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OH THB A.E. CONVERGИHCE 0? T^f/a^ IH Lj- SPACE 

Aвsani
r
 Iđris anđ Meвiar, Rađko 

1, introduction 

Let (XiiL^m) be a (̂ finite measure apace and let T be 
a linear operator of L^(XJE.M) * A neccessary condition of the 
pointwise convergence a*e* of ergodic means 1/n ̂ T f , ?£l*ij 
is i?0 

(1) T^f/n >0 f a*e* 
The condition CD id fulfiled in many special cases* e*g* for T 
beeing a positive contraction of both L, and LQ01 but of course 
it is not satisfied in general* The condition (1) does not hold 
even for positive contractions of L^ (see [3]) • 

Let ^8^} he an increasing sequence of positive real num­
bers. We shall investigate ifche a*e* convergence to zero of 
\Tnf/an^ for all f €L^ with respect to the properties of the 
sequence .{a^ • 

2/The spectral radius of T 
The n-th iterate of a linear operator T may have an expo-

nencial streaming determined by the spectral radius XT« 
Definition* Let T be a linear operator on Banach space B* Then 
the spectral radius Xm is defined as 

Xj « limsup afc5!? • 

lamaJL* *T - ii* i^irt1 - inf a^s f . 

Probf# As l|Tn+m!i 4 UTnUJlTm|| , the Sequence {log \\Tn|| [ forms a 
subadditive sequence* Thufc, there exist _ „ 

lim(log UTnUl/n-* inf (log U?nll)/n * lim log *\/UTn||' , 
n n n V 

see e*g* (̂Sj * 
To eliminate the exponencial trend of Tn in what follows we 

suppose A T = 1* If X T j- 1, it is sufficient to investigate the 

"This paper is in final form and no version of it will be 

submitted for publication elsewhere"* 
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linear operator T#-= T/\T • 

3« Finite space (X,£) 

Let ( x > . £ ) be a finite measurable space, (X, £ , m J a mea­
sure space. A linear operator T acting on L^(X,£9m) may be vie­
wed as a matrix (Tj.) , llT/l-̂  =? MHTj.II , where M depends only on 
mt U*U^ 3>s a norm in L-j-space, 1/ .// is a matrix norm. For the sake 
of simplicity, we identify T = (Tj.) • Let A be Jordan matrix of 
T, i.e. T = UAlf1, T n * UA1^"1. It is easy to see that X T = A A • 
Let A T " !• Then the matrix A is a block-diagonal matrix with 
eigen-values A ̂  , maxi^^l>ss A* = !• For our pourpose it is suffi­
cient to work with A of the form 

A = 

Л0....0 
1X0...0 
01X0..0 =• X I

m
 + B

m
 ,JAl= 1 » I

m
 is an unit matrix, 

m m*»l 

Then for n > m , A
n
 = ̂  (£)B£ X n~ k t BO that lim HAnl//nm-1 = 

* 1/ m-1 ! • All these facts imply the following theorem. 
Theorem 1. Let T be a linear operator on finite-dimensional Lj-
space, X T = 1. Then 

i) for some fcennegative integer k there exists positive finite 

limit limU*nll/nk 

n 
i i ) for any sequence Js^} with the property 

(2) an/n
k >oo 

and for any f € 1^ it holds Tnf/aJ1 >0 , a.e, 1^ 
iii) the condition (2) is best possible to assure the a.e. con­

vergence of T^/a^ to zero. 

4. General case 
A direct extension of Theorem 1 / parts ii) and iii) / to the 

general case of underlying measure space is not possible, as shown 
in the next example. 
Example 1. We construct an operator T satisfying llT11!!-- 2, n = 1, 
2,..., : ,e. i)of Theorem 1, for k = 0, an incnasing sequence i*n\ 
of posi ve reals satisfying the condition (2) / even for k = 1 / 
and a f ction f^L-. , such that Tnf/a >0 , a.e., does not 
hold. Tl 3 example is a modification of an example in [5, p. 2623. 

Le S be an ergodic invertible measure preserving transfor-



Tg(x) = { 
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mation of ̂ Of l) / with Lebesgue measure / and define also Sf(x)= 
= f(Sx) . Take 0 £ f ̂ L ^O, l) such that f.log+f 4-^* By £ll 
sjjp S^/n^ L^. Then there exists an increasing sequence {i-^} of 
integers such that E(gfflcn Snf/n)>i . Let b = i for n*.]/ nc 
i ni , IIQ = 0, Denote an * n.bn . As E(g9*n. of/a n )>if we have 
sup Snf/an^ L^. It is obvious that a /n—*oi • For the sake of 
completnesBf we continue in presenting Example 1, although the 
rest is essentially the same ad in [5f p# 262J • 

We define X =(09 2) with the Lebesgue sets and measure* By 
Theorem 4»3« of £5} there is a sub~?~algebra <L such that 
E(snf/a /J.) does not converge a.e. Let E denote the conditional 
expectation operator with respect to JL . Define T on L(0, 2) by 

g(Sx) 0 £ x < l 

ES(l<0jljg)(x-l) 1 4 x 4 2 . 

Clearly T is linear / and positive /f 

1 ESn(l<0>1^g)(x-l) l*x 42 . 

We have II T11!^ » 2 , n - 1, 2f...f H T I J ^ lf Tl - 1. Putting f* 
on <̂ 0, 2 ) as f on <0, l) and 0 on ̂ 1, 2) we have for 1C x C2 
Tnf#(x)/an •(ES

nf/an)(x-l) f which does not converge on <lf 2) . 
Remark 1. Similarly we can modify the example of a contraction 
of L^ without a.e. convergence of Cesaro means due to Chacon 
C33 • By changing the choice of cn and Kn in [33 we can construct 
a contraction T of L-̂  , f €L^ and a sequence ^ a ^ satisfying the 
condition (2) with k = 1 such that 

liginf T1^/^ » 0 a.e. 
limsup Tnf/an = 40 a.e. 

For mean bounded operators, i.e. sttP 11*01*s M4D0 f where 
U^ = (l+T+...+Tn )/n , the problem of a.e. convergence of 

T^/a to zero is solved completely by the next theorem. 
Theorem 2. Let T be a mean bounded linear operator on L-̂ (Xf 2" fm). 
Then 

i) for any increasing sequence Jan} of positive reals with 
the property 

(3) gVa^-* 
and for any feL-^ it holds tInt/an *0 , a.e. 
ii) the condition (3) is the best possible to assure the a.e. 

convergence of Tnf/a to zero. 
Proof. 
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oo . 
i) Denote U - Z TVa., , an » 1. Then 
' i=0 x ° 

U = Z ((i+l)^ - iM^/ai = f (i+DMj^d/ai - l/ai+1) , 

llUll̂ l + Vif (1+1)0^ - l/ai+1) =1 + M Z l/aj 4 oo $ 

so that U is a well defined linear operator on 1^. This implies 
directly Tnf/an »0 a.e. , for every f 6 1^. 

ii)Let the condition (3) doee not hold, that ia 2 l/an • oo . 
Then there exist a mean bounded operator T on some £ 1 and f € L 1 

for which T^/a >0 ,a.e., doea not hold. It i3 clear / after 
Example 1 / that we can concentrate ourselves to the case SL > n« 
Modifying the David#9 proof of hid Lemma on p* 148 in £41 we ob­
tain for iid |fn} that Gflf^I^ impliea agpl^/a^ 4

1 ! » where 
G( a

n)
 = J, (an~ak)/ak * ° s Q ( an) on <an> an+l) * 7 The condi~ 

tion f.log fiL, for a_ = n is an immediate consequence of 
G(n)r^+lJlog(n*l) ./* 
For a £ n, 2T l/an =00 we have ligaup °(an)/an i liypup 
3r\l/afc)- 1 = oo , so that there exists fsL-^ such that OQfJ) ̂ L 1 # 

- 'From now on, we can continue as in Example 1. 

Corollary. Let T be a power bounded linear operator on L-p i.e. 
0<ligsupllTnlli^c». Then i) and ii) of Theorem 2. hold. 
Remark 2. Theorem 2. solved also another problem of clasic ergo-
die theory: what conditions on {^l asaure 

(4) agplS^/aJS^ 
for all measure preserving transformations S on (X, £ , m ) , 
f SL-^X, £ , m ) . It is easy to see that for convergent £ */a 
doea (4) hold* The proof of part ii) of Theorem 2. ahowd that for 
divergent ^ 1/a

n the condition (4)may be falae! 
For a general linear operator T onl^ with 0 C ligaupHTnl)/nk^ 

^ oo we can ea9ily generalize the part i) of Theorem 2. We are 
so far unable to generalize or modify the part ii) • 
Theorem 3. Let 0 £ lig9upUTnl{/nk * oo / or let 0 < lijpupUM^/n* C 
Co° /. Then for any increaaing sequence £an} of poeitive reals 
with the property 

(5) \rt/*Ti ^°° 
and for any f 61^ it holda T^/a^ > 0 , a.e. 

Conjecture. The condition (5) in Theorem 3. is beet poe9ible. 
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