Dikran N. Dikranjan; Eraldo Giuli

Epimorphims and cowellpoweredness of epireflective subcategories of Top

Persistent URL: http://dml.cz/dmlcz/701833

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Abstract. A functor $F_A : \text{Top} \rightarrow \text{Top}$ induced by a given epireflective subcategory A of the category Top of topological spaces is used to characterize epimorphisms in some familiar epireflective subcategories of Top and to solve for these subcategories, the problem of the cowell-poweredness. Furthermore an ordinal number $E_O(X)$, for each $X \in \text{Top}$, is introduced and it is computed in several examples. As an application it is shown that there is no epireflective subcategory of Top which is properly contained in the subcategory Top_2 of all Hausdorff spaces and whose extremal epireflective hull is Top_2.

1. In 1975 Salbany ([14]) introduced a closure operation $[\cdot]_A : 2^X \rightarrow 2^X$ defined on subsets of a topological space X by a class A of topological spaces. In 1980 Giuli ([6]) used that closure operation to study epi-reflections in epireflective subcategories of Top. He pointed out that epimorphisms in an epireflective subcategory A of Top are precisely the continuous maps which are dense with respect to $[\cdot]_A$. Recently Dikranjan and Giuli ([4]) characterized $[\cdot]_A$ for some familiar epireflective subcategories A of Top. They showed that, as in the classical case of Hausdorff spaces, the closure operation $[\cdot]_A$ characterizes the spaces X of A in terms of the A-closure of the diagonal Δ_X for $A = \text{Top}_0, \text{FT}_2, \text{Top}_{24}, \text{P}(0\text{-dim})$, (see 1.1 below).

In this paper we will use the previous closure operation to define, for each epireflective subcategory A of Top, a functor $F_A : \text{Top} \rightarrow \text{Top}$. Then some sufficient conditions for the cowellpoweredness of A are given and they are used to answer the question of the cowellpoweredness of some epireflective subcategories of Top. Furthermore an ordinal number $E_O(X)$ (called epimorphic order of X with A)

* Talk given by the second named author. The paper is in its final form and will not be published anywhere else.
respect to A is introduced for each $X\in\text{Top}$ and in several examples it is computed. Iterations of the functor F_A and the relation with the A-reflection functor are also studied.

We will use the previous closure operation in a forthcoming paper for a new approach to the study of A-minimal and A-closed spaces ([5]).

1.1. The following subcategories of Top are symbolized as follows:

- $\text{Top}_i = \text{the subcategory of topological spaces satisfying the T_i-axiom (i=0,1,2)}$
- $\text{FT}_2 = \text{The subcategory of functionally Hausdorff spaces, i.e., spaces X such that for any two different points x_1, x_2 there exists a continuous map $f:X\to \mathbb{R}$ with $f(x_1) \neq f(x_2)$.}$
- $\text{Top}_3 = \text{The subcategory of regular Hausdorff spaces.}$
- $\text{P(Top}_3) = \text{The subcategory consisting of spaces whose topology is finer than a regular Hausdorff topology.}$
- $\text{Top}_{2\gamma} = \text{The subcategory of Urysohn spaces, i.e., spaces such that for any two different points there exist disjoint closed nbds.}$
- $\text{Top}_{3\gamma} = \text{The subcategory of completely regular Hausdorff spaces.}$
- $\text{0-dim} = \text{The subcategory of 0-dimensional spaces, i.e., Hausdorff spaces with a base of clopen sets.}$
- $\text{P(0-dim)} = \text{The subcategory of spaces whose topology is finer than a 0-dimensional topology, i.e., spaces in which every point is the intersection of the clopen sets containing it ([12]).}$

We recall that a full and isomorphism-closed subcategory A of Top is said to be epireflective (respectively bireflective, extremally epireflective) in Top if for each topological space X there exist $r_A(X)$ belonging to A and an epimorphism (respectively bimorphism, extremal epimorphism) $r_A:X\to r_A(X)$ such that, for each $A\in A$ and continuous map $f:X\to A$ there exists a (unique) continuous map $f':r_A(X)\to A$ satisfying the condition $r_Af'=f$. r_A is called the A-reflection of X.

A is epireflective in Top iff it is closed under the formation of products and subspaces (= extremal subobjects). It is extremally epireflective iff it is epireflective and contains finer topologies. It is bireflective iff it is epireflective and contains (all) indiscrete spaces.

Every class B of topological spaces admits an epireflective hull $E(B)$ (i.e., a smallest epireflective subcategory containing A), an
extremal epireflective hull $P(B)$ and a bireflective hull $I(B)$.

All categories listed in 1.1. are epireflective in Top, Top_i, for $i = 0,1,2,2\frac{1}{2}$, and FT_2 are extremally epireflective in Top. For all categories A listed in 1.1. the subcategory $\text{A} = \{ X \in \text{Top} : r_0(X) \in A \}$ (where r_0 is the Top_0-reflection) is bireflective in Top_o. For $\text{Top}_{3\frac{1}{2}}$, FT_2 and $\text{Top}_{3\frac{1}{2}}$ (subcategory of completely regular spaces) are respectively the epireflective hull, the extremal epireflective hull and the bireflective hull of the real line \mathbb{R} in Top_o.

For general results on epireflective subcategories of Top see [7,8]. The categorical terminology is that of [10].

In what follows A will denote an epireflective subcategory of Top. For each pair of continuous maps $(f,g:X \to Y)$, $\text{Eq}(f,g)$ will denote the equalizer in Top of f and g (i.e., $\text{Eq}(f,g) = \{ x \in X : f(x) = g(x) \}$).

1.2. - Definitions. (a) A subset F of a topological space X is said to be closed with respect to A (in short A-closed) in X if there exist $A \subseteq A$ and continuous maps $f,g:X \to A$ such that $\text{Eq}(f,g) = F$.

b) We will define A-closure of a subset M of X as follows:

$$[M]^X_A = \{ F \subseteq X : M \subseteq F \text{ and } F \text{ is } A \text{-closed} \}$$

When no confusion is possible we write $[M]_A$ or simply $[M]$ instead of $[M]^X_A$.

c) If $x \notin M$ and $f,g:X \to A, A \subseteq A$, are continuous maps such that $M \subseteq \text{Eq}(f,g)$ and $f(x) \neq g(x)$ then, (f,g) is said to be an A-separating pair for (x,M).

By definition $x \notin [M]_A$ iff there exists an A-separating pair for (x,M). The family of all A-closed sets of a topological space X trivially contains X and, by the productivity of A, it is closed under the formation of intersections (i.e., it is a Moore family). Thus the A-closure is a closure operation in the sense of Birkhoff ([2]). Furthermore $[\emptyset]_A = \emptyset$ for all epireflective subcategories A different from the trivial subcategory Sgl consisting of topological spaces whose underlying sets have at most one point. Even if $[M]_A \cup [N]_A \subset [M \cup N]_A$ for each $M,N \subseteq X$, the epireflective hull of an infinite strongly rigid space (the continuous self-maps are precisely the constant maps and the identity map ([10])) provides an example of a non-additive closure operation ([3,4]).

2. The following lemma is very useful in the sequel.
2.1. Lemma. (a) For each $X \in \text{Top}$ and $M \subseteq X$, the following holds:

$$[M]^X_A = (r_A^{-1})^* ([r^*_A(M)]^A (X)).$$

Thus A-closure is additive (thus a Kuratowski operation) for each $X \in \text{Top}$ iff it is so for each $A \in A$.

(b) For each $X \in P(A)$ and $M \subseteq X$, the following holds:

Thus $P(A)$-closure is a Kuratowski operation iff A-closure is.

Proof. (a) By 1.2 (x) of [4], $r_A ([M]^X_A) \subseteq [r^*_A(M)]^A (X)$, so

$$[M]^X_A \subseteq (r_A^{-1})^* ([r^*_A(M)]^A (X)).$$

On the other hand, if $x \notin [M]^X_A$ and $(f, g : X \rightarrow A)$ is an A-separating pair for (x, M), then $(f^*, g^* : r_A (X) \rightarrow A)$ where $f^* r_A = f$ and $g^* r_A = g$, is an A-separating pair for $(r_A(X), r_A(M))$, so $x \notin (r_A^{-1})^* ([r^*_A(M)]^A (X))$.

(b) For each $X \in P(A)$, $r_A : X \rightarrow r_A (X)$ is the identity on the underlying sets then, it follows from (a) that $[M]^X_{P(A)} = [M]^X_{P(A)}$.

Furthermore $[M]^X_{P(A)} \subseteq [M]^X_{P(A)}$ follows from the inclusion $A \subseteq P(A)$.

To show that $[M]^X_{P(A)} \subseteq [M]^X_{P(A)}$ take $x \notin [M]^X_{P(A)}$ and a $P(A)$-separating pair $(f, g : X \rightarrow Y)$ for (x, M). Then $(f^*, g^* : r_A (X) \rightarrow r_A (Y))$, where $f^* r_A = f$ and $g^* r_A = g$, is an A-separating pair for (x, M) in $r_A (X)$, so $x \notin [M]^X_{P(A)}$. For the last equality note that $r_A : X \rightarrow r_A (X)$ is the identity on the underlying sets then (a) gives $[M]^X_A = [M]^X_A$ for every $M \subseteq X$.

For each $(X, \tau) \in \text{Top}$, τ_A will denote the topology generated in X by the A-closure, i.e., the coarsest topology on X for which all A-closed sets are closed. $F_A : \text{Top} \rightarrow \text{Top}$ will denote the functor which assigns to $(X, \tau) \in \text{Top}$ the space (X, τ_A). For each continuous map $f : (X, \tau) \rightarrow (Y, \tau')$ in Top the continuity of $f = F_A (f) : (X, \tau_A) \rightarrow (Y, \tau')$ follows from 1.2 (x) of [4].

By 2.1 of [4] for every $(X, \tau) \in \text{Top}$, τ_A is the initial topology on X induced by the map $X \rightarrow F_A (r_A X)$, where r_A is the A-reflection of X. This is why (X, τ_A) is discrete iff $r_A X$ is a singleton. On the other hand, if $A \neq \text{Sgl}$, then for each $(X, \tau) \in \text{Top}$, $(X, \tau_A) \in \text{Top}_1$ iff $r_A : X \rightarrow r_A X$ is injective. In particular if A is extremally epireflec-
Epimorphisms and cowellpoweredness of... 125

tive, then \((X, Z) \in \mathbf{Top}_1 \) iff \((X, Z) \in \mathbf{A}\). Conditions ensuring \((X, Z) \in \mathbf{Top}_2 \) are discussed in 2.8.

Till the end of this section, we study the properties of the functor \(F_A\). Set \(A = \{X \in \mathbf{Top} : \mathbf{F}(X) = X\}\). Clearly \((X, Z) \in \mathbf{A}\) iff \(r_A(X, Z) \in \mathbf{A}\) and \(X\) has the initial topology with respect to \(r_A : X \rightarrow r_A X\).

In the following theorem we give explicitly \(F_A\) for various categories \(A\) including those listed in 1.1. First recall the notion of θ-closure introduced by Velichko ([17]). For \((X, Z) \in \mathbf{Top}\) and \(M \subset X\), \(\mathbf{C} = \{x \in X : \text{for each nbd } V \text{ of } x, \exists s \in V \text{ s.t. } M \subset V\}\). A subset \(M\) of \(X\) is said to be θ-closed (θ-open) if \(M = \mathbf{C}(M)\). The θ-closure is additive but not idempotent in general. The idempotent hull of \(\mathbf{C}\) is \(\bigcap_{\mathbf{Top}_2}^{\mathbf{A}}\) since for each \((X, Z) \in \mathbf{Top}\) and \(M \subset X\), \(\mathbf{C}(M) \subset \bigcap_{\mathbf{Top}_2}^{\mathbf{A}}\) and \(M\) is θ-closed iff \(M\) is \(\mathbf{Top}_2\)-closed (see 2.5(b) of [4]). θ-closure was also studied by Schröder [15].

2.2. Theorem. (a) If \(A\) is bireflective (resp. \(A = \mathbf{Top}_1\)) then \(\mathbf{C} = \mathbf{A}\) is the discrete topology for every \((X, Z) \in \mathbf{Top}\) (resp. \((X, Z) \in \mathbf{A}\)).

(b) If \(A = \mathbf{Top}_1\), \(i = 2, 3, 3^*\), or \(A = \mathbf{O-dim}\), then \(\mathbf{C} = \mathbf{Z}\) for each \((X, Z) \in \mathbf{A}\).

(c) If \(A = \mathbf{P}(B)\) then for each \((X, Z) \in \mathbf{A}\), \(\mathbf{C} = \mathbf{Z}_B\), where \((X, Z)\) is the \(B\)-reflection of \((X, Z)\). Thus the functors \(F_A\) and \(F_B\) coincide.

(d) For \(B = \mathbf{Top}_3, \mathbf{Top}_3^{3^*}\) and \(\mathbf{O-dim}\) and \(A = \mathbf{P}(B)\), \(F_A\) coincides on \(A\) with the \(B\)-reflection.

(e) For \(A = \mathbf{Top}_0\) and \((X, Z) \in \mathbf{Top}_0\), \(\mathbf{C} = \mathbf{A}\) is the topology on \(X\) having, as open base, all locally closed subsets of \((X, Z)\) (finite intersections of open and closed sets in \((X, Z)\)). Thus \(\mathbf{C} = \mathbf{Z}\) and \((X, Z) \in \mathbf{O-dim}\).

(f) For \(A = \mathbf{Top}_3^{3^*}\) and \((X, Z) \in \mathbf{A}\), \(U \in \mathbf{Z}_A\) iff \(U\) is θ-open. In particular \(\mathbf{Z} = \mathbf{Z}_A\) iff \((X, Z) \in \mathbf{Top}_0\).

Proof. (a): By 1.10 (a) of [4] in this case the \(A\)-closure coincides with the identity operator.

(b): By 2.8 (i) of [4] in this case the \(A\)-closure coincides with the ordinary closure.

(c): It follows from 2.1 (b). (d): It follows from (b) and (c).

(e): As pointed out in 2.9 of [4] in this case the \(\mathbf{Top}_0\)-closure coincides with the well-known front-closure ([17],[12]),

\[\mathbf{C} = \{x \in X : \text{for each nbd } V \text{ of } x, \exists s \in V \text{ s.t. } M \subset V\}. \]

Thus \(U \subset X\) is \(\mathbf{Z}_A\)-open iff for each \(x \in U\) there exists a nbd \(V\) such that \(V \cap (X \setminus U) = \emptyset\), i.e. \(\exists x \in V \subset U\). Clearly any \(V \cap V_i\) is clopen in \((X, Z)\), so \((X, Z) \in \mathbf{O-dim}\).
(f) Obviously Cl_θ is additive, thus $\bigcup_{\text{Top}_\theta}$ being its idempotent hull will be a Kuratowski operator (in fact, $\text{Cl}_\theta([M]\cup[N]) = \text{Cl}_\theta([M])\cup\text{Cl}_\theta([N]) \subset ([M]\cup[N]) = [M]\cup[N]$, so $[M]\cup[N]$ is θ-closed, thus Top_θ closed). The last assertion is proved in 2.4(ii).

2.3 Remarks (a). The A-closure is additive in all subcategories A of Top listed in 1.1. We do not know any example of non additive A-closure operation different from the case $A=$epireflective hull of a class of strongly rigid spaces.

(b) By the explicit form of τ_{Top_θ} it can be seen easily that for $(X,\tau)\in\text{Top}_\theta$, τ_{Top_θ} is discrete iff for each $x\in X$ there exists a τ-nbd V such that $\{x\} = \overline{\{x\}} \cap V$.

The subcategory of such spaces of Top_θ will be denoted by T_θ.

(c) The functor F_{Top_θ} preserves embeddings and finite products (more precisely, for each family $\{(X_i,\tau_i)\}_{i\in I}$ in Top_θ with $(X,\tau) = \prod_{i\in I}(X_i,\tau_i)$, $\tau = \prod_{i\in I}(\tau_i)$ holds iff all but a finite number of the spaces X_i are singletons).

In general the functor F_A is submultiplicative, i.e., for each family $\{(X_i,\tau_i)\}_{i\in I}$ in Top_θ, $(\prod_{i\in I}(X_i,\tau_i)) \supseteq \prod_{i\in I}(\tau_i)$, the following examples show that in general F_A does not preserve neither embeddings nor finite products.

2.4. Examples (a) Let (H,τ') be the space given in 1.3 of [4]. Then $F_{\{0,0\}}$ is discrete in (H,τ'), while $F_{\{0,0\}}$ is not discrete as a subspace of (H,τ'), τ' again compact.

(b) Let $A=\mathbb{E}(\{X,\tau\}$, where (X,τ) is an infinite strongly rigid space. Then τ_A is the cofinite topology on X, so Δ_X is not closed in $(XXX,\tau_A \times \tau_A^*)$. On the other hand Δ_X is the equalizer of the projections, so Δ_X is closed in $(X^2, (\tau_A^*)^2)$. Thus $(\tau_A^*)^2 \supseteq \tau_A \times \tau_A$.

2.5 Proposition. If F_A is finitely multiplicative, then for each $(X,\tau) \in \text{Top}_A$, $(X,\tau_A) \in \text{Top}_2$.

Proof. Consider Δ_X in $(XXX,\tau_A \times \tau_A^*)$; since Δ_X is always A-closed in $(XXX,\tau_A \times \tau_A^*)$ and $(\tau_A^*)^2 = \tau_A \times \tau_A$, this implies that Δ_X is closed in $(XXX,\tau_A \times \tau_A^*)$, so $(X,\tau_A) \in \text{Top}_2$.

In the following Section we show that there exists $(X,\tau) \in \text{Top}_2$ with $(X,\tau) \notin \text{Top}_2$. Hence F_{Top_2} is not finitely multiplicative.

Till the end of this section we study conditions which ensure $\tau_A \in \tau$ or (X,τ_A) discrete.

For $(X,\tau) \in \text{Top}$ denote by $I(X,\tau)$ the set of all isolated points.
2.6 Lemma. For any epireflective subcategory A of Top and each $(X,\mathfrak{F}) \in A$
$$I(X,\mathfrak{F}) \subseteq I(X,\mathfrak{F}_A).$$
Moreover, (*) holds for each $(X,\mathfrak{F}) \in \text{Top}$ iff A is bireflective or $A=\text{Top}_0$.

Proof. Consider first the case when A is neither bireflective nor Top_0. Then $A \subseteq \text{Top}_1$, so for every $(X,\mathfrak{F}) \in A$, $(X,\mathfrak{F}_A) \in \text{Top}_1$ holds. Therefore each isolated point of (X,\mathfrak{F}) is \mathfrak{F}-clopen, thus also \mathfrak{F}_A-clopen by 1.2 (vi) of [4]. This proves (*). Remark that (*) does not hold for Sierpinski's two-points space (S,\mathfrak{F}) (two points 0,1 with \emptyset unique proper open set) since $I(S,\mathfrak{F}) \neq \emptyset$ and $I(S,\mathfrak{F}_A) = \emptyset$ (the space (S,\mathfrak{F}_A) is indiscrete since the reflection of (S,\mathfrak{F}) in A is a singleton because of $A \subseteq \text{Top}_1$).

It remains to show that (*) holds for every $(X,\mathfrak{F}) \in \text{Top}$ if A is bireflective or $A=\text{Top}_0$. This is obvious in the first case since \mathfrak{F}_A is always discrete according to 2.2 (a). Assume $A=\text{Top}_0$ and take an arbitrary $(X,\mathfrak{F}) \in \text{Top}$. Then for each $x \in I(X,\mathfrak{F})$ the characteristic (continuous) map $f:X \rightarrow S$ of the open set $\{x\}$ and the constant at 1 form an A-separating pair for $(x,X\setminus\{x\})$ so $x \in I(X,\mathfrak{F}_A)$.

In the following proposition we show that the converse inclusion of (*) for any space $(X,\mathfrak{F}) \in A$ implies $A \subseteq \text{Top}_0$.

2.7 Proposition. For each epireflective subcategory A of Top the following conditions are equivalent:

(a) $A \subseteq \text{Top}_2$;
(b) for each $(X,\mathfrak{F}) \in A$ $\mathfrak{F}_A \subseteq \mathfrak{F}$;
(c) for each $(X,\mathfrak{F}) \in \text{Top}$ $\mathfrak{F}_A \subseteq \mathfrak{F}$;
(d) for each $(X,\mathfrak{F}) \in A$ $I(X,\mathfrak{F}) = I(X,\mathfrak{F}_A)$;
(e) every $(X,\mathfrak{F}) \in A$ is discrete whenever (X,\mathfrak{F}_A) is discrete.

Proof. The equivalence (a) \iff (b) was given in 1.10 (b) from [4]. The equivalence (b) \iff (c) follows from 2.1 (a). Clearly (b) implies (d) and (d) implies (e). To finish the proof we have to show (e)\Rightarrow(a).

We can assume without loss of generality that A is extremally epireflective. In fact, if $B=P(A)$ then because of 2.2 (c) the functors F_A and F_B coincide. To show that each $(X,\mathfrak{F}) \in B$ satisfies (e), consider the reflection (X,\mathfrak{F}') of (X,\mathfrak{F}) in A. Then by 2.2 (c) $\mathfrak{F}_B = \mathfrak{F}'$. Now if \mathfrak{F} is discrete then by (e) (X,\mathfrak{F}') is discrete, thus (X,\mathfrak{F}) is discrete too. So we can assume that A is extremally epireflective.
If A is bireflective then $A=\text{Top}$ and (e) is not verified since \mathcal{E}_{Top} is always discrete. Therefore $A \subseteq \text{Top}_0$. Now $A=\text{Top}_0$ contradicts (e) since there exists a non-discrete space $(X,\mathcal{E}) \notin \text{Top}_0$, then $\mathcal{E}_{\text{Top}_0}$ is discrete.

We have shown that (e) implies $A \subseteq \text{Top}_1$. Assume there exists a space $(X,\mathcal{E}) \notin A$ such that $(X,\mathcal{E}) \notin \text{Top}_2$. Then there exist two distinct points x and y in X such that for any nbd V of x and any nbd U of y in (X,\mathcal{E})

$$V \cap U \neq \emptyset.$$

Now set $Y = \{p \cup X \sim \{x,y\}\}$ and consider the following topology \mathcal{E} on Y. All points different from p are isolated, for nbds system of p take all intersections (***) added the point p. Clearly \mathcal{E} is non discrete because of (**). Consider the maps f_x and f_y of Y into X defined by,

$$f_x(u) = f_y(u) = u \text{ if } u \neq p \text{ and } f_x(p) = x, f_y(p) = y.$$

The continuity of f_x and f_y follows directly from the definition of \mathcal{E}. On the other hand both maps are injective, hence $(Y, \mathcal{E}) \notin A$ because $X \notin A$ and A is extremally epireflective. Now the space (Y, \mathcal{E}) does not satisfy (e) since \mathcal{E}_{A} is discrete. In fact by 2.6 $I(Y, \mathcal{E}_A) \ni I(Y, \mathcal{E}) = Y \setminus \{p\}$ and (f_x, f_y) is an A-separating pair for $(p, Y \setminus \{p\})$, so $\{p\}$ is \mathcal{E}'-open.

3. It is well known that Top_2 is a cowellpowered category, i.e., the class of all Top_2-epimorphisms (i.e. dense continuous maps) with domain a fixed Hausdorff space has a representative set ([7]). In 1975 Herrlich [5] first produced an example of a non cowellpowered epireflective subcategory of Top: the epireflective hull of a proper class of strongly rigid spaces such that the continuous maps between them are precisely the identities or the constant maps.

In 1983 Schröder showed that $\text{Top}_{2_{\mathcal{E}}}$ is not cowellpowered ([16]). He produced for each ordinal number β a Urysohn space \mathcal{Y}_β of cardinality $\aleph_0 \cdot \text{card}(\beta)$ and an embedding $e_\beta : \mathcal{Q} \hookrightarrow \mathcal{Y}_\beta$, where \mathcal{Q} is the space of rational numbers with the usual topology, such that e_β is a $\text{Top}_{2_{\mathcal{E}}}$-epimorphism.

In what follows we shall show that all remaining categories listed in 1.1 are cowellpowered. The following proposition given in [4] and [6] will be used.

3.1 Proposition. $f : X \to Y$ is an A-epimorphism iff $f(X)$ is A-dense in Y, i.e., $[f(X)]_A = Y$.

3.2 Lemma. Let A and B be epireflective subcategories of Top and let
F:A → B be a functor satisfying the following conditions:

1. F preserves epimorphisms, i.e., for each A-epimorphism f:X → Y the map F(f):F(X) → F(Y) is a B-epimorphism;
2. F is a concrete functor, i.e., if U:Top → Set is the forgetful functor then UF = U.

Then A is cowellpowered whenever B is cowellpowered.

Proof. Trivial.

3.3 Corollary. Let B be a cowellpowered epireflective subcategory of Top, then so is P(B).

Proof. For A=P(B) and F=r_B—the B-reflection—apply 3.2. Clearly F satisfies (2), on the other hand, by 2.1.(b), f:X → Y is an epimorphism in A iff f=F(f):F(X) → F(Y) is an epimorphism in B. Thus F satisfies also (1).

3.4 Corollary. If A is an epireflective subcategory of Top such that for each (X,τ) ∈ A, τ_A ∈ Top_2, then A is cowellpowered.

Proof. For B=Top_2 and F=F_A we apply 3.2. Obviously (2) holds; on the other hand for each epimorphism f:X → Y in A f(X) is A-dense in Y by virtue of 3.1. Therefore f(X) is dense in F(Y) hence f:F(X) → F(Y) is an epimorphism in B=Top_2 and Top_2 is cowellpowered.

For all subcategories of Top listed in 1.1 except Top_2 with A has Hausdorff so all they are cowellpowered.

3.5 Corollary. If A is an epireflective subcategory of Top such that F_A is finitely multiplicative than A is cowellpowered.

Proof. By virtue of 2.5, A satisfies the condition in 3.4, so A is cowellpowered.

Some familiar extremally epireflective subcategories of Top are the extremal epireflective hull of a proper epireflective subcategory (e.g. FT_s=P(3_T)). Top_2 does not have that property as the following proposition shows.

3.6 Proposition. If A is an extremally epireflective subcategory of Top and for every (X,τ) ∈ A, τ_A = τ, then there does not exist a proper epireflective subcategory B ⊆ A such that P(B) = A.

Proof. Since τ_A = τ for each (X,τ) ∈ A, by virtue of proposition 2.7, A ⊆ Top_2. Assume there exists an epireflective subcategory B of Top such that A=P(B).

By 2.2(c), for each (X,τ) ∈ A with B-reflection r_B(X,τ) = (X,σ), r_A = r_B holds. Since B ⊆ A ⊆ Top_2, σ_B ≤ σ_A, thus we get τ = τ_A = σ_B ≤ σ = τ_B.
On the other hand always \(\mathcal{E} \subseteq \mathcal{E} \) holds, so for each \((X, \mathcal{E}) \in A \), \(r_B(X, \mathcal{E}) = (X, \mathcal{E}) \).
Therefore \(B = A \).

3.7 Question. Does there exist such a \(B \) as in 3.6 for \(A = \text{Top} \)? By virtue of 3.3 such a \(B \) will not be coweighted.

4. In this section we consider iterations of the functor \(F_A : \text{Top} \to \text{Top} \) defined in section 2. Let \(A \) be epireflective subcategory of \(\text{Top} \); then for each ordinal number \(\alpha \) we define a topology \(\mathcal{E}_A^\alpha \) on \(X \) in the following way: \(\mathcal{E}_A^0 = \mathcal{E} \) and \(\mathcal{E}_A^{\alpha+1} = (\mathcal{E}_A^\alpha)^\mathcal{A} \) for any \(\alpha \); if \(\alpha \) is a limit ordinal \(\mathcal{E}_A^\alpha = \inf \mathcal{E}_A^\beta \). It is easy to check that setting \(F_A(X, \mathcal{E}) = (X, \mathcal{E}_A^\alpha) \) we get a functor \(F_A : \text{Top} \to \text{Top} \). By virtue of 2.7 if \(A \subseteq \text{Top} \) for each \((X, \mathcal{E}) \in \text{Top} \), the topologies \(\mathcal{E}_A^\alpha \) form a decreasing chain, so there will exist an ordinal number \(\alpha \) such that \(\mathcal{E}_A^{\alpha+1} = \mathcal{E}_A^\alpha \).

4.1 Definition. Let \(A \subseteq \text{Top} \) and \((X, \mathcal{E}) \in \text{Top} \); the smallest ordinal \(\alpha \), such that \(\mathcal{E}_A^{\alpha+1} = \mathcal{E}_A^\alpha \) will be called epimorphic order of \((X, \mathcal{E}) \) with respect to \(A \) and will be denoted by \(E_0^A(X, \mathcal{E}) \).

In particular \(E_0^A(X) = 0 \) iff \(X \in A \), otherwise \(E_0^A(X) = 1 + E_0^A(F(X)) \) with easy check.

Epimorphic order can be defined in a similar way also for categories \(A \) such that \(V_*^V \) for each \((X, \mathcal{E}) \in \text{Top} \).

4.2 Examples. Let \((X, \mathcal{E}) \) be an infinite strongly rigid space and \(A = E\{(X, \mathcal{E})| \text{ } \} \); then \(\mathcal{E}_A^\alpha \) is the cofinite topology on \(X \), so \(r_A(X, \mathcal{E}) \) is a singleton, therefore \((X, \mathcal{E}_A) \) is indiscrete, so \(E_0^A(X, \mathcal{E}) = 2 \).

(b) Let \(B \subseteq B \) and \(A = P(B) \), then \(E_0^A(X, \mathcal{E}) = 0 \) iff \(r_A(X, \mathcal{E}) \in B \) and \(X \) has the initial topology with respect to \(X \to r_A(X, \mathcal{E}) \), otherwise \(E_0^A(X, \mathcal{E}) = 1 \).

(c) Let \((Y_\beta, \mathcal{E}_\beta) \) be the Ubrishon space constructed in [16] for an ordinal \(\beta \) satisfying \(1 < \beta < \omega + 1 \); then \(E_0^{\text{Top}_2}(Y_\beta, \mathcal{E}_\beta) = 2 \) while \(E_0^{\text{Top}_2}(Y_1, \mathcal{E}_1) = 1 \). Moreover \(F^{\text{Top}_2}(Y_\beta, \mathcal{E}_\beta) \) of these ordinals.

(d) If \(A \) is bireflective and \(X \in \text{Top} \) then \(E_0^A(X) = 0 \) iff \(X \) is discrete, otherwise \(E_0^A(X) = 1 \).

(c) For \(A = \text{Top}_1 \), \(E_0^A(X) = 0 \) iff \(r_{\text{Top}_1}(X) \) is discrete and \(X \) has the initial topology with respect to \(X \to r_{\text{Top}_1}(X) \), otherwise \(E_0^A(X) = 1 \).

(f) For \(A = \text{Top}_0 \) and \(X \in \text{Top} \), \(E_0^A(X) = 0 \) iff \(r_{\text{Top}_0}(X) \) is discrete and \(X \) has the initial topology with respect to \(X \to r_{\text{Top}_0}(X) \);
\(E_0^A(X) = 1 \) iff \(r_{\text{Top}_0}(X) \) is non discrete and belongs to \(T_D \), \(E_0^A(X) = 2 \) iff \(r_{\text{Top}_0}(X) \notin T_D \).
We have no examples of epimorphic order greater than 2.

In order to calculate easier the epimorphic order we have to know better the interrelation between the functors F_A and r_A. In what follows we omit the index A for brevity, A is always contained in Top$_2$ and $\prod_{x \in k}$.p.

For each $x \in$ Top consider the diagram

$$
\begin{aligned}
X & \xrightarrow{id} FX \\
\downarrow & \downarrow r \\
rX & \xrightarrow{S_x} rFX
\end{aligned}
$$

By the definition of r there exists a unique continuous map $S_x : rX \rightarrow rFX$ which makes commutative the diagram.

4.3 Lemma. The map $S_x : rX \rightarrow rFX$ defined above is continuous when we consider on rX the topology generated by the A-closure, i.e. $S_x : FrX \rightarrow rFX$ is continuous.

Proof. We have to show that for each closed set M in rFX, $S_x^{-1}(M)$ is A-closed in rX. By the continuity of r_1, $r_1^{-1}(M)$ is closed in FX. By 2.1 (a)

$$
[r_1^{-1} M]^X = r_1^{-1}([r_1^{-1} M]^X) = r_1^{-1}M
$$

on the other hand $r_1 = S_x r$, so $r(r_1^{-1} M) = S_x^{-1}(M)$, thus $r_1^{-1}M = Fr(r^{-1} M) = FrS_x^{-1} M$.

Applying r we get $S_x^{-1} M = [S_x^{-1} M]$ which proves the continuity of $S_x : FrX \rightarrow rFX$.

4.4 Proposition. For each natural number n and each $x \in \omega$, $rF^n rX$ is naturally isomorphic to $rF^n X$.

Proof. For any natural $k < n$ the above lemma applied to the space $Y = r^{k}X$ provides a natural continuous map $S_k : FrF^{k}X \rightarrow rF^{k+1}X$ which makes commutative the following diagram

$$
\begin{aligned}
F^{k+1}X & \xrightarrow{S_k} rF^{k+1}X \\
\downarrow r_k & \downarrow r_{k+1} \\
FrF^{k}X & \xrightarrow{S_k} rF^{k+1}X
\end{aligned}
$$

where r_k and r_{k+1} are the corresponding reflections. Applying the functor F^{n-k-1} we get the commutative diagram

$$
\begin{aligned}
rF^n rX & \xrightarrow{S_n} rF^n X \\
\downarrow & \downarrow r_n \\
rF^n rX & = = rF^n X
\end{aligned}
$$
where \(F \) is the A-reflection. By the definition of the reflection there exists a unique continuous map \(S_n: rF^n rX \rightarrow rF^n X \) such that \(Snr = S \).

Let us see that \(S \) is an isomorphism. Again by the properties of the reflection there exists a unique continuous map \(\&: rF^n X \rightarrow rF^n rX \) such that \(\&r = \&_o \).

Consider now the composition \(\# = \& S \circ \& F_{rF} X \) by the definition of \(S \) and \(\& \) we get \(\# = \& S \circ r = \&_o \).

Thus the restriction of \(\& S \) on \(\&_o (F^n X) \) is the identity.

Since \(\&_o \) is an epimorphism this gives \(\& S = \text{id} \) on \(rF^n rX \). In the same way one proves that \(S \circ \& \) is the identity on \(rF^n X \).

4.5 Remark. Consider the semigroup \(\Sigma \) of all functors \(\text{Top} \rightarrow \text{Top} \) generated by \(r \) and \(F \). By the definition of \(r \), \(r = r^2 \) holds. On the other hand 4.4 shows that, for any \(n \), there is an equivalence between \(nF^n rX \) and \(nF^n X \). Let \(\Sigma \) be the quotient of \(\Sigma \) with respect to the equivalence of functors. Then the functors \(F^n \) and \(F^{nF} \) with \(m, n \) and \(t \) non-negative integers \((F^0 \) is the identity functor) represent all elements of \(\Sigma \). The multiplication is given by

\[
(F^m F^n)^t = F^{m + n} F^t, \quad (F^m F^n)^t = F^m (F^t F^n) = F^{m + n} F^t.
\]

It was mentioned in section 2 that for any \(X \in \text{Top} \) \(F^n X \rightarrow F^n X \) is initial. Proposition 4.4 enables us to show it for any natural \(n \).

4.6 Corollary. For any \(X \in \text{Top} \) and for any positive integer \(n \), \(F^n X \rightarrow F^n rX \) is initial.

Proof: By the definition of \(F^n X \), \(F^n X \rightarrow F^n F^{n-1} X \) is initial. By 4.4, \(F^n F^{n-1} X \) is naturally isomorphic to \(F^{n-1} F^n X \).

Consider the commutative diagram

\[
\begin{array}{ccc}
F^{n-1} X & \xrightarrow{f} & rF^{n-1} X \\
r & & S_{n-1} \\
F^{n-1} X & \xleftarrow{r_1} & rF^{n-1} X \\
\end{array}
\]

where \(S_{n-1} \) is the natural isomorphism given in 4.4, \(r \) and \(r_1 \) are reflections.

Applying the functor \(F \) we get the commutative diagram

\[
\begin{array}{ccc}
F^n X & \xrightarrow{f} & F F^{n-1} X \\
r & & S_{n-1} \\
F^n X & \xleftarrow{r_1} & F F^{n-1} X \\
\end{array}
\]

(*) \(\Sigma \) is finite for all categories listed in 1.1 except may be \(\text{Top}_{2n} \) (See 4.2)
4.7 Remark. (a) The assertion of the above corollary is no valid for \(n=0 \) (see (4.12 (b)).

(b) We do not know whether 4.6 is true for infinite ordinals. A positive answer would imply the validity of the following corollary for arbitrary non-zero ordinals.

4.8 Corollary. Let \(n \) be a positive integer and \(X \in \text{Top} \) with \(rX \in A_0 \). Then \(E_0^A(X)=n \) iff \(E_0^A(rX)=n \).

Proof. By 4.6 \(E_0^A(X) \leq E_0^A(rX) \) since \(F_{n+1}^A rX = F_n^A rX \) would imply \(F_{n+1}^A X = F_n^A X \). Since \(X \rightarrow rX \) is surjective, different topologies on \(rX \) give rise to different initial topologies on \(X \), i.e., \(F_{n+1}^A X = F_n^A X \) would imply \(F_{n+1}^A rX = F_n^A rX \), thus \(E_0^A(rX) \leq E_0^A(X) \).

It may happen \(rX \in A_0 \), i.e., \(E_0^A(rX)=0 \) and \(E_0^A(X)=1 \) if \(X \rightarrow rX \) is not initial. The above corollary permits easier calculation of the epimorphic order.

4.9 Example. Let \((Y_\rho, \mathcal{C}_\rho) \) denotes the Urishon space constructed for the ordinal \(\rho \) in \([15]\). If \(\rho > \omega +1 \) one can see that \(Z=F_{\text{Top}_2^\omega}(Y_\rho, \mathcal{C}_\rho) \) is not even Hausdorff. However for every \(\rho > \omega +1 \) the Hausdorff reflection of \(Z \) is already Urishon, i.e. \(r_{\text{Top}_2^\omega} Z=r_{\text{Top}_2^\omega} Z \). Moreover there exist a continuous bijection \(F_{\text{Top}_2^\omega}(Y_{\omega+1}, \mathcal{C}_{\omega+1}) \rightarrow rZ \) such that \(rZ \rightarrow F_{\text{Top}_2^\omega}(Y_{\omega+1}, \mathcal{C}_{\omega+1}) \) is continuous and not open.

Since \(E_0^\text{Top}_2^\omega(Y_{\omega+1}, \mathcal{C}_{\omega+1})=2 \) this implies \(E_0^\text{Top}_2^\omega(rZ)=1 \). By corollary 4.8 \(E_0^\text{Top}_2^\omega(Z)=1 \), so by the definitions of epimorphic order

\[E_0^\text{Top}_2^\omega(Y_\rho, \mathcal{C}_\rho)=2 \] for \(\rho > \omega +1 \).

The above example justifies the following definition.

4.10 Definition. Let \(\beta \) be an ordinal number, denote by \(A^{(\beta)} \) the category of all spaces \(X \in A \) such that \(F_X(X) \in A \) for each \(\gamma \in \beta \).

Set \(A^{(\omega)}=\bigcap A^{(\beta)} \), i.e., \(A^{(\omega)} \) is the category of all spaces \(X \in A \) such that \(F_X(X) \in A \) for each \(\gamma \leq E_0(X) \).

For example in 4.9 \(Y_\rho \in \text{Top}_2^{(1)} \); for \(\rho \) as in 4.2 (b) \(A^{(\omega)}=A \).

4.11 Theorem. Let \(A \) be an epireflective subcategory of \(\text{Top} \), then:

(a) \(A_0 \) is bireflective in \(\text{Top} \).

(b) \(A\cap A_0 \) is bireflective in \(A \), thus \(A\cap A_0 \subseteq A^{(\omega)} \subseteq A \cap A_0 \).

(c) If \(A \) is extremally epireflective then, for each ordinal \(\rho \),
A (ρ) and A (ω) are extremally epireflective; in particular A (ω) = P(A ∩ A).

Proof. (a) For any X ∈ Top define r_A^o(X) = F_A^o(X), where λ = E_0 A.

Now for every Y ∈ A and any map f: X → Y applying F_A^c we get
f = F_A^c(f): F_A^c(X) → F_A^c(Y) = Y. Thus r_A^o is a bireflection of Top in A.

(b) Follows from (a).

(c) Let Y ∈ A (ρ), then F_P(Y) ∈ A. For any subspace X of Y applying to the embedding i:X → Y the functor F_P we get i = F_P(X) → F_P(Y).

Since A is extremally epireflective this implies F_P(X) ∈ A. For any family {X_i} of spaces in A (ρ), F_P(X_i) ∈ A, therefore F_P(Π_i X_i), having a topology finer than that of Π_i F_P(X_i), belongs to A. Therefore A (ρ) is extremally epireflective.

The rest is obvious.

4.12 Remark. Analogous theorem can be proved for categories A which satisfy r_A ∈ r_A for each (X, r) ∈ Top. In such a case A_0 is a coreflective subcategory of A and the coreflection is given by F^*(X) → X where r = E_0 A(X).

(b) In 4.9 Z → r Top_2 (Z) is not initial (this shows that in general FX → rFX is not initial).

(c) Since A_0 is a bireflective subcategory of Top, Top = P(A) holds. On the other hand always A_0 ≠ Top. In fact, assume A ⊆ A_0, then by 2.7 A ⊆ Top_2. Since X ∈ A_0 iff r_X ∈ A_0 and X → r_X is initial, it suffices to find X ∈ Top such that X → r_X is not initial. Now A ⊆ Top_2 provides the following commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{r_X} & A \\
\downarrow{r_{Top_2}} & & \downarrow{r_X} \\
Top_2 X & \xrightarrow{r_X} & A
\end{array}
\]

this is why a space X such that X → r_X is not initial, will do (take, for example, the space Z from (b)).

The following theorem characterizes the categories A satisfying A (ω) = A.

4.13 Theorem. For an extremally epireflective subcategory A of Top the following conditions are equivalent:

(a) there exists an epireflective subcategory B of Top such that B ⊆ B_0 and A = P(B).

(b) A (ω) = A.
Proof. \((a) \Rightarrow (b)\) is obvious since, for any \((X, \tau) \leq A, (X, \tau) B \leq \text{A}\). On the other hand \((b) \Rightarrow (a)\) follows from 4.11 with \(B = \text{A} \cap \text{A}_0\).

4.14 Remarks. (a) By 4.2 (b) both conditions in 4.13 imply \(\text{E}_0^\text{A}(X) \leq 1\) for any \(X \in \text{Top}\). We do not know whether the converse is also true. Observe that if \(\text{E}_0^\text{A}(X) \leq 1\) for every \(X \in \text{A}\), than by 4.8 \(\text{E}_0^\text{A}(X) \leq 1\) for every \(X \in \text{Top}\).

(b) In general for any extremally epireflective subcategory \(\text{A}\) of \(\text{Top}, \text{A}^\omega = \text{P} (\text{A} \cap \text{A}_0)\) according to 4.11 (c), thus for \(X \in \text{A}\), \(\text{E}_0^\text{A}(X) \leq 1\) iff \(X \notin \text{A}_0\). On the other hand it may happen \(\text{E}_0^\text{A}(X) \geq \text{E}_0^\text{A}(X)(\omega)\) (take for example \(X = \omega\) as in 4.2 (c); then for \(\text{A} = \text{Top}, \text{A} \cap \text{A}_0 = \text{Top}_3\), therefore \(\text{A}^\omega = \text{P} (\text{Top}_3)\) and \(X \in \text{A}\), \(\text{E}_0^\text{A}(X) = 2 \geq \text{E}_0^\text{A}(\omega) (X) = 1\)).

Reference

D. Dikranjan
Scuola Normale Superiore
Piazza dei Cavalieri, 7
Pisa (Italy)

E. Giuli
Dipartimento di Matematica
Università
L'Aquila (Italy)