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EPIMORPHIMS AND COWELLPOWEREDNESS OF EPIREFLECTIVE \2\ 
SUBCATEGORIES OF TOP 

D.Dikranjan and i.Giuli * 

Abstract. A functor F_: Top---—> Top induced by a given epi ref Lect i ve subcate-
A 

gory A of the category Top of topoLogicaL spaces is used to charac­

terize epimorr>hi sms in some famiLiar epi ref Lect ive subcategories of 

Top and to soLve for these subcategories, the problem of the coweLl 

-poweredness. Furthermore an ordinaL number EO ( X ) , for each X&Top, 
A 

is introduced and it is computed in several examples. 

As an application it is shown that there is no epirefLective subca­

tegory of Top which is properly contained in the subcategory Top. of 

all Hausdorff spaces and whose extremal epireflective hull is Top.. 

y y 
1. In 1975 Salbany ( [14]) introduced a closure operation [J.:2 --•2 

A 

defined on subsets of a topological space X b y a class A of topolo­

gical spaces. In 1980 Giuli ([6]) used that closure operation to study epi-

refLections in epirefLective subcategories of Top„He pointed out that epi-

morphisms in an epirefLective subcategory A of Top are precisely the 

continuous maps which are dense with respect to [] . 

Recently Dikranjan and Giuli ([-»]) characterized [ ] for some fami­

Liar epireflective subcategories A of Top. They showed that, as in the 

classical case of Hausdorff spaces /the closure operation [] charac­

terizes the spaces X of A in terms of the A-closure of the diagonal 

A for A=Top , FT , Top P ( O - d i m ) , (see 1.1 b e l o w ) . 
X c. Crt^f 

In this paper we will use the previous closure operation to de­

fine, for each epirefLective subcategory A of Top,a functor 
F - T o p — » T o p . Then some sufficient conditions for the cowelLpowered-
A 

ness of A are given and they are used to answer the question of the 

cowelLpoweredness of some epireflective subcategories of Top. Fur­

thermore an ordinaL number E0 M(X) (called epimorphic order of X with 
A * Talk given by the second named author. The paper is in its 

final Torm and will not be published anywhere else. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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respect to A is introduced fo r each XeTop and in several examples i t is 

computed.Iterations of the functor F, and t h e r e l a t i o n w i th the A - r e -
A 

flection functor are also studied. 

We will use the previous closure operation in a forthcoming paper 

for a new approach to the study of A-minimal and A-closed spaces 

<[5]>-

1.1. The following subcategories of Top are symbolized as follows 

Top. = the subcategory of topological spaces satisfying the T.-axiom 

<i=0,1,2) 

FT = The subcategory of f unct iona ULyHausdorf f spaces, i.e., spaces X 

such that for any two different points x , x there exists a 

continuous map f:X-*R with f(x ) * f(x ) . 

Top = The subcategory of regular Hausdorff spaces. 

P(Top,) = The subcategory consisting of spaces whose topology is fi­

ner than a regular Hausdorff topology. 

Top... = The subcategory of Urysohn spaces, i.e..spaces such that 

for any two different points there exist disjoint closed 

nbds. 

Top v = The subcategory of completely regular Hausdorff spaces. 

0-diM = The subcategory of 0-dimensional spaces, i .e., Hausdorff 

spaces with a base of clopen sets. 

P(0-di»)= The subcategory of spaces whose topology is finer than a 

0-dimensionaL topology, i.e.,spaces in which every point 

is the intersection of the clopen sets containing ii([l2]). 

We recall that a full and isomorphism-closed subcategory A of Top 

is said to be epirefLective (respectively birefLective, extramally 

epireflective) in Top if for each topological space X there exist 

r (X) belonging to A and an epimorphism (respectively bimorphism, 

extremal epimorphi sm ) r :X-->r (X) such that, for each AtrA and con-
A A 

tinuous map f:X-—#A there exists a (unique) cont inuous map f':r.(X)-* 
A 

—•A satisfying the condition r_of'=f. r. is called the A-reflection 
A A 

of X. 
A is epirefLective in Top iff it is.closed under the formation of 

products and subspaces (= extremal subobjects). It is extremally 

epirefLective iff it is epirefLective and contains finer topologies. 

It is bireflective iff it is epiref lective and contains (all) indi­

screte spaces. 

Every class B of topological spaces admits an epireflective hull 

E(B) (i.e., a smallest epireflective subcategory containing A ) , an 
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extremaL e p i r e f L e c t i v e huLL P(B) and a b i r e f L e c t i v e huLL 1 (B) . 

123 

ALL categories Listed in 1.1. are epirefLective in Top. Top. , for 

i = 0,1,2,2%, and FT are extremaLLy epi ref Lect i ve in Top. For aLL 

categories A Listed in 1.1. the subcategory A = J X f T o p : rQ(X)JAj 

(where r„ is the Top -refLection) is birefLective in Top. 
o o r 

T°P-*i/ / FT^ a nd Top,., (subcategory of compLeteLy regular spaces) are 
5V* c 3t 

respectively the epirefLective huLL, the extremaL epirefLective hull 
and the birefLective hull of the real Line IR in Top . 
For general results on epireflective subcategories of Top see [7,8] 
The categorical terminology is that of [il 0] . 

In what follows A will denote an epirefLective subcategory of 

Top. For each pair of continuous maps (fj,g:X • Y ) , Eq(f,g) will 

denote the equalizer in Top of f and g (i.e., Eq(f,g) ={xsX:f(x)= 

= g(x)J ) . 

1.2. - Definitions, (a) A subset F of a topological space X is 

said to be closed with respect to A (in short A-cLosed) in X if 

there exist AtA and continuous maps f,g : X—t>A such that' 

Eq(f,g) = FJ 

b) We will define A-c(.osure of a subset M of X as follows: 

MA = 'MFCX : M c F a n d F is A-closedJ 
When no confusion is possible we write [M] or simply £M] instead 

of [M]* . 

c) If x ^ M and f ,g:X —->-»A,A £ A, are continuous maps such that 

McEq(f,g) and f(x) # g(x) then, (f,g) is said to be an A-separa-

ting pair for (x,M). 

By definition x ̂  [M] iff there exists an A-separating pair for 

(x,M). The family of all A-closed sets of a topological space X tri 

vially contains X and, by the productivity of A , it is closed under 

the formation of intersect ions (i.e., it is a Moore family). Thus the 

A-closure is a closure operation in the sense of Birkhoff ([2]). 

Furthermore M . s0 for all epireflective subcategories A different 

from the trivial subcategory Sgl consisting of topological spaces 

whose underliyng sets have at mo,st one point. 

Even if [ M ] \J [N1A<-- [
M L r NL f°r e a c h M , N C X , the epireflective hull 

of an infinite strongly rigid space (the continuous self-maps are 

precisely the constant maps and the identity map ([10^)) provides 

an example of a non-additive closure operation ([3,4]). 

2. The following lemma is very useful in the sequel. 
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2 . 1 . Lemma, (a) For each X t Top and M c x , t h e foLLow ing hoLds: 

Thus A-cLosu re i s a d d i t i v e ( t h u s a Ku ra towsk i o p e r a t i o n ) f o r each 

X i Top i f f i t i s so f o r each A «A. 

(b) For each XfcP(A) and Mc X, t he foLLowing hoLd 

Hi,., • M&.' -w;«'" - w.-
Thus P ( A ) - c L o s u r e rs a Ku ra towsk i o p e r a t i o n i f f A-cLosure i s . 

P r o o f , (a ) By 1 . 2 . ( x ) of [4] rA < [ M ] * > C [r A<M)] ^ A ( X ) , so 

r M l X C ( r ) " " 1 ( [ r ( M ) 1 [ A C X ) ) - On t he o t h e r hand, i f x £ [ M ] X and 
- » - » A A - » A J A r u * A 

( f , g : X — * k > i s an A - s e p a r a t i n g p a i r f o r ( x , M ) / t h e n ( f 1 , g * : r (X)-*A> 

where f o r = f and g W = g , i s an A-separating pair fo r ( r . (X ) , r A (M) ) , so 

b) For each X & P ( A ) , r : X — * r (X) i s t he i d e n t i t y on the unde r -
A ** V / y \ 

Ly ing s e t s t h e n , i t foLLows from (a) t h a t [ M ] p ( A )
 = [ M l p ( A ) 

Fu r the rmo re \^Yh x C M [ A foLLows from the i n c L u s i o n A C P ( A ) . 
t i p ( A ) *• •* A 

To show t h a t [ M ] [ A C M P ( A )
 t a k e x ^ [ M ] p ( A )

 a n d a P( A)-separat ing 

p a i r ( f , g : X — * - Y ) f o r (x ,M) . Then ( f ^ g ' - . r ( X ) — * r < Y ) ) , where 

r of = f ' o r . and r og = g ' o r . , i s an A - s e p a r a t i n g p a i r f o r <x,M) i n 
A A A * A 

r <X) , so x / [MJ [A - For t he Last e q u a L i t y no te t h a t r *.X-*r (X) 
A A A A 

i s t he i d e n t i t y on t h e u n d e r L y i n g s e t s then <a) g i v e s [w] = [ M ] * A 

f o r every M c X . 

For each <X , r ) c Top , zK wiLL denote the topoLogy gene ra ted i n X 

by t he A - c L o s u r e , i . e . , t he coa rses t topoLogy on X f o r wh ich aLL 

A-cLoser l sets are cLosed.F :Top—• Top wiLL denote the functor which assigns to 
A 

(X Z )tlop the space <X,S ) . For each continuous map f : < X , C ) — * 

— <Y,0*) in Top the continuity of f = F A<f):(X, Z ) — # < y , & ) foLLows 

from 1.2 (x) of [4] ' . 

By 2.1 of [4] for every ( X , r ) t T o p Z is the initiaL topoLogy on X 
y. "'A 

induced by the map x J5* P A*
 r
A
x ) ' where r is the A-ref Lection of X. 

This is why ( X , E ) is indiscrete iff r X is a singLeton. On the 
A " 

other hand, if A#Sgl,then for each (X,c)g,Top / ( X , # ) £. Top. iff 
r : x — • r X is injective. In particuLar if A is extremaLLy epirefLec-
A A 
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t i v e , then (X , ^ J s T o p . i f f ( X , £ ) c A . Cond i t ions ensuring (X/ t f )£Top 
A 1 h e 

are d iscussed in 2 . 8 . 

TiLL the end of t h i s sec t ion , we study the p r o p e r t i e s of the functor 

F . Set A = *X fcTop:F (X )=X ] . CLearly W,Z)Z* i f f r (X/S)£A OA and 
A o * A ' o A o 

X has the i n i t i a L topology wi th respect to r
A

: X " " " * r A X " 

I n the foLLowing theorem we give e x p L i c i t t y zm for var ious c a t e -
A 

goriesA incLuding those Listed in 1.1. First recaLL the notion of 

0-closure introduced by VeLichko ([l 7]) . For (X,r)£Top and MtfX, 

CI H=[xtX: for each nbd V of x;\/r\Mf-0| . 

AnaLogousU one can i nt roduce 9-i nter ior Int H-JxcX: there ex i st s a 

n ^ V of X / V c M ) . A subset M of X is said to be 8-closed (0-open) if 

M=CLgM (M=IntQM). The 6-cLosure is additive but not idempotent in 

generaL. The idempotent huLL of CL^ is T], since for each 
n e L J T o p ^ 

(X/CUTop,* and MCX , CL Hc[MJ, and M is 6-cLosed iff M is 
*^ > e L Top̂ fc, 

Topj,^, -c Losed (see 2.5(b) of £4] ) . 8-cLosure was aLso studied by 

Schroder [1 5] . 

2.2. Theorem, (a) IP A is birefLective (resp. A=Top ) then *c. is the 
1. A 

discrete topoLogy for every (X,2?)eTop (resp. (X, £ ) £. A) . 
(b) If A=Top./ i = 2,3,3*j,, or A=0-dim/ then Z = Z for each (X/lDsA. 

1 A 

(c ) I f A=P(B) then for each ( X , D £ A , ^A=6 /
B^ where (X/C) is the 

B - r e f L e c t i o n of ( X , r ) . Thus the functors F and F c o i n c i d e . 

( d ) For B=Top / Top.... and O-dim and A=P(B)/ F. coincides on A wi th the 
5 3J5/ ' A 

B-ref Lect i o n . 
(e ) For A=Top and (X /T ) tTop tf is the topoLogy on X having, as 

o o* A 
open base,aLL LocaLty cLosed subsets of (X/C) (finite intersections 
of open and cLosed sets in (X,£)). Thus C .*£ and iX,Zm )£,0-dim. 

A A 
(f) For A=Top^* and (X/S)gA/

 u'^» i"^ u i s 9~open. In particu-
Lar £ = £. iff (X/r)£Top,. 

A 3 

Proof, (a): By 1.10 (a) of [4] in this case the A-cLosure coincides 

with the identity operator. 

(b); By 2.8 (i) of f4j in this case the A-cLosure coincides with 

the ordinary cLosure. 

(c):it foLLows from 2.1 (b) . (d):lt foLLows from (b) and (c). 

(e):As pointed out in 2.9 of £4] in this case the Top -cLosure 

coincides with the weLL-known front-cLosure (£lj£l23), 

fr cL M=fx*X: for each nbd V of x, Vr\ tT$oM*(D$. 

Thus UcX is T -open iff for each x*U there exists a nbd V such that 
A 

VPi(XNU)r\CxJ = 0 , i . e . f x j r W C U . CLearLy any Vr\|xl is cLopen in ( X , c ) , 
so ( X , ^ ) « 0 - d i m . 

A 
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<f) ObviousLy CU is a d d i t i v e , thus T 7 being i t s idempotent 
6 *• JTop iV 

huLL w i L l be a Kuratowski operator <in f a c t , C I < |_MJL>[NJ ) = 
= C L e < [ M ] ) v C L e < [ N ] ) C [DOJ^IIftJ] = [ M J ^ W , SO [MjLrftJ is 6-c Losed , thus 

Top*^ - c l o s e d ) . The Last assertion is proved in 2.4»f[4j. 

2.3 Remarks ( a ) . The A-cLosure is additive in all su b c a t e g o r i e s A 

of Top Listed in 1.1.Ue do not know any example of non additive A-

-closure operation different from the case A=epirefLective hull of 

a class of strongl/ rigid spaces. 

<b) By the explicit form of x it can be seen easily that for 
Top # 

< X , £ ) e T o p * £., is discrete iff for each x*X there exists a T-nbd 
Kf* Top* __ 

V such that {x\ = uir^V. 
The subcategory of such spaces of Top will be denoted by T . 

^o D 
<c) The functor F_ preserves embeddings and f i n i t e products 

T°Po c 
(more p r e c i s e l y , for each f a m i l y t < x . / £ . ) $ . T in Top with (X,2T) = 
= . f j , (X . , r . ) , F =Trv(C)_, holds i f f a l l but a f in i te number of the spaces 

is I i' I Top© i £ l i Topf 

X. are si ngletons) . 
In general the functor FM is submultipLicative, i.e..for each family 

-n- TT 
f(X.,r.)J. _. in Top,< X T r .) __ £ X T <£.) . The following examples show 1 i i 'i_;I ' i d i A i*I i A 
that in general F does not preserve neiter embeddings nor finite 

A 
products. 

2.4. Examples (a) Let (H tt*) be the space given in 1.3 of [-»] . 

Then F<_/K0,0)J is discrete in <U, ZT*) , while F KJ f<0,0){ is not discre­

te as a subspace of (H, X' ) which is compact. 
Topjv* 

(b) Let A=Ei(X,£)j, where (X,r) is an infinite strongly rigid 
space . Then v is the cofinite topology on X, so /V is not cLosed 
in (XxX, Zm x j ) . On the other hand A is the equalizer of the pro-

A A 2 2 * 
jections, so^A is cLosed in (X , < & ) . ) . Thus <£x£) > r A x £ . 

/ 
2.5 Proposition. If Fa is finitely multiplicative, then for each 

A 
<X,C) t A , <X,Z ) £ Top . , . 

' A c 
Proof. Consider A in <XxX, £ x Z/> *, since £ is always 

A-cLosed in <XxX, C x C ) and ttxC) m = r. x r . this implies that A 
A A A X 

is closed in <XxX, r x ZT.), so <X,r ) fcTop.-,. 
A A A 2 

In the following Section we show that there exists < X , D t Top^* 
with <X, Z^ _, ) I Top.. <Hence F_, is not finitely mult ipl i cat i -

TOp^f/i, ' *> * Top,^ 
ve). 7 

Till the end of this section we study conditions which ensure 
/ /, 

r.-i5 or <X,r.) discrete. // 
For < X , ? ) £ T o p denote by K X , r ) the set of all isolated points 



Epimorphisms and cowellpoweredness o f . . . 127 

of ( X , * ) . 

2.6 Lemma. For any epirefLective subcategory A of Top and each 

(X,C)£A 

(*) i(x,r) c K X , r.). 
A 

Moreover, (*) hoLds for each (X,2<)_:Top iff A is birefLective or 
A=Top . 

o 
Proof. Consider first the case when A is neither birefLective 

nor Top . Then A c'Top. . so for every (X, _T ) £ A (X, 2: ) £, Top, hoLds. 
o 1 ' A 1 

Therefore each isoLated point of (X,£) is 2f-clopen, thus aLso 

^ -cLopen by 1.2 (vi) of [̂ J . This proves (*). Remark that (*) does 

not hoLd for Sierpinski's two-points space (S,C) (two points 0,1 

with f0| unique proper open set) since I(S,£)*0 and I(S,Z? )=0 Cthe 
A 

space (S,?_) is indiscrete since the refLection of (S,^") in A is 
A 

a singLeton because of A^Top ) . 

It remains to show that (*) hoLds for every (X,Z?)£»Top if A is 

birefLective or A=Top . This is obvious in the first case since £. 
o A 

is always discrete according to 2.2 (a). Assume A=Top and take an 
o 

arbitrary (X,27)£Top. Then for each x & I ( X , 5 ) the characteristic 
(continuous) map f:X —*S of the open set (xj and the constant at 1 
form an A-separating pair for (x,X«*Ax. ) so x£l(X,3£ )„ 

A 

In the foLLowing proposition we show that the converse incLusion 

of (*) for any space ( X , £ ) £ A impLies ACTop . 

2.7 Proposition. For each epirefLective subcategory A of Top the 

foLLowing conditions are equivalent: 

(a) A £ Top.,; 

(b) for each (X,tf)fA Z + V ; 
A 

(c) for each (X, B ) £ Top t < Z ; 
(d) for each ( X , C ) £ A I(X,£) = I ( X , C ) ; 

A 
(e) every (X, £ ) £ A is discrete whenever (X, V.) is discrete. 

A 
Proof. The equivalence (a)«£^(b) was given in 1.10 (b) from [J*J 

The equivalence (b)4-t>(c) follows from 2.1 (a). Clearly (b) implies 

(d) and (d) implies (e). To finish the proof we have to show (e)=>(a). 

We can assume without loss of generality that A is extremal-

ly epireflective. In fact, if B=P(A) then because of 2.2 (c) the 

functors F and F coincide. To show that each (X,ZT)£B satisfies 
A D 

(e) consider the reflection (X,cM of (X,£) in A. Then by 2.2 (c) 

Vn
 r^.- N°w if £„ is discrete then by (e) (X,^) is discrete, thus 
D A D 

(X, Tf) is discrete too. So we can assume that A is extremally epire-
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fLective, i.e.,A=B. 

If A is birefLective then A=Top and Qe) is not verified since 

£ „ is aLways d i s c r e t e . Therefore ACTop . Now A=Top c o n t r a d i c t s 
Top o o 

(e) since there exists a non-discrete space ( X , £ ) £ T , then "£ 
D Top 0 

is disc rete. 
We have shown that(e) impLies A c T o p . Assume there exists a 

space ( X , ? ) £ A such that ( X , V ) ^ T o p _ . Then there exist two distinct 

points x and y in X such that for any nbd V of x and any nbd U of y 

in (X, £ ) 

(**) \lr\\) * 0. 

Now set Y=ipj \j X ̂ {x,yj and consider the foLLowing topoLogy € on Y. 

ALL points different from p are isoLated, for nbds system of p take 

aLL intersections (**) added the point p. CLearLy of is non discrete 

because of (**). Consider the maps f and f of Y into X defined by, 
x y " 

f (u)=f (u)=u if u*p and f (p)=x, f (p)=y. The continuity of f and 
x y x y x 

f foLLows directLy from the definition of or . On the other hand 
y 

both maps are injective, hence (Y,$*)£A because X £ A and A is extre-

maLLy epi ref Lect i ve. Now the space (Y,flr*) does not satisfy (e) since 

Cf is discrete. In fact by 2.6 I (Y, 6^) 3 I < Y, <T ) =Y N, (pj and (f ,f ) 

is an A-separating pair for (p,Y%*lp|), so tpf is G' -open. 

3. It is weLL known that Top is a coweLLpowered category, i.e.^the 

cLass of aLL Top -epimorphisms (i.e. dense continuous maps) with do­

main a fixed Hausdorff space has a representative set ([7]). 

In 1975 HerrLich [9j first produced an exampLe of a non coweLLpowe-

red epirefLective subcategory of Top: the epirefLective huLL of a 

proper cLass of strongLy rigid spaces such that the continuous maps 

between them are preciseLy the identities or the constant maps. 

In 1983 Schro'der showed that Top 0 is not coweL Lpowered ( [16J) . 

He produced for each ordinal number p a Urysohn space Y Q of cardi-

naLity ^ -card (jfi ) and an embedding e ^ : G — • Y A , where Q is the 

space of rationaL numbers with the usuaL topoLogy, such that e ^ is 

a Top -epimorphism. 
C.Yb 

In what foLLows we shaLL show that aLL remaining categories Listed 

in 1.1 are coweLLpowered. The foLLowing proposition given in [4J 

and [6] wiLL be used. 

3.1 Proposition. f:X—»Y is an A-epimorphism iff f(X) is A-dense in 

Y, i.e., [*(X)J =Y. 

3.2 Lemma. Let A and B be epirefLective subcategories of Top and Let 
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F : A — » B be a functor s a t i s f y i n g the foLLow ing c o n d i t i o n s : 

(1 ) F«prese rves ep imorph i sms , i . e . , f o r each A-ep i morph i sm f:X--i-»Y 

the map F ( f ) : F ( X ) — > F ( Y ) i s a B-epimorph ism; 

(2) F i s a conc rete f u n c t o r , i . e . , i f U:Top—>Set i s the f o r g e t f u L 

f u n c t o r then 1>F = U. 

Then A i s coweLLpowered whenever B i s coweLLpowered. 

P r o o f . T r i v i a L. 

3 .3 CoroLLa ry . Let B be a coweLLpowered e p i r e f L e c t i v e subcategory 

of Top , then so i s P ( B ) . 

Proof. For A=P(B) and F=r -the B-refLection- appLy 3.2. CLearLy 
B 

F satisfies ( 2 ) , on the other hand,by 2.1.(b),f:X—*Y is an epimor-

phism in A iff f = F( f ) : F ( X ) — * F ( Y ) is an epimorphism in B. Thus F sa­

tisfies a Lso (1) . 

3.4 CoroLLary. If A is an epirefLective subcategory of Top such 

that for each (X, V ) c A (X, V ) & Top., then A is coweLLpovered. 
A 2 

Proof. For B=Top_ and F=F. we appLy 3.2. ObviousLy (2) holds; on 
c A 

the other hand £or each epimorphism f : X — » Y in A f(X) i s A-dense in Y 

by virtue of 3.1. Therefore KX) is dense in F(Y) hence f:F(X)-*F(Y) 

is an epimorphism in B=Top and Top is coweLLpowered. 

For aLL subcategories of Top Listed in 1.1 except Top... r is 
d •! - A 

Hausdorff so aLL they are coweLLpowered. 

3.5 CoroLLary. If A is an epirefLective subcategory of Top such that 

F. is finitely muLtipLicative than A is coweLLpowered. 
A 

Proof. By virtue of 2.5, A satisfies the condition in 3.4, so A 

is coweLLpowered. 

Some famiLiar extremaLLy epirefLective subcategories of Top are 

the extremaL epirefLective huLL of a proper epirefLective subcate­

gory (e.g. FT =P(Top_4.)) . Top. does not have that property as the foLLo-

wing proposition shows. 

3.6 Proposition. If A is an extremaLLy epirefLective subcategory of 

Top and for every ( X , £ ) £ A , € =^ rfchen there does not exist a pro­

per epirefLective subcategory B e A such that P(B)=A. 

Proof. Since t ^ S for each ( X , S ) t A,by virtue of proposition 
A * 

2.7# A c T o p . Assume there exists an epi ref Lect ive subcategory B of 

Top such that A=P(B). 

By 2.2 (c),for each (X,z?)£A with B.reflection r (X, K ) = (X, <3f ) , 

t = «* hoLds. Since B C A c Top. , e^£ e*, thus we get t *C_- (f li'. 
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On t h e o t h e r hand a lways ££«r h o l d s , so f o r each (X , <F ) f A, r (XJJO^XJZ) . 
B 

Therefore B=A. I 

3.7 Question. Does there exist such a B as in 3.6 for A=Top ^ ? By 

virtue of 3.3 such a B will not be coweL Ipowered. 

4. In this section we consider iterations of the functor F :Top—••Top 
A 

defined in section 2. Let A be epirefLective subcategory of Top;then 
for each ordinal number ot we define a topology t\* on X in the fol-

A 
Lowing way: 2T =27 and r .« .u =(2T.-<). for any©*; if <»Cis a Limit ordi-

A° A A A . 
nal r.«c= in£ £ ~ . It is easy to check that setting F - (X, V ) = (X, tjv) 
we get a functor F.„«:Top—*Top. By virtue of 2.7 if A c T o p . for each 

A Z * 
(X, r ) £ T o p ^ t h e t o p o l o g i e s Vh* form a d e c r e a s i n g c h a i n , so there 

will exist an o r d i n a l number oL such that r ^ i = Z " ^ . 
A A 

4.1 D e f i n i t i o n . Let A C Top and ( X , 2 T ) c T o p ; the smallet o r d i n a l ^ / 

such that Vtj+i. - V-JL will be c a l l e d e p i m o r p h i c order of (X,Z?) with 

respect to A and will be d e n o t e d by EO ( X , £ ) . 
A 

In p a r t i c u l a r E0 (X)=0 iff X*A , o t h e r w i s e EO (X ) = 1 + E 0 (F (X)) 
A O A A A 

with e a s y check . 

E p i m o r p h i c order can be d e f i n e d in a similar way also for c a t e g o ­

ries A such that V*Vm for each ( X , r ) £ T o p . 
A 

4.2 E x a m p l e s . Let ( X , C ) be an inf i n i t e s t r o n g l y rigid space and 

A = E { ( X , r ) | • then Vm is the c o f i n i t e t o p o l o g y on X, so r.(X, ZT_) 
' At A A 

is a s i n g l e t o n , t h e r e f o r e ( K / C j ) is i n d i s c r e t e , so E 0 ( X , C ) = 2 . 

(b) Let B C B and A = P ( B ) , then E0 ( X , C ) = 0 iff r (X,r)£B and X 
o A A 

has the initial t o p o l o g y with respect to X r . ( X , Z ) , o the rwi se 
A 

E 0 ^ x , r ) = 1 . 
( c ) Let ( Y * , r » ) be the U r i shon space c o n s t r u c t e d i n J/l 6̂ J f o r 

an o r d i n a l j& s a t i s f y i n g 1 ^ i w + i ; then EO ^ (Yft ,ZJ-.)=2 

w h i l e EO n ( Y w r J = 1 - Moreover F, 2 ( Y * , ZTfl )£0 -d im f o r t h e -
Top2*t 1 1 T o p 2 r A ^ 

se o r d i n a l s . 

(d) I f A i s b i r e f l e c t i v e and XfcTop then EO (X)=0 i f f X is d i -
A 

screte, otherwise EO (X)=1 . 
A 

(c) For A=Top, EO 'X)=0 iff r, (X) is discrete and X has the 
1 A Topi 

initial topology with respect to X — > r , ( X ) , otherwise E 0 ( X ) = 1. 
Topi A 

(f) For A=Top and X £ Top,EO.(X)=0 iff r, (X) is discrete 
o A Top 0 

and X has the initial topology with respect to X—-*r, (X); 
Top 0 

E0.(X)=1 iff r, (X) is non discrete and belongs to T , EO (X)=2 
A Top 0 * D' A 

iff r, ( X ) t T . (X)І 
T o p

0
 T 
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W e h a v e n o e x a m p l e s of e p i m o r p h i c o r d e r g r e a t e r t h a n 2 . 

In o r d e r t o c a L c u L a t e e a s i e r t h e e p i m o r p h i c o r d e r w e h a v e t o k n o w 

b e t t e r t h e i n t e r r e L a t i o n b e t w e e n t h e f u n c t o r s F_ a n d r_ # In what foL-
A A 

Lows we omit the index A for brevity,A is aLways contained in Top and C^n^K.tp* 

For each X £ Top consider the diagram ... FX 

By t h e d e f i n i t i o n of r t h e r e e x i s t s a u n i q u e c o n t i n u o u s m a p 

S : rX — » r F X w h i c h m a k e s c o m m u t a t i v e t h e d i a g r a m , 
x 

4.3 L e m m a . T h e m a p S : r X — * r F X d e f i n e d a b o v e is c o n t i n u o u s w h e n w e 
x 

c o n s i d e r o n rX t h e t o p o L o g y g e n e r a t e d by t h e A - c L o s u r e , i . e . S :FrX-* 

rFX is c o n t i n u o u s 
-1 

P r o o f . W e h a v e t o s h o w t h a t f o r e a c h c L o s e d set M in r F X . S ( M ) 
- V * 

is A-cLosed in rX. By the continuity of r , r (M) is cLosed in FX. 
By 2.1 (a) 

[r11 M ] X " r"1([r(r;1M)]rX) = r^M j 
-1 -1 -1 

on the other hand r =S»r , so r ( r „ M)=s (M)„ thus r„ M= 
4 - v 1 x 1 x 1 

= r"1( [s" 1M] r X). 
x J -1 r -1 n 

A p p l y i n g r w e get S M= IS M l w h i c h p r o v e s t h e c o n t i n u i t y of 
S : F r X - * r F X . 
x 

4.4 P r o p o s i t i o n . For e a c h n a t u r a l n u m b e r n a n d e a c h X £ * i o p f r F rx is 

n a t u r a l l y i s o m o r p h i c to rF X . 

P r o o f . F o r a n y n a t u r a l k < n t h e a b o v e l e m m a a p p l i e d t o t h e 
k k k + 1 

s p a c e Y = F X p r o v i d e s a n a t u r a l c o n t i n u o u s m a p S : F r F X -.-i>rF X 

y h i c h m a k e ' c o m m u t a t i v e t h e f o l l o w i n g d i a g r a m 

F k + 1 X 

F r F k X 

k + 1 

w h e r e r a n d r. . a r e t h e c o r r e s p o n d i n g r e f l e c t i o n s . A p p l y i n g t h e 

f u n c t o r F n " k - 1 w e g e t t h e c o m m u t a t i v e d i a g r a m 

F*X 
i* 

y H 
rFnrX VT - * r = ? rFnX 
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where r is the A-refLecti on. By the definition of the refLection the­

re exists a unique continuous map S :rF rX — * rF X such that S«r = S. 
n n 

Let us see that S is an isomorphism. Again by the properties of the 
refLection there exists a unique continuous map <p:rF X —•rF rX 
such that c*r =Kr . Consider now the composition ¥ = <*o$ ©Tor ; by 

• n o * ^ n o 
the definition of $ and <p we get <f= <f<>S • r = for =i*r . Thus the n n v 0 i n 0 
restriction of cp«S on r*r (F X) is the identity . 

1 n ° n 
Since r»r is an epimorphism this gives <*«S =id on rF rX . In the 

o x n n 
same way one proves that S *<f is the identity on rF X . 

n » 4.5 Remark. Consider the semigroup 2: of aLL functors Top — • T o p ge­

nerated by r and F . By the definition of r > r=r hoLds. On the 

other hand 4.4 shows that.for any n 9 there is an equivaLence bet­

ween r»F »r and r»F . Let JJT̂  be the quotient of ^ with respect to 

the equivaLence of functors. Then the functors F and F rF with m,n 
o 

and t non-negative integers (F is the identity functor) represent 

aLL eLements of 
1 

(*). The muLtipLfeat ion is given by 

,_n _tч_m _n _t+m (F»r*Ғ )F =F»rьF , _m,_n _ t s _m+n t , n r t N / _ n ' _ t \ _n . t + n ^ ť 
F«(F«r*F ) = F «rfcF , (F»r*F )(F t»r>F ) = F©RF 

It was mentioned in section 2 that for any X t Top F r X — # • FrX is 

initial. Proposition 4.4 enables us to show it for any natural n. 

4.6 Corollary. For any X tTop and for sny positive integer n, 

F nX —% F nrX it initial. 

Proof; By the definition of F X F X * FrF X is initial. 

By 4.4 #rF X is naturally isomorphic to rF rX. 

Consider the commutative diagram 

f 
ғ

n
-

1
x * r F

П
-

1
X 

г
1 

n-1 

_. rғ""
1
 rX 

where S „ is the natural isomorphism given in 4.4, r and r
1
 are re 

n-1 » 
f l e c t i o n s . 
A p p l y i n g the f u n c t o r F we get the commutative d iagram 

ғnx - - — FГF"-1X 

F°rX -1 » FrF 

l s n - 1 
F П " 1 ГX 

( * ) £ 4 is finite for a l l categories l i s t e d in 1.1 except may be Top^% (See 4.2) 
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w i t h t h e sane u n d e r L y i n g s e t s and m a p s . Now r1«r = S _jfi is i n i t i a l , 

t h e r e f o r e r is i n i t i a L t o o . 

4.7 Remark, (a) The assertion of the above coroLLary is no vaLid for 

n=0 (see (4.12 (b)). 

(b) We do not know whether 4.6 is true for infinite ordinaLs. A 

positive answer would impLy the validity of the following coroLLary 

for arbitrary non-zero ordinals. 

4.8 Corollary. Let n be a positive integer and X £ Top with rX& A 
o 

Then EO (X)=n iff EO (rX)=n . 
Proof. By 4.6 EO (X)^EO (rX) since %F n + rX = FnrX would imply 

n+1 n * * 

F X = F X . Since X —*rX is surjective,different topologies on 

rX give rise to different initial topologies on X, i.e.,F X=F X 

would imply F n + 1rX = FnrX, thus E0a, tfN$E0AX) . 
A(rX) A 

It may happen rXe A , i.e., EO (rX)=0 and EO (X)=1 if X - * rX 
is not initiaL. The above corollary permits easier calculation of 
the epimorphic order. 

4.9 Example. Let (Y^, Xp) denotes the Urishon space constructed for 

the ordinal * in [l 5_ . If j>>c*;+1 one can see that Z = F_ (Y*,C_) r u J r Top2V^ r ' * ^ 

is not even Hausdorff. However for every £>u/+1 the Hausdorff re­

flection of Z is already Urisohn, i.e. r_ _. Z = r n Z. Moreover 
Top2*t Top2 

there exist a continuous bijection F_ -_(Y, .,, C „) • * ••» r Z such 
„4 Top2^i w + 1 u/+1 

th a t rZ i » F 2 (Y #. „ , V A) is continuous and not open. T o p 2 ^ w+1' C*+1 K 

S i n c e EO (y , ̂  ,-«. UIIia l i l M l l „ _v_ 
To p 2 ^ w+l'^u/+1 H T o p 2 ^ 

ri 4.8 E U T O D .<-> =1* so °y t n e definitions of epimorphic order 

E ° T o p 2 n
( Y * ' * > ) = 2 f 0 P /S>W+1-

The above example justifies the following definition. 

(Q) 

4.10 Definition . Let ft be an ordinal number, denote by A r the ca 
tegory of all spaces X % A such that F V ( X ) £ A for each y|is . 

(oo) ( p) (*•) A ' 
Set A = O A , i . e . , A is t h e c a t e g o r y of all s p a c e s X _. A 
suc h t h a t F * ( X ) £ A for e a c h r £ E 0 C X ) . 

For e x a m p l e in 4.9 Y p l T ° P 2 < b *' *or A as ^n *•* (D* A = A • 

4.11 T h e o r e m . Let A be an e p i r e f L e c t i v e s u b c a t e g o r y of T o p , t h e n : 

(a) A is bireflective in Top. 0 (-) 
(b) Ar\A is b i r e f l e c t i v e in A, thus A/̂ NA C A C P ( A A A ) . o o o 
(c) If A is extremally epirefLective then,for each ordinal p. 
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(») («») (*») 
A and A are extremaLLy epirefLective; in particuLar A =P(AnA ). 

o 
Proof, (a) For any X s. Top define r (%) =F .* (X), where #4. =E0. (X) . 

A 0 A A 
Now for every Y £ A and any map f: X —* Y appLying F ^ we get 
f = F A <

 ( f ) : F
A « c

 ( x ) — • F
A ^ (Y)=Y. Thus r A is a bireUection of Top in 

A . 
o 

(b) Follows from (a). 
(*) 

(c) Let Yc A r , then F,f*(Y) s A . For any subspace X of Y appLying 

to the embedding i:X—*Y the functor Ff we get i = F^(x) » F ^ ( y ) . 

Since A is extremaLLy epireflective this implies F ^ ( X ) £ A . For any 

family \*.\ of spaces in A f F / < X . ) i A , therefore F ^ ( T r X ) ^ having 
a topology finer than that of T T F ^ ( X . ) belongs to A. Therefore 
(a) t i ' 

A ' is extremally epireflective . 
The rest is obvious. 
4.12 Remark. Analogous theorem can be proved for categories A which 
satisfy riir. for each ( X , r ) e T o p . In such a case A is a core-

A O 
flective subcategory of A and the coreflection is given by 
F*(X) — P % where « t = E 0 ( X ) . 

A 
(b) In 4.9 Z —• r (Z)is not initial (this shows that in gene-

Top2<fc 
ral FX —*rFX is not initial). 

(c) Since A is a bireflective subcategory of Top ,Top=P(A ) holds. 
o o 

On Vhe other hand always A #Top. In fact, assume A C A , then by 2.7 
o o 

A C T o p ^ . Since X * A iff r.XCA and X «—-* r X is initial, it suffi-
2 o A o A 

ces to find X £ Top such that X — * r X is not initial. Now A c T o p . 
A c 

provides the following commutative diagram 

this is why a space X such that X —-•rX is not initial will do (ta­

ke for example^the space I from (b)). 

The following theorem characterizes the categories A satisfying 

A ^ - A . 

4.13 Theorem. For an extremally epiref lective subcategory A of Top 

the following conditions are equivalent: 

(a) there exists an epireflective subcategory B of Top such 

that B C B and A=P(B). 

°(—) 
(b) A =A. 
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P r o o f , (a) «=> (b) i s obv ious s i n c e , f o r any ( X , O c A ^ ( X , C ) B c A . 

On t h e o the r hand (b) = ^ (a) foLLows f rom 4 .11 w i t h B « A r \ A 0 . 

4.14 Remarks, (a) By 4 .2 (b) both c o n d i t i o n s i n 4 .13 impLy E 0 A ( X ) * 1 

f o r any X t Top. We do not know whether the converse i s aLso t r u e . 

Observe t h a t i f E 0 M ( X ) £ 1 f o r every X £ A, than by 4 .8 E 0 , ( X ) * 1 f o r 
A A 

every X t Top. 

(b)In generaL for any extremalLy epirefLective subcategory A of 
(*°) 

Top,A = P(AP*A ) according to 4.11 ( c ) , thus for X £ A EO Co*)(X) = 1 

iff X l A . On the other hand it may happen EO. (X) > EO. c ^ v ( X ) 
' O A A ' 

(take for exampLe X = YL_, as in 4.2 ( c ) ; then for A=Top . 4A<"NA = T o p _ , 
(«•) 2Vt o 3 

therefore A =P(Top ) and X £ A, EO (X)=2 > EO C#^(X) = 1) . 
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