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SOME RESULTS CONCERNING RECONSTRUCTION CONJECTURE

Véclav Nydl

Abstract: B.Manvel first showed that, for every k, there
exist two finite nonisomorphic graphs with the same collections of
of k-point subgraphs, Here, we give some new results concerning
Manvel ‘s observation., We find the bounds of reconstructibility
and nonreconstructibility of graphs from subgraphs for some cla-
sses of graphs /all graphs, all trees, all equivalences/.

0, Introduction

We consider finite umiirected graphs without loops and multi-
ple edges. More precisely: for a set X we denote P, (X) the set of
all 2-point subsets of X; a graph is a couple G = <V(G),E(G)> ,
where V(G) is a finite set and E(G)= P,(V(G)).

A mapping f:V(G) —=V(H) is called the homomorphism from the
graph G into the graph H if for every ZcV(G) f(Z) € V(H), and is
called the isomorphism if f is a bijection and for every Z
f(Z) e V(H) if and ‘only if Z€ V(G). We write G=2H to indicate iso-
morphic graphs,

For every subset Y of the set V(G) of the graph G the induced
graph G/Y = <Y.V(G)r1P2(Y)>.1a wefined, The number of induced
graphs of the graph G isomorhic to the graph H is called the fre-
quency of H in G and denoted by frq(H,G).

We use homomorphisms of some special types. A homomorphism
f:G—>~H 1s called the monomorphism if f:G—=—H/f(V(G)) 1is an iso-
morphism and is called the semimonomorphism if for every component
of connectivity C of the graph G f:6/C—=H/f(V(C)) is an isomor=-
phism, A homomorphism f:G —H is said to be covering if f(V(G)) =
= V(H), It ie obvious that every covering monomorphism has to be
an isomorphism,

The number of components of connectivity of the graph G will
be denoted by cp(G). It is obvious that a semimonomorphism f:G —H
is a monomorphism if and only 1if cp(G) = cp(H/f(V(G))).

———————
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We use some integral-valued functions:
card X «eo denotes the number of elements of the set X,
lel eeo = card(V(G)) for the graph G,
mono(G,H) ... denotes the number of monomorphisms from G into H,
semi(G,H) ... denotes the number of semimonomorphisms from G intoH
cov(G,H) s+ denotes the number of covering semimonomorphisms
from G into H,
aut(G) ess denotes the number of automorphisms of the graph G
/we use the identity mono(G,H) = frq(G,H).aut G/.

1. The frequency and the similarity of graphs
Definition 1.1. Let G,H be two grephs such that lel = |Hl, 16t
k be an integer., The graphs G,H are called k-similar /<k-similar,
<k~c-similar, respectively/ if for every graph R such that |R| =
=k /IRIS k, IRI 2 k& R 18 connected, respectively/ frq(R,G) =
= frq(R,H) holds., We use the notation G X H/ Gé'f-/ H ,Gﬁr%' H,
respectively/.

Corollary 1.2, /Kelly’'s lemma/. For any two graphs G,H and any
integer k, if G ~ H, then 95,1‘_, H.

Proof. See [1] pp. 229-230,

Corollary 1.3, /Reconstruction conjecture/. It is conjectured
that for any two graphs G,H such that n = el = |H| = 2 the impli-
cation " if G }';1,', H, then G H * 1s true.

Now, we describe some “counting” rules for frequencies.

Lemna 1.4. If G é%« H , then for every R such that IRl £ &
semi(R,G) = semi(R,H).

Proof. The equality follows immediatelly from the observation
that semi(R,G) = m-I:TT:.cp(R mono(C_,G) , where C_ are the compo-
nents of R , from the identity mono(C_,G) = frq(cm.c).aut(cm) and
from their analogues for the graph H.

Lemma 1,5, Let I = I,U IZLJ...LJIEU ees be a set and let
{R;.1€1} be a collection of graphs such that:

1/ for every m, 1if i1e1,, then cp(Ri) =m,

.2/ for every graph R there is one and only one 1€ I such thac
R1Q=R o
Then for any two graphs R,G the identity semi(R,G) = Ezi cov(R,Ry).
.frq(Ri.G) holds,

Proof, Let P = Pz(V(G)). For ZEP let §(Z) = 1 eo that G/Z>
™Ry. Obviously frq(R,,G) = card( ¥~ "(1)). And now we can write
semi(R,G) = ZzeP cov(R,G/Z) = zzép cov(R.Rv(z)) - 1261 cov(R,Ri).
-er(RitG)o
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Lemma 1.6, If G,H are two graphs such that G
H.
Proof, Let I,I ,R, be the same as in Lemma 1.5. We prove by
induction that for every j< k the proposition A(j): " if q eIJ a'
IR| 2 k , then frq(Rq +6) = frq(R .H) " 1e true,
1/ A(1) is true because of assumption (¢} ,%, H,
2/ A(1),A(2),000,A(J=1) are supposed to be true. We introduce
gG = 1e:§fb IZL)"‘LJIJ-l cov(Rd,Ri).frq(Ri.G), and analogically
Uzing Lemma 1.5. we obtain semi(R_,G) = Q + aut(R_).frq(R _,G)
and semi Rq WH) = Q aut(Rq).frq(R ,H). But Q@ = Q4 because for
every 1€ I, U 12LJ...LJIJ 1 frq(R,,G) = frq(Ri,H) /1f we suppose
| RI4 k/. Moreover, semi(R_,G) = semi(R_,H) according to Lemma
1.4. Thus, we have frq(Rq ,G) = [aemi(R ,G) - QHt]/aut(Rq) o
[semi(Rq H) - QH]/aut(R ) = fra(R, ).
Theorem 1.7. For any two graphe G,H and for eny integer k,the
following three properties are equivalent
/e Xwn, ek w, /myyeow.
Proof. The theorem is the summary of Corollary 1.2. and

Lemma 1.6,
Corollary 1.8. The reconstruction conjecture 1s true for dis-

connected graphs.

H, then

ell\

G

Proof. Let G,H be two disconnectedgraphs such that n = Ig! =
= |H| > 2 and let 6 "1 H. Using Theorem 1.7. we get G =(03 1’ H
and, since G,H are disconnected, even G ,\, H. Now, by Theorem
1.7., 6 L H, 1,e. GH.

2. Bounds of reconstructibility and nonreconstructibility

Let N be the set of all natural numbers. For every subset M
of N we define max M = soc , Let us denote N® =« N U {+o<}.

Definition 2.1. Let # be a subclass of the class of all fi-
nite graphs, We define the mepping u;::N-—t-N“ as-u;z(n) =
= max {m;( VR Fae F)((IFyl = |F) < mgr, L Fp) 2R >F, 0k

Corollary 2.2, We denote & the class of all finite graphs. B.
Manvel showed in [2| that for every n€ N the unequality ug (n)<eoo
holds, Further, the reconstruction conjecture can be written in
the form u;;(n)?_ n+1 for n=2,

Proposition 2,3, Let 7  be the class of all finite trees.
Then, for every n>1, n+l<us(n)< 2n,

Proof. The first unequality expresses the fact that the re-
construction conjecture is true for the case of trees. The second
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one was proved in [5] where, for every n> 1, we constructed two
nonisomorphic trees T4+T, having 2n elements such that T, 2 Toe
Propositon 2,4, If % 1s the class of all finite graphs, then,
for evry n>1, the unequality ug (n) < min(2n, 3n/2 + 15/2) holds.
Proof., To prove the unequality we use Proposition 2.3, and the
construction from LS] where, for every k=2, we constructed two
nonisomorphic graphs Gi,G2 having 3k + 6 elements such that siébcz.
Corollary 2.5, V.MOller in [3] showed that for every © .
1< @ <2, there exist a class £ and a number ne such that for
every ne N “02"0 > Qe.n and moreover, /2 containe asymptotically
the most graphs on n elements.
Remark 2.6. It was proved in [4]_that for every n€ N in the
clees € of all finite equivalences the unequalities
ne(ln n = 1) < ug (n) < (n+1).2"1 hold /here 1n denotes the lo-
garithmus naturalis/,
Problem 2.7, Prove that, for every sufficiently "rich" class
7 of finite graphs, the unequality u x(n) < +eo holds for every
nE€N,
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