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ALWAYS OF THE FIRST CATEGORY SETS

B, Grzego’rek

Results of this note were presented during 7th (compare [6]) and
12th Winter Schools of Abstract Analysis in Czechoslovakia. We prove
in ZFC (using a theorem of D.Maharam and A.H, Stone [1 1]) that there
is an always of the first category subset A of the real line ‘R
such that A + A is not of the first category in R. The lack of
such example was pointed out in [2]. To prove this we investigate
(often more carefully than necessary) a certain sub- G -ideal of the
G -ideal of always of the first category subsets of R. Some remarks
concerning universal null (= universal measure zero) subsets of R
are also included.

Let X be a separable metric space. If every uense in itself sub-
set of X 1is of the first category relative to itself, then X is
said to be always of the first category. We denote by U»C(X), or
simply & if X=R, th. ¢ -ideal of the first category sets in X
and by ®*(X) , or X if X=R, the g-ideal of always of the first
category subsets of X, If Y is a metric space such that X £,
then X is always of the first category iff for all perfect sets
PSY the set PN X is of the first category relative to P.
References concerning 'J»{,*can be found e.g. in [10] and in the
surveys articles [2] and [14]. We denote by $3(X) the g-field of
Borel subsets of X. A space X is called a universal null set if
there is no continuous probability measure on @(X) (for many equiv-
alent definitions and references see [2] and [14]) . We denote byrﬂ'
the G -ideal of universal null subsets of R and by &o the 6-
ideal of Lebesgue measure zero subsets of R. A separable complete
metric space is called Polish space. We need the following known

Theorem, If X and Y are uncountable Polish spaces without -
isolated points, then there is a Borel isomorphism f from X
onto Y such that f(tx(X)) = K().

"

This paper is in final form and no version of it will be submitted for publication elsewhere.
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The Theorem follows from Lemma 1 in [13]. It also follows from
Sikorski’s theorem [17] and the result of Zaskowsky (see Example I,
$35 in [18]) that any two separable nonziumic complete Boolean alge=-
bras are isomorphic. Any Borel isomorphism as in the above Theorem
will be called category vreserving (c. p.) isomorphism,

A family F of subsets of the real line R is called ¢=-ideal on
R if Ag, A, A2,...€D’ implies {A : n=0,1 2,...}53’ and
@(AO)C: g, jg@(R) and for every x€R we have {x}e¢Jf. If J

is a 6-ideal on R. then we define(see [6])

_:_f' = {A S R: for every B &R such that there exists a 1-1
Borel measurable function f: B=-==» A we have Be:f}
If in the definition of :f we additionally assume that the
fung&ion f maps B onto A, then such obtained family we denote
by J.

—

— _ - -_— A
Proposition 1. J isa G -ideal on R. JS F, J =3 anda J=J.

-_—
Proof. The only nontrivial part is J = 1. It is clear that
? cJ. Let now A€ ?. Suppose that A¢ Y. Hence there is B € R

such that B * J and there is a one to one Borel measurable function
f from B into A. Clearly either BN (-o0, 0)¢J or BN[0,x)¢T .
Assume that e.g. BN (-0 ,0)¢ T . Define B, = BN (-, 0). Let

B2 < [O,OD) be such that there is a Borel isomorphism h from B2
onto AN f(B1). Let By = BjU B, and let k be a function from

B, into A defined by k(x) = f(x) if xe€ B1 and k(x) = h(x) if

3
xeB2. We have that k is a 1-1 Borel measurable function from B3

aYs
onto A such that B3¢If . Hence a contradiction with Ae J.

Remark 1. Marczewski [19] proved that £ uV'(see also Sec-

tion IV in [2] and references there) On the other hand assuming CH
(or MA) there is XeX™ such that there is a Borel isomorphism f

from X into R with f(X)*?y’f (see [10] or [2] or [14]),.90 -'J?gfx*,

J.C. Morgan II has proved [15] that there exists a subset X of
‘R every homeomorphic image of which is in ¥ but X f:](*. On the
other hand we have the following

Proposition 2, Let X € R. If every Borel isomorphic image of X
into R is in K then every such image is also in ]{
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Proof. In order to prove Proposition 2 it is enough to prove that
for every X satisfying the assumption of Proposition 2 we have XQ'JC'.*
Suppose X¢ H™, Let P be a perfect subset of R such that
P Xé K(P), Let gy be a c.p. isomorphism from P onto (0,). Let
g, be any Borel isomorphism from XN\P into (-o,0} Let h be
the Borel isomorphism from X into R such that h(x) = g4 (x) if
x6¢PnX and h(x) = g,(x) if xeX\PR We have h(X) 3h(xn P) =
g(xn P)ff]{(o o), Hence h(X)*J{; and so we have a contradiction,

Notice that 1f ¥ and F are G-ideals on R such thatI2F
anAd U’Q} then J= } . Tndeed. J27 implies ‘,f:z ‘Jg‘} im-
vlies ? _C__ and hence, by Proposition 1, 3’"—'—} So I = 7 . Hence
by Proposition 2 we have

Proposition 3, "J—( = 5}-(:—*.

We have the following

Theorem 1, Let m, = min{ [t] : YeR and Y¢3 }. Trere is
XSR such that |X|=m, and Xe %

Before giving a proof we would like to make some remarks., A simi-
lar theorem for universal null sets can be found in [4] (compare also
[5]} In [4] we proved.that there is a subset X &R such that
lXI = m, and all Borel isomorphic images of X into R are in K
(and so by Proposition 2 of the present note, in %¥*), The proof of
Theorem 1 is similar to the proof in [4] but a little longer . Re-
call that (4] was based on some ideas from-K. Prikry {16]. Instead
of Theorem 1 I announced in [6] the following

Iheorem 1', Let m, be as in Theorem 1 ana let m, = min{lYl
YSR and Y¢K*} Then there are X,;, X,ER such that lX | = my,
|x2| =my, X,e} and Xye K% _ _

The fact that Theorem 1’ is the same as Theorem 1 follows from
the fact that m, = m, (see Remark 3) or Prop.3. Theorem 1 also
follows from Theorem 2 in [6], which was proved there, with the help
of the c.p. isomorphism. Theurem 1 itself I discovered after-learn=
ing from D, Fremlin [3] that he proved the existence of a set
Ae 'J{*(R*R) such that its projection is not in K (R). On the other
hand the main part of the mentioned result of Fremlin follows easily




142 E. GRZEGOREK

from Theorem 1°* itself. Indeed. From Theorem 1’ we have that theré
are A, Bgo® (= irrational numbers) such that |Al=|B, A¢ K™ and
BeX*. Let £ be any bijection from A onto B and let G be the
graph of £, Since wWx w® is homeomorphic to w¥=R we have tha
¢ is in X"(R>R) but clearly the projection of G onto the first
axis does not belong to X"

Now we give a full proof of Theoremi.

Proof of ‘iheorem.1. By Propositions 1 and 3 it is enough to prove
that there is X & R such that |X| = m, and Xe’i « It follows. from
the assumption of Theorem 1 that there is Y & R such that |Y| =m,,
Y¢H and Y is dense on R (add the rational numbers to Y
from the definition of m, ). Observe that each subset A of Y such
that |A| < m, is in HK(Y), Let { y :d<m]} be a one-to-one enu-
meration of Y. For every & <m, let F, be an g  subset of Y
such that Fye€ J{(Y) and Fy 2D {y“,z a'<& }. We now define
Zgm><Y as follows: 2 =“gm1 ©YE). Let Ogs 049 Opyecs e a
countable base for the topology of Y,

Setting
By = {d.<m1: 0; ¢ Fu.} for every i<,
we get
Z ’iL<juEi > Oi (compare [1 6]or see general theorem[’f_l).

Tet & be a countably generated and separating points &-field on
m,.Let € be a s-field on m, generated by A and the family
{Ei: i<co}. It is clear that Z ©belongs to the product G-field

€ @RY) . we claim that the 6 -field € has the following property

(*) for every B S R such that there is a one-to-one (GB(B),’C)-
measurable function from B onto m, we have B¢ K.

It is clear that in order to prove (%) it is enough to prove (*)for
B such that B 4is dense in R, Let f be a one-to-one (@(B),t)-
Mmeasurable function from B onto m,. We have that there is a subset
S of BXY such that Se @BxY), {v: (b,)eS}eK(Y) for every
b€ B, and IB ~ {v: O, e S}|<m1 for every ye¢Y (put
S = {(£'1(b) ) (,y) e Z}). Applying Kuratowski-Ulam category ver-
sion of Fubini’s theorem [10] we have that Be’K(B) and hence B€H .
Let X be a subset of R such that there is a one-to-one(H(x),¢) -
mea.aurabie function g from X onto m, (e.g. let f be a charac-
teristic function of a countable sequence of ‘sets generating ¥ and
rut X = f(m1) and g = f'1). It is clear that ()implies that X6
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Proposition 4. There is XeH™ such that X< w® and there is a

continuous function £ from WY intow® such that f£(X)¢X.

Proof, BLTheorem 1 we have that there are A, Bg a)w such that
|al=IBl, Ae’H¥and B¢H. Let g be a one-to-one function from A
onto B and let G be the graph of g. Let h be'a homeomorphism
from G)wonto w*%w*and let T be the projection from w“’x w?onto wW
such that Tr(G)= B, Define X = h~'(G) and £ =7rh.

Theorem2, There exists A€K™ such that A + A’

Proof. We need the following particular case of a theorem of D.
Maharam and A.H. Stone ([1 1] or [12]): If Z is a separable metric
space, then every Borel measurable function f from Z into R can
be expressed as the sum of two one-to-one Borel measurable functions.
Tet X and f be as in Proposition 4, By the theorem of D. Maharam
and A.H, Stone there are one-to-one Borel measurable functions
£t @hmp R (L =1,2) euch that £ = £, + f,. Since f] £ (X)-->x
(i = 1,2) are ,Borel measurable functions [10] we have that fi(X)e
(i = 1,2). Define A = £,(X)U £,(X). Clearly A€'H: Since
’chaf(x)c:.fp(h fz(X)QA + A we have A+ AdH.

Corollary. There exists A€’K"such that A + A K.

The lack of such example was pointed out in[27. It is well known@il
that assuming CH (or Martin’s Axiom) there is AeK¥such that
A + A =R, Miller (compare[14])proved that ZFC + (all X&é%*have car-
dinality at mostX) is consistent if ZFC is consistent. Hence it
is unprovable in 250 that there is Ae’X¥such that A + A = R.

In [7] we observed that there exist Ned such that N + N*N It
was left as an open problem if there exist NeW 'such that N + Nf o(.
Theorem of D, Maharam and A,H. Stone is just what we need to see
that the answer to that question is yes. '

Theorem 3, There exists Ne./ such that N + N*cﬁo.

Proof. It is known (Theorem 2(i) in [5]) that there is a continu-
ous function f: R --»R such that there is Xe with f(0)¢d,.
Let £ = f1 + fa, where f1 and i‘2 are one-to-one Borel measur-
able functions. Put N = f1(X)U £,(x).
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Remark 2, .

a) In the definition of?‘, Propositions 1,2,3 and Theorem .1 the
real line can be replaced by any uncountable Polish space without
isolated points. Proofs are similar,

b) Let Z be a Polish space without isolated points ang_let f
be a c.p. isomorphism from Z onto R, Then f('J-c“iZ)) = ';}(“(R).

c) Let Xef* and let Y be a separable metric svace without
isolated voints such that there exists a one-to-one Borel measurable
function f from Y into X. Tet 2 ©be a Polish snmace without iso-
lated points such that YCZ. Then YeX'(Z).

Proof, Part a) is trivial. In order to prove part b) it is enough,
by Proposition 3 and Remark 2 a), to prove that f(’}ﬁz))= %),
but the last equallity is easy to check. ™o nrove c)let g be a c.p.
isomorphism from 2 onto R and let X, = g(Y). Since £ (g'1PX1) is
a one-to-one Borel function from__X1 into X we have X1e K* Since
Y = g'1(x1), by b) we have Y& HMZ).

The following remark seems to be in [3] but without proof.

Remark 3 (Fremlin[ﬂ). Tet Z be a Polish space without isolated
points, let m1(Z)= min{lYl: Y& Z and Y*’J{(Z)} and let
mz(z) = min{ [Y]: YS 7 and Y*x"(z)}. Then we have
m, (7)= m2(z)= m, (R). .Tf Y 4is a separable metric space without iso-
lated points such that |Y|<m1 then YeX(¥).

Proof. It is clear that mz(Z)g m1(Z). et S& 7 be such that
Is|= m,(z) and S¢3™z). By Pemark 2a and Proposition 2 there is
S, 7 such that S#"JC(Z) and |S1| =|s| = m2(7.). Hence m1(Z)£m2(7).
The fact that that m,(2)= m,(R) we have immediatelly from the exis-
tence of c.p. isomorphism between 7% and R, Let 2% be a Polish
space without isolated points such that Z 2 Y (e.g. let 2 be the
'Cantqr completion of Y). Since m =m, we have that YE'-’C"(Z).

Remark 4. Assume CH . Then K¥x< 7C*§'J'£*(R>< R). -
Indeed. Let A,BeX* CH implies that A> B 1is.a countable

union of graphs of partial functions from R .into- R, Since the
projections are oné-to-one continuous functions from graphs into A
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or B respectively we have that the graph of each partial fgnction is
in K*(rxR) and so A*BGD‘?(PxR ). Similar argument works if in-
stead'éf CH we assume only MA plus. that gcb is a succesor cardinal.

From now X and Y will denote uncouzgtable Polish spaces. Let
MO(XXY) be the 6-field of subsets of /x'xY generated by
B(X=Y)U KX=Y) and let M, (X=Y) be the 6-field on X=Y gen-
erated by B(X><Y)UNME>=<Y). The following consequence of Mazurkie-
wicz-Siernifiski theorem was observed in [9] , Remark 4 .

(#) Tf CESX and CxYe oM (XxV) U M, (X V), then ceB(x).
Tn [8] 7 generalised (+) to the following

(++) If C 4is an uncountable subset of X and D is an uncountable
analytic subset of ¥ such that 0><De M (X<V)U M, (X< Y), then
’ ceBX).

Now T would like to show how (++) follows immediatelly from (+).
Namely we have the following (+++),

(+++) If C 1is an uncountable subset of X, D is a subset of ¥
such that 7 contains a homeomorrhic image of the Cantor set and
CxDe oM (X=Y) U M, (XY), then CeB(X) and neR().

Indeed. T'et K be a subset of M such that ¥ is homeomorphic
with the Cantor set. We have CKKGMO(XXK)UM ( X< X). Hence,
by (+) , C€B(X). Now again by (+) , D& GEX).

Corollary. If A and Bare non-Borel universally measurable sub-
sets of X and Y resrectively (for the definition see e.g.[?.])
.Such that at least one of them is not a universal null =<et, then
A>XB is a universally measurable subset of XXV sunrh that

A< B* Mo(xxv)u .441( X=<Y),

T am indebted to D, Fremlin for sending me [3] and to D, Maharam
and A, H, Stone for sending me [12].
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