma} \Pi_n-1(A, x) \xrightarrow{\delta_n} \cdots
$$

8. The homotopy condition for shape groups.

To prove the homotopy condition (i.e. Theorem 8.3), we need a definition and a lemma.

8.1 Definition Let X and Y be sets, \mathcal{F} a partition of X, $f: X \to Y$ a function. We say that f is quasi-constant with respect to \mathcal{F}, if f is constant in each element of \mathcal{F}.

8.2 Lemma Let $h: \Gamma^n \to X$ be a precontinuous map from the unit n-cube Γ^n to a symmetrical path-space X. It is possible to find a finite partition \mathcal{F} of Γ^n in open cells (of dimensions $n, n-1, \ldots, 0$) and a precontinuous map $k: \Gamma^n \to X$, such that:

(i) k is quasi-constant with respect to \mathcal{F} and homotopic to h;

(ii) moreover, if h is a n-preloop of X based at a, then also k is n-preloop of X based at a.

Proof: Let $\{F_x\}_{x \in X}$ be the pretopology of X.

a) First we consider the case $n=1$.

Since $h: I \to X$ is precontinuous, for each $z \in I$ there is an open interval V_z of I such that $h(V_z) \subseteq F_{h(z)}$.

Since I is compact, we find a finite number m of points z_i of I, such that $\{V_{z_i}\}_{i=1}^m$ is a minimal linked covering of I, where $z_i = 0$, $z_i < z_j$ for $i < j$, $z_m = 1$. Then we take $y_0 = 0$, $y_m = 1$, and for each positive integer $i < m$ we choose a point $y_i \in V_{z_i} \cap V_{z_{i+1}}$. Afterwards we consider the partition $\mathcal{F} = \{[0, y_1], [y_1, y_2], \ldots, [y_{m-1}, y_m, 1]\}$ of I, and we define a precontinuous map $k: I \to X$ putting:

$$
k(z) = \begin{cases} h(y_i) & \text{if } 0 < t \leq i \\ h(y_i) & \text{if } i < t \leq 1 \end{cases}
$$

Then we obtain a prehomotopy K of k to h, putting:

$$
K(z, t) = \begin{cases} k(z) & \text{if } 0 < t \leq 1 \\ h(z) & \text{if } 1 < t \leq 1 \end{cases}
$$

Moreover, if h is a preloop based at a, also k is a preloop of X based at a, since $k(0) = h(0) = a$ and $k(1) = h(1) = a$.

b) Now we consider the case $n>1$, assuming that the lemma is true for $n-1$.

To use simple notations, given a point $w = (z_1, z_2, \ldots, z_n)$ of Γ^n, we put $(z_1, \ldots, z_{n-1}) = z_n = u$, $(z, u) = w$.

For each $u \in I$, the function $h_u: I^{n-1} \to X$ given by $h_u(z) = h(z, u)$ is a precontinuous
map. So we find a finite partition \mathcal{C}_n of I^{n-1} in open cells (of dimensions $n-1$, $n-2$, ..., 0) and precontinuous map $k_u : I^{n-1} \to X$ for which conditions (i) and (ii) hold.

Now take a point $u \in I$. For any cell Z of the partition \mathcal{C}_n, the image $\{k_u(Z)\}$ is a point of X. For each $Z \in \mathcal{C}_n$ there exists a point $z \in Z$, such that $\{k_u(z)\} = \{h_n(z)\}$ and moreover z has an open neighbourhood V_z which contains the closure \overline{Z} of Z. Then, since \overline{Z} is compact, we find an open interval $W_{u,Z}$ of I containing u and such that $h(V \times W_{u,Z}) \subseteq h(x,u)$. Put $W = \bigcap_{u \in I} W_{u,Z}$.

Since I is compact, we find a finite number m of points $u_i \in I$ such that $\{W_{u_i}\}_{1 \leq i \leq m}$ is a minimal linked covering of I, where $u_i < u_j$ for $i < j$, $u_m = 1$.

Then we take $v_0 = 0$, $v_1 = 1$, and we choose $v_i \in W_{u_i}$ for each positive integer $i \leq m$.

Afterwards we consider the following partition of I:

$$\mathcal{C}_n = \{[0,v_1], [v_1,v_2], ..., [v_{m-1}], [v_{m-1}, 1]\}.$$

By means of \mathcal{C}_n and by means of the partitions \mathcal{C}_{u_i} ($1 \leq i \leq m$) and \mathcal{C}_{u_i} ($1 \leq i \leq m$) of I^{n-1}, we obtain a finite partition \mathcal{C} of I^n in open cells of dimensions n, $n-1$, ..., 0.

We define a function $k : I^n \to X$, which is quasi-constant with respect to \mathcal{C} and precontinuous, putting:

$$k(z,v_i) = k_{v_i}(z) \quad \text{for } i = 0, 1, ..., m;$$

$$k(z,u) = k_{u_i+1}(z) \quad \text{for } u \in [v_i,v_{i+1}] \text{ and } 0 \leq i \leq m.$$

We obtain a prehomotopy of k to h, putting:

$$K(w,t) = \begin{cases} k(w) & \text{if } 0 < t < 1 \\ h(w) & \text{if } 1 < t \leq 1 \end{cases}$$

Moreover, if h is a n-preloop of X based at a, clearly also k is a n-preloop of X based at a.

8.3 Theorem Let S and T be pretopological spaces, $a \in S$, $b \in T$, and let $f : (S,a) \to (T,b)$ and $g : (S,a) \to (T,b)$ be precontinuous maps. If f and g are homotopic, then $f_n = g_n$ for each dimension n.

Proof: Let $H : (S \times I, (a \times I)) \to (T,b)$ be a prehomotopy of f to g.

a) Given $\forall \in \text{Cov}(T)$, consider the elements $\Phi(Y) \in \text{Cov}(S \times I)$ and $\phi(Y) \in \text{Cov}(S)$ we mentioned in 3, and recall that both $f^{-1}(Y) \leq \phi(Y)$ and $g^{-1}(Y) \leq \phi(Y)$.

The theorem is proved if the following diagram commutes:

\[
\begin{array}{cccc}
\Pi_n (S \times I) & \Pi_n (S \times I) & \Pi_n (S \times I) & \Pi_n (S \times I) \\
\Phi(Y) \times a & \Phi(Y) \times a & \Phi(Y) \times a & \Phi(Y) \times a \\
\Pi_n (T \times I) & \Pi_n (T \times I) & \Pi_n (T \times I) & \Pi_n (T \times I) \\
\end{array}
\]

b) Observe that $S \times I$ is a symmetrical pf-space. Hence, by Lemma 8.2, in each class $[h]$ of $\Pi_n (S \times I) \times a$ we find a n-preloop k, which is quasi-constant with respect to a suitable finite partition \mathcal{C} of I^n in open cells.

c) The map $k \times 1_I : I^n \times I \to (S \times I) \times a$ is precontinuous.

In fact, let $(w,t) \in I^n \times I$. Since the map $k : I^n \times a$ is precontinuous, there is a
neighbourhood U_w of w such that $k(U_w) \subseteq \text{St}(k(w), \phi(Y))$. But $k(U_w)$ is a finite subset of S. Put $k(U_w) = \{x_1, \ldots, x_r\}$, and take a positive integer $r \leq m$. The point x_r belongs to the element A_{x_r} of $\phi(Y)$. Moreover, for each $t \in t$ we find a point $t \in t$ and an open neighbourhood $V_{x_r}^t$ of t such that $k(U_w) \subseteq \text{St}(k(w), t, \phi(Y))$. Then $V = \bigcap_{1 \leq r \leq m} V_{x_r}^t$ is a neighbourhood of t, such that $k(U_w) \subseteq \text{St}(k(w), t, \phi(Y))$.

Therefore the foregoing diagram commutes, because $f^*_{\phi(Y)} p^*_{\phi(Y)}^{-1}(\phi(Y))([h]) = [f_k]$ and $g^*_{\phi(Y)} p^*_{\phi(Y)}^{-1}(\phi(Y))([h]) = [g_k]$.

9. Čech homology groups.

Let us consider a pretopological space $S = (X, P)$ and its inverse system $\mathcal{S} = (S_X, P_X, \text{Cov}(S))$.

For any $X \subseteq \text{Cov}(S)$ and each dimension n, we can calculate (see [2]) the singular homology group $H_n(S_X)$ of S_X. Moreover, given $X \subseteq X'$, the precontinuous map $P_{XX'} : S_X \to S_{XX'}$ induces a homomorphism $p_{XX'}^* : H_n(S_{XX'}) \to H_n(S_X)$ for each dimension n. So, for each integer $n \geq 0$, we obtain the inverse system $(H_n(S_X), p_{XX'}^*)$, where $H_n(S_X)$ is the n-dimensional relative singular homology group of the pair (S_X, A).

9.3 Definition We put $H_n(S, A) = \lim_{n \to \infty} H_n(S_X)$. The group $H_n(S, A)$ will be called the n-dimensional relative Čech homology group of the pretopological space S.

9.2 Remark. Clearly, if $S = \{x\}$, $H_0(S, A) = 0$ for $n > 0$, and $H_0(S) = \mathbb{Z}$.

Now let A be a subset of S and $\mathcal{S}_A = (S_A, A, P_A, \text{Cov}(S_A))$ the inverse system of the pair (S, A). For each dimension n, we can consider the inverse system $(H_n(S, A), p_{AA'}^*)$, where $H_n(S, A)$ is the n-dimensional relative singular homology group of the pair (S, A).

9.3 Definition We put $H_n(S, A) = \lim_{n \to \infty} H_n(S, A)$. The group $H_n(S, A)$ will be called the n-dimensional relative Čech homology group of the pair (S, A).

10. Homomorphisms between Čech homology groups.

Let S and T be pretopological spaces, $\mathcal{S} = (S_X, P_X, \text{Cov}(S))$ and $\mathcal{T} = (T_Y, P_Y, \text{Cov}(T))$ their inverse systems, $f : S \to T$ a precontinuous map, and $\hat{f} = (f_Y, f_Y^{-1})$ the morphism from \mathcal{S} to \mathcal{T} induced by f.

For each dimension n, the precontinuous map $f_Y : S_X \to T_Y$ induces a homomorphism $f_Y^n : H_n(S_X) \to H_n(T_Y)$.

10.1 Definition We denote by $\hat{f} : H_n(S, A) \to H_n(T, B)$ the homomorphism $\lim_{n \to \infty} f_Y^n$, and we say that it is induced by the precontinuous map $f : S \to T$.

10.2 Remark. Similarly, given two subsets A of S and B of T, for each dimension n we obtain the homomorphism $\hat{f} : H_n(S, A) \to H_n(T, B)$.

10.3 Proposition If $f : (S, A) \to (S, A)$ is the identity, then $\hat{f} : H_n(S, A) \to H_n(S, A)$ is
the identical isomorphism.

10.4 Proposition Let \(f: (S,A) \rightarrow (T,B) \) and \(g: (T,B) \rightarrow (Z,C) \) be precontinuous maps and \(h=gf \). Then \(\tilde{h} = \tilde{g} \circ \tilde{f} \).

10.5 Proposition (Excision Theorem) Let \(A \) and \(U \) be nonempty subsets of a pretopological space \(S \), such that \(\text{cl}(U) \subseteq \text{int}(A) \). Then the canonical injection \(f: (S-U, A-U) \rightarrow (S,A) \) induces an isomorphism \(\tilde{f}: H_n(S-U, A-U) \rightarrow H_n(S,A) \).

Proof: In fact we have:

(i) Let \(A=\{A_i\} \) isomorphism from \(\tilde{P}(A_i) \) induces in \(A \) the pretopology \(\tilde{P}(A_i) \). Then (see [2]) the injection \(f: (S-U, A-U) \rightarrow (S,A) \) induces an isomorphism \(\tilde{f}: H_n(S-U, A-U) \rightarrow H_n(S,A) \).

(ii) Let \(A=\{A_i\} \) be an element of \(\text{Cov}(S,A) \). Then \(\tilde{A}=\{A_i\} \) (where \(J=\{i \in J/ A_i \neq \emptyset \} \)) is such that \(\tilde{P}(\tilde{A}) \) induces in \(A \) the pretopology \(\tilde{P}(\tilde{A}) \). Moreover \(\tilde{A} \subseteq A \).

11. The homomorphisms \(\tilde{\partial} : H_n(S,A) \rightarrow H_{n-1}(A) \), \(\tilde{\gamma} : H_n(A) \rightarrow H_n(S) \), \(\tilde{\gamma} : H_n(S) \rightarrow H_n(S,A) \).

Now consider a subspace \(A \) of a pretopological space \(S \) and the functions \(\psi: \text{Cov}(A) \rightarrow \text{Cov}(S), \) \(\tilde{\psi}: \text{Cov}(S) \rightarrow \text{Cov}(A), \) \(\psi: \text{Cov}(S,A) \rightarrow \text{Cov}(S) \) we mentioned in 7.

For any \(R \in \text{Cov}(A) \) we can define a boundary homomorphism \(\tilde{\delta}_{R,n} \) from \(H_{n-1}(A,R) \) to \(H_n(A,R) \).

Afterwards, considering the usual homomorphisms \(i_{n} : H_n(A) \rightarrow H_n(S,A) \) and \(j_{n} : H_n(S,A,R) \rightarrow H_n(S,A) \), we obtain the morphisms \((i_{n}, \psi) \) from \(H_n(A,R) \) to \(H_n(S,A,R) \) and \((j_{n}, \psi) \) from \(H_n(S,A,R) \) to \(H_n(S,A) \).

11.1 Definition We put \(\tilde{\gamma}_{n} = \lim_{\rightarrow} \tilde{\partial}_{R,n} \), \(\tilde{\gamma}_{n} = \lim_{\rightarrow} i_{n} \), \(\tilde{\gamma}_{n} = \lim_{\rightarrow} j_{n} \).

With a standard proof, we obtain:

11.2 Proposition Let \(f: (S,A) \rightarrow (T,B) \) be a precontinuous map and \(g: A \rightarrow B \) the restriction of \(f \) to \(A \). For each dimension \(n \) the following diagram commutes:

\[
\begin{array}{ccc}
H_n(S,A) & \xrightarrow{\tilde{f}_n} & H_n(T,B) \\
\downarrow \tilde{\gamma}_{n} & & \downarrow \tilde{\gamma}_{n} \\
H_{n-1}(A) & \xrightarrow{\tilde{\delta}_{n}} & H_{n-1}(A)
\end{array}
\]

11.3 Proposition Let \(S \) be a pretopological space and \(A \subseteq S \). We obtain the following 0-sequence:

\[
\ldots \rightarrow \tilde{H}(A) \rightarrow \tilde{H}(S) \rightarrow \tilde{H}(S,A) \rightarrow \tilde{H}(S,A) \rightarrow \ldots
\]

12. The homotopy condition for Čech homology groups.

To prove the homotopy condition (i.e. Theorem 12.5), we need some previous statements.

Let \(\Delta = [a_0, a_1, \ldots, a_p] \) be the standard p-simplex, and let \(i_1, i_2, \ldots, i_n \) be
integers such that $0 < i_1 < i_2 < \ldots < i_n < p$, where $1 \leq p$. Given a singular p-simplex σ^λ on a pretopological space X, we denote by $\sigma^\lambda_{i_1 \ldots i_n}$ the singular $(n-1)$-simplex $\sigma^\lambda (a_{i_1} \ldots a_{i_n})$ product of $\sigma^\lambda : \Delta_{p} \to X$ and of the singular $(n-1)$-simplex $(a_{i_1} \ldots a_{i_n})$ on Δ_{p}. Moreover, given a function $F^\lambda : \Delta_n \times I \to X$, we will denote by $F^\lambda_{i_1 \ldots i_n}$ the function $F^\lambda((a_{i_1} \ldots a_{i_n}) \times I) : \Delta_n \times I \to X$. We will write $\sigma^\lambda_{i_1 \ldots i_n}$ and $F^\lambda_{i_1 \ldots i_n}$ instead of $\sigma^\lambda 0 \ldots 1 \ldots n$ and $F_{0 \ldots 1 \ldots n}$.

12.1 Definition Let $\alpha = \Sigma \sigma^\lambda$ and $\beta = \Sigma \tau^\lambda$ be singular p-chains on a pretopological space X. We say that α is homotopic to β, if:

1. For each λ with $\alpha \neq 0$, there is a prehomotopy F^λ of σ^λ to τ^λ;
2. If $\sigma^\lambda_{i_1 \ldots i_n} = \tau^\lambda_{j_1 \ldots j_n}$, then $F^\lambda_{i_1 \ldots i_n} = F^\lambda_{j_1 \ldots j_n}$.

With a process which is similar to the one of the classical case (see for example [5]), it is possible to prove the following:

12.2 Proposition Let X be a pretopological space, $\alpha = \Sigma \sigma^\lambda$ a p-cycle on X and $\beta = \Sigma \tau^\lambda$ a p-chain on X. If β is homotopic to α, then also β is a p-cycle on X; moreover α and β are homologous.

12.3 Lemma Let X be a symmetrical pf-space and $\alpha = \Sigma \sigma^\lambda$ a singular p-chain on X. For each λ such that $\alpha \neq 0$, we find a finite partition Δ^λ of Δ_{p} in open cells and a singular p-simplex τ^λ on X such that:

1. τ^λ is quasiconstant with respect to Δ^λ;
2. $\Sigma \tau^\lambda$ is homotopic to $\Sigma \sigma^\lambda$.

Proof: Let us consider successively the faces of all simplices σ^λ of dimensions 0, 1, ..., p and let us define the corresponding faces of the simplices τ^λ.

For any 0-dimensional face $\sigma^\lambda_{i_1}$, we take $\tau^\lambda_{i_1} = \sigma^\lambda_{i_1}$.

Now let $\sigma^\lambda_{i_1 \ldots i_m}$ be a n-dimensional face of a simplex σ^λ. Assume that all simplices $\tau^\lambda_{i_1 \ldots i_m}$ (with $m < n$) and the prehomotopies $F^\lambda_{i_1 \ldots i_m}$ of $\tau^\lambda_{i_1 \ldots i_m}$ to $\sigma^\lambda_{i_1 \ldots i_m}$ has been defined, in a way such that:

1. If $\sigma^\lambda_{i_1 \ldots i_m} = \sigma^\lambda_{j_1 \ldots j_m}$ for some λ, μ, then $\tau^\lambda_{i_1 \ldots i_m} = \tau^\mu_{j_1 \ldots j_m}$ and $F^\lambda_{i_1 \ldots i_m} = F^\mu_{j_1 \ldots j_m}$.
2. We observe that we can consider Δ as the nth cone $\text{C}^n(a_0)$ on $\{a_0\}$, and we denote π^n the projection from $I^n \to \Delta_{n-1}$ of $\text{C}^n(a_0)$. The product function π^n is a precontinuous map $f^\lambda_{i_1 \ldots i_n} : I^n \to X$.

So we have to construct a precontinuous map $g^\lambda_{i_1 \ldots i_n} : I^n \to X$ which must be homotopic to $f^\lambda_{i_1 \ldots i_n}$ and quasiconstant with respect to a suitable finite partition $\sigma^\lambda_{i_1 \ldots i_m}$ of I^n in open cells. To obtain the map $g^\lambda_{i_1 \ldots i_n}$ and the prehomotopy $H^\lambda_{i_1 \ldots i_n}$ of $g^\lambda_{i_1 \ldots i_n}$, we will follow a process similar to the one of Lemma 8.2; but now we have to recall that $H^\lambda_{i_1 \ldots i_n}$ is already determined in $I^n \times I$ by the inductive hypothesis.
Finally we observe that the function $H_{i_1 \ldots i_n}$ and its restriction $g_{i_1 \ldots i_n}$ to $\Gamma^n \times \{0\}$ are relation preserving. So the functions $F_{i_1 \ldots i_n}$ and $\tau_{i_1 \ldots i_n}$ are given by the following commutative diagrams:

$$\begin{array}{ccc}
\Gamma^n \times I & \xrightarrow{H^\lambda} & X \\
\Delta \times I \downarrow & & \downarrow \\
\Gamma^n \times \{0\} & \xrightarrow{\tau^\lambda} & X
\end{array}$$

12.4 Remark. Now let (X, A) be a pair of pretopological spaces. Since generally A carries a pretopology finer than the one induced by X, we have to add to Definition 12.1 the following condition:

(3) if $\sigma^\lambda_{i_1 \ldots i_n}$ is a singular $(n-1)$-simplex on A, then $\gamma^\lambda_{i_1 \ldots i_n}$ and $\rho^\lambda_{i_1 \ldots i_n}$ must be precontinuous maps into A.

12.5 Theorem Let S and T be pretopological spaces, $A \subseteq S$, $B \subseteq T$, and let $f : (S, A) \to (T, B)$ and $g : (S, A) \to (T, B)$ be precontinuous maps. If f and g are homotopic, then $f_n = g_n$ for each dimension n.

Proof: Let $H : (S \times I, A \times I) \to (T, B)$ be a prehomotopy of f to g.

Given $B \in \text{Cov}(T, B)$, consider the elements $\phi(B) \in \text{Cov}(S \times I, A \times I)$ and $\phi(B) \in \text{Cov}(S, A)$ from Theorem 4.8, and recall that $\phi(B)$ refines both $f^{-1}(B)$ and $g^{-1}(B)$.

Then consider the following diagram:

$$\begin{array}{ccc}
H_n(S, A) & \xrightarrow{f^{-1}(B) \phi(B)} & H_n(S, A) \\
\phi(B) \downarrow & & \downarrow \phi(B) \\
H_n(T, B) & \xrightarrow{g^{-1}(B) \phi(B)} & H_n(S, A)
\end{array}$$

Let $[\alpha] \in H_n(S, A) \phi(B)$ and $\alpha = \Sigma \alpha^\lambda \sigma^\lambda$. By Lemma 12.3 and Remark 12.4, we construct a n-chain $\beta = \Sigma \alpha^\lambda \tau^\lambda$ such that:

i) β is a linear combination of a finite number of n-simplices that are quasi-constant with respect to a suitable finite partition of Δ_n;

ii) β is homotopic to α.

Therefore $\beta \in [\alpha]$ since, by Proposition 12.2 and Remark 12.4, β is a relative cycle homologous to α. Now consider the chains $f \beta = \Sigma \alpha^\lambda (f \tau^\lambda)$ and $g \beta = \Sigma \alpha^\lambda (g \tau^\lambda)$, and observe that $f \beta = f^{-1}(B) \phi(B) \alpha$, $g \beta = g^{-1}(B) \phi(B) \alpha$.

With a proof analogous to the one of Theorem 8.3, we see that $K^\lambda \cdot H(\tau^\lambda 	imes 1_T)$ is a prehomotopy of $f \tau^\lambda$ to $g \tau^\lambda$; moreover $f \beta$ and $g \beta$ are homotopic chains. Hence $[f \beta] = [g \beta]$.
REFERENCES

DAVIDE CARLO DEMARIA, DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI TORINO, VIA PRINCIPE AMEDEO 8, 10123 TORINO
ROSANNA GARBACCIO BOGIN, DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI TORINO, VIA PRINCIPE AMEDEO 8, 10123 TORINO