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STRICT INDUCTIVE AND PROJECTIVE
_LIMITS, TWISTED .SPACES AND QUOJECTIONS (*)°

Vincenzo Bruno Moscate1l1f (**)

,Ihe_point"nf_ihis”suryey‘is.to.bring4togethen;aacollection*oﬁm_;
.esults showing the strong relationships existing among_the various—
_topi_cs._mm}tioned;iIL_thé)-__titlﬁ,_Can.cL_alsn..hetneén the latter and the
.notipns_nﬁmconxinuous,nnrm_and_toihl_bnundéd_setlw;w,mshallLbzesent;
.Lhedtgsulxi_inma_chrono;ngical;ordax,wIDJheiiar_shnu_1ha;einlpiion__
of _each topic.. '

_In essence, the main question._about locally .convex spaces that.
Fare inductive or projective limits of a family of spaces (called.

4steps) _reduces _to the following two problems, each being_the conver
se_of the other.

(P1) 1§ a certain property is thaned by dll the steps, is_Ait also_
shaned by the Limit space?

_(P2) Suppose_that the Limit space E has a centain property. Doe. this

force E to have a particular sinuciture, such as a "nice" decom

position inio subspaces, and would the Latten ones inhenit the
property originally assumed on E?

Here a 'nice'" decomposition means one as a direct sum in the case of
inductive limits or a product in the case of projective limits.

Problem (P1) has been by far the most studied, having been. the

(*) This paper is in final form and no version of it will be suhmitted for
publication elsewhere.
(**). Partly supported by the Italian Ministero della Pubblica Istruzione.
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object of an intensive investigation throughout the years, especially
on what concerns separation, bounded sets, completeness-.and-the-natu
re of the locally convex topology of the limit'space and-alseo; fer---
inductive limits, on the questions of closedness of step-wise clpsed
subspaces, of the topologies that they inherit and. of the extension—
of linear functionals that are step-wise continuous onsubspaces.Becau
se . of natural .reasons, the case to.which most.of. the attention_has. _
been devoted is that of a limit of countably many steps.and,.just ta.
give_ a few sample references, we mention the pioneering. paper [7]

of Dieudonné-Schwartz, the land-mark paper [21] of Grothendieck and_
then_the papers [20], [9],[28] (from a bornological.point of view),

[35],11§1ﬁy;;h;i§§_e;gqnsive_bibliquaphyland414]:35 well _as the_

even_in the case of general (countable) -inductive limits or of

general projective limits and so_we shall not concern_ourselves_.
with Problem (P1).

Substantially different is, instead. the_rituation regardiug

scarce. until_ recent_years and precisely until the-appearance-of-the.
author's paper. [29].. It is our purpose here to._give a brief history-
of Problem (P2)_up.to the present day, but before_doing this, _we ____
need to }eqqll,the definitions of a few notions_that will _be exten-_
sively used in the sequel, these being: Continygg§"gg:m;ggggl“hgggggd
set, strict inductive andprojective limit, unconditional and absolu-

te basis.

It is self-evident what the expression "A locally convex space
has a continuous norm" means while a bounded set is {q{gl_ifﬁig;
linear span is dense in the space. Also, we abbreviate "Fréthet _ _ _
space'" to F-space and refer to [22] for the definitions of LB- , LEr;.
if each step is a tppological subspace (resp. a quotieﬁtl_of_xhg_um
next. Strict inductive limits are classical, while strict _projective
limits have only acquired importance recently, essentially because
of the results in [29]. Finally, a basis (e,) in a locally.convex
space E is called unconditional if, for every x = & <¢n,x> aneE, we

have
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%(d}‘ﬂ‘n),){) Qn(n) = X

- for. all_permutations 7 of N (= the set of positive integers), while
ieﬁl;is"an absolute basis if, for every continuous seminorm ‘P on-E

there.is.another one, q, such that

|<¢nLX>P(€n) < qlx) for all «xeE.

i
Clearly every. absolute,ha51s is unconditional. Also, in nuclear
- barxelled.spaces (such as .F- and. 'LF- spaces) every basis is absolute,
and hence unconditional, by the theorems .of Banach-Steinhaus and
Dynin-Mitiagin (see [31],10.2.1.0r.[22], 21,10,1).. -Furthermore,.in.
nuclear._f- _or complete. .DF-spaces the.sequencg—u(¢h9v0£WCOeffieient4
functionals .is an.absclute! basis for the strong-—-dual-Finally;-we -
refer to [20],[23],. 1,[22] and [4]),5§5--.for the_properties of-strict
(and general)_countable inductive. or projective limits-and-to-[22]-
for what concerns_absolute. and. unconditional.bases .and .nuclear- spaces,

_wh11e we denote. as usual, by w the_ F-spdcewhich is the product“of

rapidly decreasing .seguences: k

. __{(g Jew:p (g ) [gnl <o __fon-all heN},

_.-Ne_shall begin with Bessaga and Pefczydski's classical-result-[2]-
dating back. to 1957. It deals with .F-spaces without continuous-norms

and concludes with the following:

(1)_An .F-space has no continuous norm if and only Af it contains - w-

a8 a .(necessarily complemented) subspace.

Now, there are plenty of F-spaces without continuous norms such
as, e.g., countable products of Banach or F-spaces and the classical
spaces C(Q) or #(2) of continuous or smooth functions on an open

set QcRm, so that the followinpg question arises quite naturally:

(P3) Must every F-space without continuous noam belisomonphic to)
the product of a sequence of F-spaces with continubus norms?
15 this true at Least 4in the case of nuclear .F-spaces?

As we shall see, the. above question will be of great imﬁortance in
the sequel. For the moment, we note that while it is fairly easy to
show that C(R)= C([-1,1])N\(= denoting topological isomorphism), the
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following nuclear case, due to Mitiagin [26] in 1961, presents - con-
siderable difficulties. :

(2) 8R) = &C[-1,11 (and hence = &% c£.[311,10.3.9).

The result is achieved through the use of bases and this_is by far
no accident, as will be seen later. Also note that both C(R)_and .
&(R) are strict projective limits.

Another attempt at solving Problem (P3) was..made.by .Dubinsky _[10] _
in 1967, wha.showed L
(3) Fon.an_ F- space which is also a. perfect sequence Apace Zhe answehr

_.2g (R3)_As positive..

____The_above is_obtained via a technical c1a551f1cat10n lemma_in_the.
‘'dual _space_which makes up a sort of table of possible cases. Here ___
m§££§;§“59m9”194§w§tandst111 until 1980.

_._Meanwhile, further isomorphism theorems were proved (cfo,00gey
{31},Jﬂ.3)_un111 1978 when Valdivia L34], taking up Mitiagin's.circle
of ideas, was_able to construct bases in the classical nuclear _spaces
_8() and __2(Q) (= the test functions in Q) to obtain representa- .
tions of these spaces as products or. direct sums. Moreover, he proved

(92 ’. t_hu_§. .qtz_té.l_rzlr_lg_

(4) J(Q) = A]NA-\.VI.G ;‘J(Q) = Am).

These results were subsequently generalized by Vogt [35] to many spaces
of functions and distributions.

We now come to the complete (negative) solution of Problem (P3)
obtainéd by the author in 1980 (cf. [29]). Precisely, we have

(5) (a) Thene is a stnict projective Limit of a sequence.of. nedlexive
Banach spaces which is not a product of a sequence 04 Banach
spaces (and even o§ a sequence 06' F- spaces with continuous
noxms ).

(b) Thene 48 a strnict profective Limit 0§ a sequence of nuclear
F-spaces which is not a product of a sequence of F-4paces
with continuous noxams.
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The.following remarks are in order.
(i) The spaces in (5) were called twisted by the author and this is-:
nowadays the accepted terminology. More in general, a locally convex
space is . called twisted if it is not isomorphic to a product of
locally convex spaces with continuous norms. L.
Jii) Strict projective limits of sequences of Banach spaces were .
later called quojections by Bellenot and Dubinsky (cf. [L]) and .
strictly negulan by Zarnadze (cf. [38] and also [4] and [6], were
some properties_of such spaces are analysed). We prefere .the_term
quojection, since it describes . better.the structure of the_ space. ..
(iii). While (5)-(a) is surprising, -(5)(b) is-even- more-so,;-since-every
nuglear.F_:_jpacguis“apsubspace.o£.a.produbt-o£nausequencenf‘Hilbert
spaces, ___. ‘ o
(iv) Theﬂconstruction.inNS(aJvis-extiemely-generai~ﬂﬁé;—&ﬁdee&7any
sequence.of .reflexive, non~-Hilbert,.Banach spaces-ecam-be-used;--thanks
"to Lindenstrauss -and Tzafriri's solutien to themedmplemented*subspace
problem _[24]. Moreaver,. quojections. are reflexive-if--and-only-—-if-they
are strict projective limits_ of. sequences. of. reflexive- Banaehwspaees—
in which case they are also. totally reflexive..in. the .sense_of -
Grothendieck (see [21], Proposition.10 and also [4],-.(5.6)).. .
Recalling what was said at the beginning about bases..we-can-thenbaring
out _the most. 1mnortant featuré .of twisted spaces, -this-deriving-from
(5) yia. the use of Dublnsky s lemma:

(6) (a) No twisted quojection can have .an unconditional basis.
(b) No twisted,.nucleaxr F-space can have a basis.

Further remarks (contained explicitly or implicitly in [29]; but see
also [18]):

(v) The stéps in both (5)(a) and (5)(b) can be chosen to have uncon-
ditional bases (= bases for 5(b)) thanks to results-in [25],p.91 and
in [37] respectively.

(vi) (5) and (6) exhibit for the flrst time non-trivial (i.e., non-
products), non-normable, (reflexive) F-spaces without uncondis
tional basés,as well as a completely new class.of nuclear - f-spaces
without bases which are entirely different from all those previously
constructed (cf.,e.g., the classical counter-example in [27]):

(vii) The constructions leading to (5) are first made in the’dual
space. To be precise, we obtain the following results which are also
of independent interest (and again based on [24],[25], p. 91 and [37]
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(7) (a) Thenre £s a strict 4inductive Limit of a sequence of (redlLexive)
Banach spaces (with unconditional bases) which L8 not (Lso-
moaphic to) the direct sum of a sequence 04 subspaces each
having a totaf bounded set; hence such a Limit 4pace‘hq4 no
unconditional basis. . ’ C

(b) There 4is a strict inductive Limit of a sequence of nucleaxr

_LB-spaces (with bases) which is8 not (isomornphic to). the

dinect sum of a sdquence of subspaces each having a total
bounded set; hence such a &imit space has no basis.

(viii) (7) is the (negative) answer to the following problem-which,
in a sense, is dual to (P3).

(P4) Must eveny LB- on '"DF-space without a total.bounded set be
(isomonphic to) a dinect sum of a sequence of subspaces each
having a total bounded set?

(ix) It is clear that, once (7) is proved in the reflexive .or-nuclear
case, (5) follows by reflexivity passing to the duals and,hence_(é}r;
(x) We.conclude this series of remarks with the following~ob53rvétions,
which are made here for the first time. In [27] (cf.-also--[32]) ---
Mitiagin and Zobin even showed that there are nuclear F-spaces__.___
without bases of arbitrarily large diametral dimension different_fram
the maximal one (since, as is easily seen, the only F-space_oQf .. .
maximal diametral dimension is w) (see [22] for the definition of __
diametral dimension and its properties). Here we observe that the_same
is true of the spaces in (5)(b) as shown by the following. Clearly_
there are nuclear Kbthe sequence spaces with continuous ‘norms_and.
arbitrarily large (but not maximal) diametral dimension. We choose___
one such space and denote it by G (necessarily # w). Then we observe.
that Theorem VI (2.1.6) of [11] holds: indeed, although it rests on
Proposition II (3,1.3) of [11] and the proof of such“probosition, as

given there, is incorrect,a cerrect proef was subsequently supplied in

[13], -Theorem 1, thus ensuring the validity of Theorem VI (2.1.6).
Hence G hasZa quotient space H which has no SUPI (definition in [11],
VI (1.1.8)) and, of course,the diametral dimension of H is no smaller
than that of G. Now the strong dual G' has a total bounded set
containing the natural basis of G' (i.e., the coordinate vectors) and
a look at the proof of the above theorem shows that also the dual

" H'cG' has a total bounded set which, in turn, implies that H = H"
hasa continuous norm. However, H cannot be complemented in G; indeed,
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_if it were, Since G has .an absolute basis and hence a 1 - UPI, also
"# would have a 1-UPI by [11], (1.2.3) and, consequently, a SUPI,
Jeading to a contradiction. Taking now X = G' and Y, = H' for all

-n_;in-[ZQJ, 2, we obtain (with (8)(b) again following from (8)(a) .by
duality) . '

(8)_(a)_There are strict inductive Limits of sequences 0§ nucfear
_LB-spaces which have arbitranily Parge (but not maximek) ditmetral

_dimensions and which are not dinect sums. 0§ sequences o4 .
, _Aubspaces with_ total bounded_ sets,and _hence have no bases._
(b)_There ane_twisted, nuclear F-spaces.of. Mbu.amulg_iaaga_
—diametnal dimepadon.. .

_to_results of _E}AQ_J;JLEQ_..Qf._PI_Q_}lelt_l.QI_x-,II (3,1.3)_and Theorem VI _ .
-(2.1.6)_of [11] paturally lead to the foll ow.ing,LthLe_m,I_ciL_,IJ_le;_

S p5) Cha/zacteu_ze atl. those F-spaces_that admift a n nuclear Kithe _

i.e., a quotient which 44 nuclear and has a basis and _a _continuous

noam.

_Remarks: _

- _(xi) _The continuous norm is crucial since, already. in 1936, Eidelheit
[1 4] _showed_that any non-normable F-space has w_ as.a quotient..
" (xii) Nuclearity is also crucial in the sense that the problem is.
_likely_to be much more difficult without it. Indeed, in the latter _
_€ase _the answer is unknown even in the Banach space case (and_is not
even known if every Banach space has a separable quotient [25])} Thus
‘nuclearity rules out Banach spaces but the above points at the diffi-
culty of the problem. '
(xiii) The analogue of (P5) for subspaces was solved in 1961 (cf.[3]).
For comments on problem (P5) we refer to [12},[13 and the author's
brief survey [30]. Here we shall confine ourselves to discussing
the most recent result, due to Bellenot and Dubinsky [1], which
solves (P5) in the separable case. -

(9) A sepanable F-space E has a nuclear Kithe quotient Lf and only 4§
‘E' 48 not the union of an increasing sequence of Banach spaces

F with each F_ being a closed subspace of F ..
n n n+1



126 . VINCENZO BRUNO MOSCATELLI

We note at” this point that the condition on E' almost ponces-E 2o
be a quojection,while it 'is immediate to see that quojections-fail-
to have nuclear Kéthe quotients even in the non-separable case.This-

raises the problem

(P6) Are quojections the only F-spaces without nuclear Kithe. .
quotients?

_1t would be nice if this.question could be settled. All we have up
.to now _is.the following partial (pesitive)--answer;--also--due-to—-
-Bellenot-and-Dubinsky-.-

-(10). wuhmxhe class of separable, reflexive f—épﬂ%&*-ﬁuﬁjec—f«tvﬂ“
e gxactly.,th.ou_apacaa without nuclean Kithe quotients.-

Remarks.:___ b
(xiv)_(10)_follows from the fact that (9) forces E' (= the space __

of bounded linear -functionals on E’) to-be-a-quojectiens-Unfortu-——
.nately, this .is not_enough -to conclude- that.E- itself-must-be—a-——--—
_quojection._Indeed,-in .[1]. an example is given-of-an-ﬁ-spaeeu—é—.wii'th
_continuous.norm such that E'0 has no .continuous norm.-This-example —
.was _subsequently improved by S.Dierolf and the author_in [5], where-
an F-space E with continuous norm is contructei.,such_tha_r__the_sfrong
bidual E"_has no. continuous norm, thus answering -a-question-of -Vogt.
(xv) We conclude our comments on problems (P5)..and-(P6)-by_recalling
that quojections fail to have nuclear K&the quotients .in.a.very.
strong way. In fact, we have

(11)(a) A quotient of a quofection has a continuous. norm (Lg_and).
only 4§ 4t 4s a Banach space.
(b) Every quotient of a quojection is eithen a Banach space ox-
again a quofection. : : '
(c) A quotient of a quofection is a Montel space if and only
if 4t 48 edthen §inite-dimensdional on Lsomoaphic %o w.

(a) and (b) follow from [1], Proposition 3, while (c) is a conse-
quence of [18], Corollary 5.5 (1). '

We now go back to (7) or, rather, to the kind of results exempli-

fied by (7). In its spirit, we mention the following lemma due to
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Dineen (cf. [8], 5.4.3), which sets out a new method for deriving,

via (5), statements of type (6) from statements of type (7).

(12) Let E be the strnict inductive Limit of a sequence of nucleax
F-spaces (4L.e., a nucleanr, strict LF-space). Then E has a basis
(£¢ and) only 4§ it 48 the direct sum of a sequence of nuclear
F-spaces with bases.
_This paved the way for the study of strict inductive and projective
~limits from this vieypoint. Indee&, Dineen's method was taken up by
_Floret and the author, who first in [17] extended (12) to a strict -
_inductive limit E of a sequence of LFfspacés”such_that,E has an uncon
ditional basis and then in [18] pushed Dineen's lemma to its natural
limits of validity obtaining (see [18] for the definition of a closed
_graph pair)

(13). Let |2, ) be a closed-graph pair and Let (Ek)' be a strict-
.. dnductive sequence o4 complete spaces Ekaﬂ such %hat indkEk =
.Z Ee2 .1{ E has an unconditional basis, then there are comple-
1mented subspaces ch Ek with unconditional bases such that
E. = ek'Gk topologically.

Remarks:

(xvi) The paper [18] shows how, for extremely large classes of strict

inductive and projective limits, the property of having a basis
~implies the structural property of being, respectively, a direct sum

or a product, thereby showing that the methods used in [26], [34] and
. [35] are, indeed, quite natural.

(xvii) More in general, situations outside the nuclear case are

investigated in [18], the results being obtained under the assump-

tion of the existence of an unconditional basis.

(xviii) As in [29] and [17], the results-are always obtained in the

setting of strict inductive limits. For strict projective limits the

results are then obtained by duality from the corresponding results

in the dual spaces. For this one needs a perfect duality between

strict inductive and strict projective limits, which in this case

is achieved.via suitable, though simple, extensions (also proved in

[18]) of some classical theorems on strong duals of homomerphisms

(see [23],II). But all. this still requires the assumption of reflex

ivity for the strict projective limits concerned and, in particular,
for the case of F-spaces.
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(xix) However, (13) still includes, directly or indirectly, all the
results (5) - (7) and (12), as well as (16) below.

(xx) We point out that what was said in Remark (xviii) yields a
proof of (6) which avoids Dubinsky's technical lemma, whose use
always seemed rather unnatural in this context.

Finally, in [19] Floret and the author were able to prove the
ultimate generalization of (6), obtaining

(14) An F-space with an unconditional basis eithenhas a continuous
noxm on Ais isomonphic to the product of a sequence of F-spaces with.
continuwousd norm and unconditional basis.

Remarks: )

(xx1i) Hidden in (14) is the fact that every F-space without a conti-
nuous noam is the strnict profective Limit of a sequence of F-spaces
with continuous noams.

(xxii) (14) removes the assumption of reflexivity from the results
in [18] concerning F-spaces (cf. Remark (xviii)). This is achieved
because no results are first obtained in the dual space and then:
transferred back to the original space by duality (which requires
reflexivity); instead, we only compute in the dual space to get
results directly in the original F-space. )

(xxiii) (14) gives a classification of F-spaces with respect to the

property of having an unconditional basis yielding, in particular,
that

(15) No twisted F-space can have an unconditional basis.

(xxiv) A result analogous to (14) also holds for the strict projec-

tive Limit of a sequence of§ reflexive .DF-spaces, 1I.e. for the strong

dual of a strict inductive limit of reflex1ve F-spaces (but this had
already been proved in [18]).

We conclude this brief survey by mentioning the following parallel,
but related, result of Floret [16] answering (in the negative) a
question asked by L.A. de Moraes:

(16) Thenre i a strict inductive Limit E of a sequence of nucleax

F-spaces En such that each E, has a continuous norm but E
admits no continuous norm.
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Remarks:

(xxv) By (12) such a space E cannot have a basis.
(xxvi) Nome of the spaces £, in (16) has the Bounded Approximation

Property (see [16] or [11], VI,1 for the definition), since no Ep
is countably normed. Thus, such spaces E, provide additional counter-

examples to those already constructed by Dubinsky [11],VI,3 and

Vogt [56]. In this context we note that all the examples given of
nuclear F-spaces without bases but with continuous norm (such as
Mitiagin and Zobin's and those constructed in their wake) have the
Bounded Approximation Property [12]. However, nothing is known

about nuclear F-spaces without bases and without continuous norms, so
that we terminate by'asking the following question:

(P7) Do twisted, nuclean F-spaces have the Bounded Approximation
Propenty?
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