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ALWAYS OF THE FIRST CATEGORY SETS 

E. Grzegorek 

Results of this note were presented during 7th (compare [6]) and 

12th Winter Schools of Abstract Analysis in Czechoslovakia. We prove 

in ZPC (using a theorem of D.Maharam and A.H. Stone [11]) that there 

is an always of the first category subset A of the real line R 

such that A + A is not of the first category in R. The lack of 

such example was pointed out in [2]. To prove this we investigate 

(often more carefully than necessary) a certain sub-6-ideal of the 

6-ideal of always of the first category subsets of R. Some remarks 

concerning universal null (= universal measure zero) subsets of R 

are also included. 

Let X be a separable metric space. If eveiy dense in itself sub­

set of X is of the first category relative to itself, then X is 

said to be always of the first category. We denote by 3£(-0f or 

simply 3C if X=Rf th-v 6 -ideal of the first category sets in X 

and by O^fx) f or 3C* if X=Rf the <J -ideal of always of the first 

category subsets of X. If Y is a metric space such that X C Y , 

then X is always of the first category iff for all perfect sets 

P £ Y the set P O X is of the first category relative to P. 

References concerning 9*t*can be found e.g. in [10] and in the 

surveys articles [2] and [14]. We denote by &(x) the 6-field of 

Borel subsets of X. A space X is called a universal null set if 

there is no continuous probability measure on 'B (x) (for many equiv­

alent definitions and references see [2] and [14]) • We denote by c^ 

the 6 -ideal of universal null subsets of R and by cCQ the 6-

ideal of Lebesgue measure zero subsets of R. A separable complete 

metric space is called Polish space. We need the following known 

Theorem. If X and Y are uncountable Polish spaces without 

isolated points, then there is a Borel isomorphism f from X 

onto Y such that f(0C(X)) =- ft(Y) . 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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The Theorem follows from Lemma 1 in [13]. It also follows from 
Sikorski's theorem [173 and the result of Zaskowsky (see Example I, 
$35 in [18]) that any two separable no.ru-. i.umic complete Boolean alge­
bras are isomorphic. Any Borel isomorphism as in the above Theorem 
will be called category'preserving (c. p.) isomorphism. 

A family J of subsets of the real line R is called 6-ideal on 
R if AQf A1f A2f...6y implies U { A

n
: n=0'1 »2' *# \ } e 3* and 

^ ( A ^ c J , ^ / ^ ( R ) and for every xeR we have { x J ^ X If tf 
is a 6 -ideal on Rv then we define (see [6]) 

tf = \ A £ R: f o r every B C R such that there exists a 1-1 

Borel measurable function f: B -> A we have B6^f\. 

If in the definition of Jf we additionally assume that the 

function f maps B onto A, then such obtained family we denote 

by 3>. 

Proposition 1. 3* is a 6 -ideal on R. ̂ fo f̂ , J =3* and 3*= ̂f. 

— r*> 

Proof. The only nontrivial part is tf -= ZT . It is clear that 
Xf £*J. Let now A 6 j • Suppose that A f 3*. Hence there is B C R 

such that B f f̂ and there is a one to one Borel measurable function 
f from B into A. Clearly either B.O(-oo, 0)fj or B H [O.co)^ . 
Assume that e.g. BOf-oo f 0)^ ̂ f • Define B = Br.(-oo, 0). Let 
Bp c: [0,OD) be such that there is a Borel isomorphism h from B2 

onto A ̂  fCB..). Let B-, = B. LJ Bp and let k be a function from 
B into A defined by k(x) -= f(x) if x € B^ and k(x) = h(x) if 
xeB 0. We have that k is a 1-1 Borel measurable function from B-, 

onto A such that B-.f j • Hence a contradiction with At? J, 

Remark 1. Marczewski [19] proved that <£0 = Jf (see also Sec­
tion IV in [2] and references there). On the other hand assuming CH 
(or M-0 there is X€j£* such that there is a Borel isomorphism f 
from X into R with f ( x ) ^ ^ (see [10] or [2] or [H] ), *o OCcfft* 

J.C Morgan II has proved [15] that there exists a subset X of 
R every homeomorphic image of which is in *JC but X |r3{ . On the 
other hand we have the following 

Proposition 2. Let X C R. If every Borel isomorphic image of X 

into R is in X then every such image is also in "Jf. 
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Proof. In order to prove Proposition 2 it is enough to prove that 
for every X satisfying the assumption of Proposition 2 we have Xe3C* 
Suppose X^ >C*. Let P be a perfect subset of R such that 
Vr\ X^ X(P). Let g1 be a c.p. isomorphism from P onto (O,oo)# Let 
g2 be any Borel isomorphism from X \ P into (-oof o]. Let h be 
the Borel isomorphism from X into R such that h(x) = g-iC-O if 
x s P n X and h(x) = g2(X) if x e X ^ p . we have h(X) D h ( X n P) = 
g ^ X n P)^X(0,°°). Hence h(X>^r>C and so we have a contradiction. 

Notice that if tf and p̂ are 6-ideal* on R such that ̂  2 ^ 
an*. ¥Q*f then If--^ . Indeed. ̂ 2 ^ implies ^^j. V£j im­
plies tf £ 5 and hence, by Proposition 1, TTS^* So j = ^ . Hence 
by Proposition 2 we have 

Proposition 3. % • CK* 

We have the following 

Theorem 1. Let m, » min ̂  |Y| : Y £ R and Y^'Jc}. T^ere is 

X £ R such that |x | - m1 and Xe 5?t 

Before giving a proof we would like to make some remarks. A simi­
lar theorem for universal null sets can be found in [4} (compare also 
[5$• In £4] we proved.that there is a subset X C R such that 
Jx| am, and all Borel isomorphic images of X into R are in % 
(and so by Proposition 2 of the present note, in % * ) . The proof of 
Theorem 1 is similar to the proof in [4] but a little longer • Re­
call that [4] was based on some ideas from-K. Prikry [16]« Instead 
of Theorem 1 I announced in Q6 J the following 

Theorem 1 *. Let m. be as in Theorem 1 and let m2 • min£|Y| : 

Y £ R and Y^3{*J-. Then there are X.., X.5CR such that JX^ * m1f 

Jx2| -» m2, X ^ O ? and X2* *K» 

The fact that Theorem 1 • is the same as Theorem 1 follows from 
the fact that m^ • m2 (see Remark 3) or Prop.3« Theorem 1 also 
follows from Theorem 2 in [6], which was proved there, with the help 
of the c.p. isomorphism. Theorem 1 itself I discovered after learn­
ing from D. Premlin [3] that he proved the existence of a set 
A6 9C*(RXR) such that its projection is not in *K(R). On the other 
hand the main part of the mentioned result of Fremlin follows easily 
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from Theorem 1* itself. Indeed. Prom Theorem 1f we have that there 

are Af B C C J 0 0 ( - irrational numbers) such that |Al » IBJL, A^ 1C* and 

BeX*. Let f be any bisection from A onto B and let G be the 

graph of f» Since coPxuf0* is homeomorphic to o/^gR weihave that 

G is in X*(RXR) but clearly the projection of G onto the first 

axis does not belong toX« 

Now we give a full proof of Theoreml• 

Proof of Theorem -1. By Propositions 1 and 3 it is enough to prove 

that there is X £ R such that |x| = m1 and Xe'jt • It follows, from 

the assumption of Theorem 1 that there is Y c R such that |Y| « m^, 

Y^Tt and Y is dense on R (add the rational numbers to Y 

from the definition of HL ). Observe that each subset A of Y such 

that |A| < m1 is in JtC-O. Let £ yA : d.<mA be a one-to-one enu­

meration of Y. For every di < m^ let F^ be an ^ subset of Y 

such that P^e CK(Y) and P^ 2{3k»: d'^cC}* We now define 

Z c n ^ x Y as follows: Z •0L^1(M*-i)- Let 0Qf 01 f 02,... be a 

countable base for the topology of Y. 

Setting 

Ei = { o K m ^ C^ C P^l for every i<6) , 

we get 
Z "^ttFi** °i (compare [l6]or see general theorem Cllj. 

Let ^ be a countably generated and separating points O-field on 

m^Let t? be a «-field on m^ generated by «# and the family 

{l^: i<o}. It is clear that Z belongs to the product 6-field 

£ ® $ M • We claim that the 6 -field £ has the following property 

(*) for every B £ R such that there is a one-to-one OSO-Ot^)-

measurable function from B onto m1 we have B€ 'X. 

It is clear that in order to prove (*) it is enough to prove (#)for 

B such that B is dense in R. Let f be a one-to-one CSC B)tC)-

measurable function from B onto m^. We have that there is a subset 

S of BXY such that S 6 $(B* Y) f {y: (bfy)€S}€l£(Y) for every 

b6B f and |B "N. {b: (bfy)fc s}| < m^ .for every y*Y (put 
s'• {(* (b)fy): (bfy)e Z^). Applying Kuratowski-Ulam category ver­

sion of Pubini's theorem [10] we have that B6 94(B) and hence B€7t '. 

Let X be a subset of R such that there is a one-to-one (&(X)/?) -

measurable function g from X onto ra^ (e.g. let f be a charac­

teristic function of a countable sequence of sets generating IS and 

Put X . f(m^and g - f~ 1). It is clear that (tf)implies that X t ^ . 
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Proposition 4, There is X€3C* such that Xco) and there is a 

continuous function f from CO^ into (J* such that f(x)^3i. 

Proof. By Theorem 1 we have that there are A, B£6/** such that 

|A|=|B|, A€tJC*and B^TC. Let g he a one-to-one function from A 

onto B and let £ he the graph of g. Let h be a homeomorphism 

from CJ onto 0)H<GcPa.ii& let IT be the projection from 6) Xd/^onto co^ 

such that 7T(c)= B, Define X -* h~1(G) and f =-TTh. 

Theorem2. There exists Aeft*" such that A + k^fJC 

"Proof. We need the following particular case of a theorem of D. 

Maharam and A.H. Stone ([11] or [12]): If Z is a separable metric 

space, then every Borel measurable function f from Z into R can 

be expressed as the sum of two one-to-one Borel measurable functions. 

Let X and f be as in Proposition 4. By the theorem of D. Maharam 

and A.H. Stone there are one-to-one Borel measurable functions 

f±: &K--*R (i = 1, 2) such that f = f 1 + f2. Since f ~
1: f^x)-->X 

(i =- 1,2) are Borel measurable functions [10] we have that f^XjfcX* 

(i -= 1,2). Define 4 « £^X)\J f2(x). Clearly A€0{* Since 

0C^f(x)Sf^[)+ f2(X)&A + A we have A + A^Of. 

..A 

Corollary. There exists A€3f such that A + A^%. 

The lack of such example was pointed out in[2"]. It is well known^l 

that assuming CH (or Martin's Axiom) there.is A*Cr£*such that 

A + A * R. Miller (compare [14])proved that ZFC + (all X€9{*have car­

dinality at most It,) is consistent if ZFC is consistent. Hence it 

is unprovable in ZFC that there is A€#*such that A + A « R. 

In [7] we observed that there exist N e ^ such that N + N^«#I It 

was left as an open problem if there exist Ne^such that N + N^«L. 

Theorem of D. Maharam and A.H, Stone is just what we need to see 

that the answer to that question is yes. 

Theorem 3« There exists Ne^such that N + N^d^. 

Proof, It is known (Theorem 2 (i) in [5]) that there is a continu­

ous function f: R —»-R such that there is X € ^ with f(x)^<£t). 

Let f » f* + f2» where f, and f2 are one-to-one Borel measur­

able functions. Put N - f . 1 ( x ) U f 2 ( X ) . 
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Remark 2. 

a) In the definition of 3* ', Propositions 1,2,3 and Theorem .1 the 

real line can be replaced by any uncountable Polish space without 

isolated points. Proofs are similar. 

b) Let Z be a Polish space without isolated points and let f 

be a c.p. isomorphism from Z onto R. Then fOK^Z)) = ̂ R ) . 

c) Let X63C*"and let Y be a separable metric space without 

isolated points such that there exists a one-to-one Borel measurable 

function f from Y into X. Let Z be a Polish space without iso­

lated points such that YCZ. Then Y6 3£^"z). 

Proof. Part a) is trivial. In order to prove part b) it isenough, 

by Proposition 3 and Remark 2 a), to prove that fCtt(Z)) « %(T*)t 

but the last equal"lity is easy to check. mo Prove c)let g be a c.p. 

isomorphism from Z onto R and let X. = g(Y). Since f (g~ fX,.) is 

a one-to-one Borel function frora X. into X we have X. e ̂{*t Since 

Y = fr\i^), by b) we have Ye 0{*(Z). 

The following remark seems to be in [3l but without proof. 

Remark 3 (Freralinp5_l)« Let Z be a Polish space without isolated 

points, let m ^ Z ) . min{|Y| : Y £ Z and Y^tt(Z)} and let 

ra2(z) *- min{ |Y| : Y C 7, and Y^X*(Z)}. Then we have 

m^Z)-* iru(Z)= m^CR). »Tf Y ia a separable metric space without iso­

lated points such that IYI < m1 then Y6OT(Y). 

Proof. It is clear that m2(z)^m1(z). Let S £ Z be such that 

|s|« m2(Z)and S^tX*(Z). By Remark 2a and Proposition 2 there is 

S1 C Z such that S^fOiiz) and \s^\ =|s| = ra2(z). Hence m ^ Z ^ m ^ . ) . 

The fact that that m.Cz)^ m..(R) we have immediatelly from the exis­

tence of c.p. isomorphism between Z and R. Let Z be a Polish 

space without isolated points such that Z 2 Y (e.g. let Z be the 

Cantor completion of Y). Since HL • nu we have that YeOt\z)9 

Remark 4. Assume CH . Then X*x 0CS>tf(R x R). 

Indeed. Let A, Be ft*. CH implies that A x B is.a countable 

union of graphs of partial functions from R into R. Since the 

projections, are one-to-one continuous functions from graphs into A 
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or B respectively we have that the graph of each partial function is 

in ^ ( R X P ) ahd so AxB65?(FxF), Similar argument works if in­

stead of CH we assume only MA plus that 2 ° is a succesor cardinal. 

From now X and Y will denote uncountable Polish spaces. Let 

M (XXY) be the 6-field of subsets of / X X Y generated by 

S(XxY)u3i*(XxY) and let M^ ( X~Y) be the 6-field on XxY gen­

erated by ! B ( X X Y ) U / ( X X Y ) , The following consequence of Mazurkie-

wicz-SierT>iriski theorem was observed in £ Q ] , Remark 4 . 

(+) Tf C £ X and CxY€ ^ ( X X Y ) U ^ ( x x v ) t +/hen CeS(x). 

Tn [8] 1 generalised (,+) to the following 

C++) Tf C is an uncountable subset of X and T) is an uncountable 

analytic subset of Y such that cxr>e ̂ ( X < Y ) U ^ ( X X Y ) , then 

ce^tx). 

Now T would like to show how (++) follows immediatelly from (+). 

Namely we have the following (+++). 

(»•++) If C is an uncountable subset of Xf 71 is a subset of Y 

such that T) contains a homeomorrhic image of the Cantor set and 

OKT)e^o( XxY)u C/K^ ( XXY), then Ce^(x) and De'SJCO. 

Indeed. Let K be a subset of "n such that K is homeomorphic 

with the Cantor set. We have CxK 6 MQ ( X X K ) U <At\ ( X X K ) . Hence-

by (+) , Ce^(x). Now again by (+) , H ^ x ) . 

Corollary. If A and Bare non-Borel universally measurable sub­

sets of X and Y respectively (for the definition see e.g.C^]) 

such that at least one of them is not a universal nui"1 <*et, then 

A.XB is a universally measurable subset of XxY sunh that 

A X B ^ ^ 0 ( X X T Y ) U ^ 1 ( XXY). 

I am indebted to T). Fremlin for sending me [V] and to "n. Maharam 

and A.H. Stone for sending me [1?]. 
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