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SOME RESULTS CONCERNING RECONSTRUCTION C0N3ECTURE 

Vaclav N?dl 

Abstract: B.Manvel firet ehowed that, for every k, there 

exist two finite nonieonorphic graphe with the eane collections of 

of k-point subgraphs. Here, we give eone new results concerning 

Manvel's observation* We find the bounds of reconetructibility 

and nonreconstructibility of graphe fron subgraphs for eone cla

sses of graphe /all graphs, all trees, all equivalences/* 

0., Introduction 

We consider finite undirected graphe without loope and multi

ple edges. More precisely: for a eet X we denote P2(
x) the eet of 

all 2-point subeete of X; a graph ie a couple G »<V(G),E(G)> , 

where V(G) ie a finite eet and E(G)<= P2(V(G)). 

A napping f:V(G)—*-V(H) ie called the hononorphien fron the 

graph G into the graph H if for every ZGV(G) f(Z)6V(H), and ie 

called the ieonorphien if f ie a bijection and for every Z 

f(Z)G V(H) if and only if ZeV(G). We write G^-H to indicate iso

morphic graphs* 

For every eubeet Y of the eet V(G) of the graph G the induced 

graph G/Y • <Y,V(G)0 P2(Y)> is refined* The nunber of induced 

graphe of the graph G isonorhic to the graph H ie called the fre

quency of H in G and denoted by frq(H,G), 

We uee hononorphiene of eone epecial types* A hononorphien 

f JG—*-»H ie called the nononorphisn if f :G—*-H/f(V(G)) ie an ieo

norphien and ie called the eenlnononorphien if for every conponent 

of connectivity C of the graph G f :G/C —*-H/f(V(C)) ie an ieonor

phien* A hononorphien f:G—»»H ie said to be covering if f(V(G)) « 

• V(H)„ It ie obvioue that every covering nononorphien hae to be 

en ieonorphien* 

The nunber of conponente of connectivity of the graph G will 

be denoted by cp(G)» It ie obvioue that a eenlnononorphien f:G-»-H 

is a nononorphien if and only if cp(G) • cp(H/f(V(G)))» 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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We uee some integral-valued functions: 
card X ... denotes the number of elements of the set X, 

IGI ... • card(V(G)) for the graph G, 
mono(G,H) ... denotes the number of monomorphisms from G into H, 
semi(G,H) ... denotee the number of eemlmonomorphisms from G intoH 
cov(G,H) ... denotes the number of covering semimonomorphisms 

from G into Hf 
aut(G) ... denotee the number of automorphisms of the graph G 

/we uee the identity mono(G,H) • frq(G,H).aut G/. 

1. The frequency and the similarity of graphs 

Definition 1.1. Let G,H be two graphs such that IGI • IHI, let 

k be an integer. The graphs G,H ars called k-simllar /-*k-similar, 

6.k-c-similar, respectively/ if for every graph R euch that IRI • 
• k / |R| £ k, IRI -̂  k £ R is connected, respectively/ frq(R,G) « 

• frq(R,H) holde. We use the notation G ~ H / G ̂ -" H ,G ̂  Hf 
c 

respect ive ly / . 
Corol lary 1 .2 . / K e l l y ' s lemma/. For any two graphs G,H and any 

integer k. i f G **& Hf then G ̂ L H. 
Proof. See [l] pp. 229-230. 
Corollary 1.3. /Reconstruction conjecture/. It is conjectured 

that for any two graphs G,H such that n • IGI • |HI ̂  2 the impli
cation " if G J£*j, H , then G ^ H - is true. 

Now, we describe some "counting" rules for frequencies. 
Lemma 1.4. If G "~/ H , then for every R such that IRI -£ k 

semi(R,G) • semi(R,H). 
Proof. The equality follows immediatelly from the obeervatlon 

that semi(R,G) • ^ I I CD/R\ mono(Cm,G) , where Cm are the compo
nents of R , from the Identity mono(Cm,G) • frq(Cm,G)*aut(Cm) and 
from their analogues for the graph H. 

Lemma 1.5. Let 1 » I*U I 2U ...U ImU ### be a eet and let 
{ R ± , 1 € I } be a collection of graphe such that: 

1/ for every m, if i^Im» then cp(RA) • m, 
2/ for every graph R there is one and only one 1€ I euoh that 

R.-R . 
Then for any two graphe R,G the identity eemi(R,G) • £^x cov(R,R^). 
•frq(Ri,G) holds. 

Proof. Let P • P2(V(G)). For Z€ P let f(Z) • 1 eo that G/2^ 
— R 1 # Obviously frq(RltG) « card( y"

l(i)). And now we can write 
seai(R.G) « ^ p cov(R,G/Z) • ^ p cov(R,R ̂ ^ ) • j ^ covfR.R^. 
.frq(RlfG). 
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Lemma 1 .6 . I f GfH are two graphe euch that G =̂>̂  Hf then 
<v c 

Proof. Let 1,1 •R, be the same ae in Lemma 1.5. We prove by 
induction that for every j£ k the proposition A(j): M if q€I. a 
IR I ^ k , then frq(R ,G) - frq(R fH)

 w ie true. 

1/ A(i) le true because of assumption G ~ H. 

2/ A(l)fA(2)f...fA(j-l) are euppoeed to be true. We introduce 
QG B i ^ U l 2 U . . . U l H covtR^.frqfR^G), and analogically 
Q, H 
Ueing Lemma 1.5. we obtain eemi(R fG) * QQ • aut(R ).frq(R tG) 
and eemi RqfH) « QH • aut(R ).frq(R fH). But QQ » QH becauee for 
every i€I 1JI 2U...Ulj. 1 frq(Ri#G) » frq(Ri#H) /if we euppoee 
.R|£k/. Moreover, eemi(R fG) « eerai(R ,H) according to Lemma 
1.4. Thue, we have frq(R ,G) « [semi(Rq,G) - QH]/

aut(R
q)

 m 

«[eemi(RqfH) - QH]/aut(Rq) « frq(RqfH). 

Theorem 1.7. For any two graphe GfH and for any integer kftbe 
following three properties are equivalent 

/!/ 6 X H , /ii/ G %L H , /iii/ G ~X H . 
Proof. The theorem ie the summary of Corollary 1.2. and 

Lemma 1.6. 

Corollary 1.8. The reconetruction conjecture ie true for dis

connected graphs. 

Proof. Let GfH be two disconnectedgraphs such that n • IG' • 
» [H| > 2 and let G 2̂ 3 H. Using Theorem 1.7. we get G -*2^9 H 
and, eince G,H are disconnected, even G ̂ - H. Now, by Theorem . 
1.7., 6 4 . H, i.e. G^H. 

2. Bounds of reconetructibility and nonreconetructibllity 

Let N be the eet of all natural numbers. For every subset M 

of N we define max M « +oo . Let us denote NK • N U •{•«̂ o}. 

Definition 2.1. Let J*r be a eubclass of the claee of all fi

nite graphs. We define the mapping UjsriN—*•* N* ae ujr(n) « 

• max{m;( VFlfF2€^)((lF1l • |F2! ̂  m^F 1 JL ?2) ^ Fl~FZ>h 
Corollary 2.2. We denote £ the claee of all finite graphs. B. 

Manvel ehowed in [2] that for every ne N the unequality U£,(n)<+»o 
holde. Further, the reconetruction conjecture can be written in 
the form up(n)>n-t-l for n>2. 

Propoeition 2.3. Let J" be the claee of all finite trees. 
Then, for every n> 1, n-*i< ujr(n)< 2n. 

Proof. The firet unequality expreeeee the fact that the re-
conetructlon conjecture ie true for the case of trees. The second 
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one wae proved in [5J where, for every n> 1, we conetructed two 

nonieomorphic treee T1#T2 having 2n elemente euch that T± ^ Tg. 

Propoeiton 2.4. If £ is the claee of all finite graphe, then, 

for every n>l, the unequality u^ (n) < mln(2n, 3n/2 + 15/2) holde. 

Proof. To prove the unequality we uee Propoeition 2.3. and the 

conetruction from |_5J where, for every k>2, we conetructed two 
2k 

nonieomorphic graphs GltG2 having 3k • 6 elemente euch that G1*->/G2. 

Corollary 2.5. V.MOller in [3] showed that for every £> » 
1< rO <2, there exist a class ̂  and a number n^ such that for 

every n€ Kl u^ (n) > p.n and moreover, <fc contalne asymptotically 
the most graphs on n elemente. 

Remark 2.6. It wae proved in [4] that for every n€ N in the 

class € of all finite equivalences the unequalltiee 

n.(ln n - 1) < u^(n) < (n+l)^""1 hold /here In denotes the lo-

garlthmue naturalie/. 

Problem 2.7. Prove that, for every sufficiently "rich" claee 

J*" of finite graphe, the unequality u^-(n) < •«*-> holde for every 

ne N. 
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