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EXTENSIONS OF OPERATORS AND THE DIRICHLET PROBLEM IN POTENTIAL
THEORY

Ivan Netuka, Prague

1. Introduction

Suppose that U c R™ is a bounded open set and Y¢(U) is the
space of harmonic functions en U, Iffis s continuaus functis:
on defined on the boundary 3 U of U, the classical Dirichlet pro-
blem on U is that of finding a continuous extension P of £ to TI',
the closure of U, such that P|U’ ‘the restriction of F to U, is har-
monic on U. The set U is said to be regular, provided the classic-
al Dirichlet problem has a solution for an arbitrary continuous
function defined on 99U, Since there exist non-regular sets, one _
is naturally interested in a generalized Dirichlet problem. Rough-
1y speeking, we want to assign to every, say, continuous function
on QU a harmonic function on U in such & way that the resulting
mapping has some reasonable properties (such as linearity and po-
sitivity, for instance) and gives the solution of the classical
Dirichlet problem provided one exists., It is expected that the hanm-
monic function assigned will tend to the given boundary condition
in most boundary points. ‘

To be more specific, define

B(U) = {heC(@; by e RV}, H(BU) = H(U) 4.

Thus £ ¢ H( dU) if and only if there is a solution of the classical
Dirichlet problem for £, On H( ®U), the operator T of the classic-
el Dirichlet problem is defined, of course, by

This paper is in final form ‘andno version of it will be submitted
for publication elsewhere.
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 Magy) =By, heR),

and one is in fact interested in a study of'positive linear exten-
sions of T from H(’BU) to. C( BU) and, possibly, to a larger space
than c(3u). - -

Recall that the ‘80 called Pervonﬁw1ener-Brelot solution of
the Dirichlet problem provides such an extension to the set of all
resolutive functions which is considerably larger then C( 8U),.Thus
no existence problem arises. The question of uniqueness, however,
is- far from being evident. Notice that, for a non regular set u,

H(- aU) is a’ proper closed subspace of C( dU), thus topologically
very small (it is, in fact, nowhere dense). Nevertheless, M, V. Kel-
dys proved in [19] the following remarkable result: All positive
linear ,exten,s\ionsvof. the operator T from H( 3U) to C( ®U) coincide.

' " “Intuitively speaking, the space H( U) has to be in a sense
large in C( 8U), otherwise one could hardly expect a unique exten-
sion of 'T. A,F. Monna in [26] proposes as & problem the investiga-
tion or relevant func tional analytic properties of the space H(3U)
responsible tor uniqueness. He suggests studying extensions of T
to discontinuous boundary conditions., He also proposes clarifica-
tion of the uniqueness question in the case of the Dirichlet prob-
lem for partial differential: equetionsg other than the Laplace equa-
tion or, more generally, in the context of axiomatic potential the-
orys ,

A series of papers was puplished on the subject and led to
the solution ot the above mentioned {end other) questions; see tel,
t221,023],0341,t273,0291, (141,

The main objective of the present paper is to find a suitable
abstract setting appropriate for a better understanding of the ne-
ture of the Keldy3 theorem. _

To this end, in Sec. 2, a question of uniqueness of extensions
of operators on Riesz spaces is analyzed. The "domein of uniqueness"
is characterized in terms that edmit applications to potential the-
ory. It turns out that linearity plays no importent role and only
the monotonicity of the operators in question appears to be essen-
tially involved.

In Sec. 3, a more special situation, namely that of function
spaces, is investigated. The- Choquet boundary enters quite natural-
1y into the picture. Validity of an abstract Keldys theorem is
shown to be equivalent to various other conditions. Also relati-
ons to Korovkin type theorems are studied.
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Finally, in Sec. 4 it is shown how conclusions obtained in an
abstract setting can be used to prove results already known as well
a8 new results concerning KeldyS type theorem in abstract potential
theory.

Most of results of the present paper was announced in [29],
[31] end is included in the unpublished text [ 301,

2 Exteﬁsions of operators in Riesz spaces

_2_._1_' Let B be an ordered vector space, D be a Dedekind complete
Riesz space and H be a majorizing vector subspace of B. Thus

we suppose that for every b € B there is an h ¢ H such that b £ h,
Let T:H—>D be a positive linear mapping. For b e B denote

T =\/$Thy n£b, he H}, T = A$Th; b& h, h e Hi.

Here v/ and N means the supremum and the inflmum in D, respecti-
vely. Of course, ™ = -F(~b) whenever b ¢ B and Tb = Tb = T for e-
‘very b ¢ H. The restriction of a mapping S:B—>-D to H will be den-
oted by S\g*

The following Hehn-Banach-Kentorovid type theorem will be use-
ful in the sequel. The proof can be found in [35], p.277; see also
£183,1211, 1101,

2.2 Theorem, Let S:B --> D be an.increasing mapping such that

Sig=Te 'l‘hen Fo & Sb £ Tb whenever b € B, If b,€ B, d,& D a.nd
%b £a €M o» then there exists a positive linear mapping T":B—>
—-"DsuchthatTlHuTa.ndTb =d..

o

2.3, Let us introduce the following notation:
Pp = 45;8:B—> D, S increasing, Sy = T},
Pp=1{5e Pp; S linear},

Up = b e B; S4b = S,b, $,,5, € Ppl,
US = {be By S;b = S,b, S,,5, € Pal

By Theorem 2.2, Pp % # and clearly Up C Uz
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2.4 Theorem. The following equalities hold:
v AN
(1) Up = UJ = i{b e B; Tb = Tot.

A
Proof., If S ¢ PT’ then '}."b £Sb£Tb for every b € B by Theorem 2.2,
Consequently,

(2) {beB; o = Mo} c Uy

Choose bo € B. By Theorem 2,2 there exist positive linear map-
4 > , - A
pingsT,T"ofBintoDsuchtha.tTlH=T'iH=TandTb = Tb ,
o A o o
T, = &’sbo. Thus b, ¢ UQ, provided ¥b_ 4 Tb_. It follows that

(3) U cib e B; b = Tni,
Since Up c Up, (2) end (3) yield (1).

2.5 It turns out that in applis&tioEB it is not easy to describe

elements b € B satisfying Tb = Tb., Under suitably chosen ad-
ditional hypotheses, we are going to establish & more appropriate
characterization of th_e sets Up, U%. To this end, assume that B is
e Dedekind complete Riesz space and put

H= {AF; §+F cH finitel.

Suppose that there exists a Riesz subspace L of the space B such

that /\H.I C L for every nonempty lower directed lower bounded set
H, c H. 0f course, HcficLc B.

Assume finally that there is a mapping TO=L—> D ha.ving the
following properties:

(&) Tog=Ts

(b) T, is a Riesz homomorphism;

(c) To( A H1) = A TO(H1) for every nonempty lower directed
~ .
lower bounded set H1 Cc H.
For b ¢ B define

P=V{n, h<b, heH}, D=A{h; bén, heni.
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2.6 Theorem. The following equalities hold:

(4) UT=U,g B‘beB" To(%—i) = 0%,

Proof. Since To is & Riesz homomorphism, we have To(/\ F) =
/N T (F) for every finite F c H, F == §, Consequently, for every
b € B,

/N{Th; b £ h, heH%a/\{Th bZ£h, he H} =
= AN{T k; b £k, kefi.

The set Hy = ik eﬁ' £ k% is lower directed and lower bounded.Thus
NHieLend T,(AH) = /N o(Hy), Of course, N\Hy = b, thus Tb =
=7 (b), since ¥ = -(D), To = T, (¥). Now (4) follows from Theorem
2, 4.

2.7 DNotes and comments. Terminology concerning ordered vector
spaces is taeken from [25]. The question of uniqueness of extensions
of positive linear operators has recently been studied in [21].
Theorem 2.6 which has been ennounced in [29] represents an abstract
version of a theorem of Keldys type. Operators analogous to b and 6
have been studied in the context of classical potential theory in
[7] and in the abstract potential theory in [34]; see also [27].
The technique of envelopes (like b end %) is quite typical in Cho-
quet theory and Korovkin type theorems theory. In connection with
the Dirichlet problem, this method was used by M. Brelot [7]1 and
systematically developed by H. Bauer [2]., For applications to the
Keldys theorem, see [34].

3. ' Theorems of KeldyS and Korovkin type in function spaces \

3.1 Let Y be a metrizable compact topological space and B(Y) be

the vector space of bounded functions on Y. Endowed with the
natural ordering, B(Y) is a Dedekind complete Riesz space. As usu-
al, C(Y) denotes the space of continuous functions on Y.

Suppose that H(Y) c C(Y) is & vector space conteining a stric-
tly positive function end linearly separating points of Y. The last
requirement meens thet given y,,y, € ¥, y #y, and « € IR, there
is h e H(Y) such that h(y;) = o h(y,).

Define

H(Y) = {inf Py §4F c H(Y) finitel.
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Then H(Y) - H(Y) = {hy = hy3 hy,h, € H(Y)} is a Riesz subspace of
C(Y) containing a strictly positive function and linearly separat-
i.ng poiilts of ¥, Consequently, by the Stone-Weierstrass theorem,
H(Y) - H(Y) is a uniformly dense subspace of the Banach space C(Y),
Let L(Y) stand for the set of all functions £:Y —> R for
which there exist lower semicontinuous functions f1,f2 e B(Y) such
thet £ = r - £,. Clearly, L(Y) is a Riesz subspace of B(Y). If
@ *H, C H(Y) is & lower bounded set, then inf H; is an upper semi-
continuous bounded function so that inf Hy e L(Y). Note that

H(Y) ¢ H(Y) ¢ H(Y) - B(Y) ¢ ¢(¥) c L(Y) c B(Y).

Let V be a Hausdorff topological space and D(V) be a vector space
congisting of continuous functions on V. We shall suppose that D(V)
is a Dedekind complete Riesz space (with respect to the natural or-
dering). The lattice operations in D(V) are denoted by /\ .and VvV .
It should be mentioned that, in generel, £ A g does not coincide
with the pointwise infimum of f£,g8 € D(V).

Suppose finally that T:H(Y) — D(V) is a positive linear map-
ping and that there is a strictly positive function h e H(Y) such
that inf (Tho)(V) > 0.

3.2 Lemma, There exists at most one mapping TO:L(Y) —> D(V) hav-
ing the following properties:

(&) Topgeyy =T
(b) T,1is a Riesz homomorphisms

(¢ T, (inf £)) = /ANST f5 n € IN} for every decreasing lo-
wer bounded sequence -tfn"; of continuous functions on Y.

If such a mapping To exists, then there is a system MT =
= {(ax; X €V} of positive Radon measures on Y uniquely determined

by T such that
(5) 1,200 = [ d @y, xeV, feIL(Y),
and the following condition holds:

(e) T, (inf Hy) = A\ T (H;) for every nonempty lower directed



EXTENSIONS OF OPERATORS ... 149

lower bounded set H1 c H(Y).
Proof., Let T ’ T be meppings from L(Y) into D(Y) satisfying condi-
tions (a), (b) (c ). It follows from (b) that

i) = Tolf(¥)

thus T  and T coincide on A(Y) - H(Y). Fix £ € C(Y) and xe V. We
shall prove that T £(x) = T f(x). Let h, € H(Y) be a strictly posi-
tive function on Y such that Th, > O on V. Put 3 = Th, (x) end fix
¢ > 0. We know that there is g e H(Y) - f(Y) such that

g-(e/2p)n € ££g+ (e/23)n

everywhere on Y. By (b), the mappings T and T are positive and
linear and T o8 = Tog and T h = T h = Th . One eagily verifies
that
-1’ <
1T 8(x) - T (x) | &

The condition (c”) implies that the equality Tof = To'f holds_for
every bounded upper semicontinuous function . Consequently, To = Tc;
on L(Y). '

Suppose now that T  is & mepping having properties (a),(b),
(¢”)e If x € V, then

£ — T £(x), £ e Cc(Y),

is a positive Radon measure on Y which will be denoted by W xe
Then (5) holds and determines (W uniquely.

Let H1 c H(Y) be a nonempty lower directed lower bounded set.
Denote d = To(inf H,) and notice that the set TO(H1) ‘is lower boun-
ded in D(V). Consequently, k = N T (H1) exists in D(V). Obvious-
1y, ,(inf H;) 1s & lower bound of the set T (H;). Therefore, d£k
on V, Fix x € V and prove that d(x) £ k(x). Since k £ T, h’ for e-
very h'e Hy, we have

k(x) £ inf {7 h'(x)s h'e Hy} = int {[ h'd wes be Hi.
By [15]' Pe 35’

inf {[h'd w3 h'e Hy3 = [ (inf H)d @y
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and the inequality d(x) Z k(x) is verified., This proves (c).

_3_i In what follows we shall suppose that there is a mapping

T,:L(Y) —> D(V) possessing the properties (8),(b),(c”). Den-
ote By MT = {(“'x‘ x€V§ the system of measures uniquely determin-
ed by T in the sense of the preceding lemma.

A Borel set Q C Y is said to be T-negligible, if w_ (Q) =0
for every x € V,

Similarly as in Sec. 2, define for £ € B(Y) the functions 1‘,
f as follows:

N

2(y) = inf {h(y); h Z £, h € H(V)},

I

£(y) = sup {n(y); h £ £, h e H(V)}, yev.

Notice that the functions f and (-?) are upper semicontinuous and,
of course, ¥ £ £ £ £, It follows that

{yev; 8y = {3

is a Gy set,
Using a countable dense subset of C(Y), one easily deduces
that
{yeY; 2(y) = £(3) for every £ e c(¥)}

is also & Gy set.

Recall that, for £ € L(Y), the function x > [ £ 4 w, is
continuous on V, since Tof € D(V). In particular, the function
x v¥—> . (K) is continuous on V whenever K c Y is a compact set.

3.4 Lemma. Let Q ¢ Y be a Borel set, let the gset Y\ Q be T-negli-
gible and C ¢ V be a compact set. Then for every € > O there is
a compact set K € Q such that u (Y\NK) < €& whenever y € C,
Proof. Pix € > 0 and choose x € C. Since ,(Y) =
= My (Q), there exists a compact set K(x) ¢ Q such that (u,x(y) <
< Wy (K(x)) + € , The function y +—»> (wy(Y) - My (K(x)) is con-
tinuous on V, hence there is a neighbourhood V(x) of the point x
such that ‘

My(Y) < @ (K(x)) + €
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for every y ¢ V(x). By compactness of C, there exist x;,...,x; € C
such that

Cc V(x1) U eee U V(xm)o

Put K = K(x4) U «.o v K(x;). Then K is & compact subset of Q. If ye¢
e C, then y & V(xj) for a suitable j € {1,00.,m¥ It follows that

@y < @ Kxy) + e & @ (B) + ¢,
thus @y(Y\K) < €.

3¢5 Let us recell that, by definitions from Sec. 2, Up (resp. U%)
is the set of all £ € B(Y) on which all increasing (resp. positive
linear) extensions of T from H(Y) to B(Y) coincide.

We shall define the following two sets of functions. Denote by
Kp (resp. Kg) the set of all functions g € C(Y) for which the follo-
wing condition holds: Whenever -iTn( is a sequence of increasing
(resp. positive linear) mappings from C(Y) into D(V) such that
lim T h = Th uniformly on V for every h e H(Y), then 1lim T & =T.8
uniformly on compact subsets of the space V,

3.6 Theorem. For f € B(Y), the following conditions are equivalent:

(i) £ e UT',

(11) fe UQs
(1ii1i) the set {ye¥; f(y) + f(y)‘i is T-negligible.

Moreover, Ko = Kg = U,;.\r\ c(Y) = Ug n c(Y).
Proof. Note that To(f - f) = 0 if and only if (iii) holds. It fol-
lows from 3.1, 3.3 and Lemma 3.2 that one can apply results of Sec.
2 for B = B(Y), H = H(Y), L = L(Y) and D = D(V)., Thus the conditi-
ons (1),(ii) and (iii) are equivalent by Theorem 2,6,

As we know, Up N c(y) = U’J! n C(Y) and, obviously, Kpc KT It
f a C(Y)N UT’ then there are positive linear extensions 54 end 82
of the mapping T from H(Y) to B(Y) such that S4f ¥ S,f. Putting

= 84, T2 +1 = Sy, we have T ol = Th whenever h € H(Y) and n ¢ IN,
but iT f"; does not even converge on V pointwise, Thus KT c UT n
N C(Y). . .
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Suppose finally that £ € C(Y) n U%. We are going to show that
£ € Kp. Note that the set {yey, f(y) + f(y)§ is T-negligible by
the implication (ii) => (iii).

Let Cc V be a compact set and € > 0O, The get Q = {yeY;
f(y) = £(y)% is a Borel set having T-negligible complement. By Lem-
ma 3.4 there is a cempact get K ¢ Q such that (ay(Y\ K) < ¢ whe=-
never y € C, Since f = ? everywhere on K, for each z € K, there are
functions h_,h? € H(Y) such that h) Z £Z h! on Y and £(z) + € >
> h;(z) £ nj(z) > £(z) - € '. By continuity, there is a neighbour-
hood W, of z such that

£2(x) + ¢ > n(x) Z bi(x) > £(x) - & , xe€ W,

Since K is compact, there are ZyseessZy € K such that K c wz Vess
1

eee U W, o Write h;; and h:_i instead of hz' and hy , respectively,
k .

J
and put

h’ = inf (h{,ooo,hok'), h" = SuP (h%'l“"hﬂ).

Then h’, (-h") € H(Y), h Z £Z h" and b’ - k" < ¢ on K,
Since To is a Riesz homomorphism and To is an extension of T,
we have

T,h” = Thy A coo A Th,, T h" = Th{ A ... A Thi.

Recall that, by hypothesis, there is a function 4 € D(V) such that
inf 4a(v) > o.

Suppose that {Tn’; is a sequence of increasing mappings from
C(Y) into D(V) such that T h—> Th uniformly on V whenever h €
e H(Y). We shall show that T,£ —> T £ uniformly on C.

It is easy to see that there is n, e JN such that

'... 2 ‘ '... < " 1"
Thy edéTnhj=Thj+ ©d, Thj gd_TnhjeThjfed,

whenever n Z n, eand j = 1,s00 ke Thus

" oo " < < ‘ : .
Thj eds& Tnhj < Tnf "Tnhj % Thj + € d

The inequalities

4

Tnf- i".d.éTh.j

and Tnf + €dE Thg
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imply that
Tf- ©d&Th A .o ATh = Th7,
T £+ ©4dZ ThY v...v Thi = T h"
Thus we have
Dh" - ed& T f&LThT+ gd
on V, whenever n & n.

Put o = sup 4 @ _(¥); yecl, B=sp (I21+10"l + [n"1)(D),
d = sup 4(C). Obviously, o, 3, d € IR, Recall that, for y € C,

T,2(y) = ff.d(uys_/i'(fd(_uy+fy\'<fd(by,
l = \K) <f3¢
[fauyle L Jtlap, & B u (INK) Be
and, similarly, for the functions h’, h", Clearly,
Jwmam - Be g iwmam 2 fram, s fnau, &
éfh'd(uy+(55,

so thet
T,h"(y) -23¢ £ T,£(y) £ Toh'(y) +203¢.,

We showed that
2 2(y) - T 2(¥) 1 €T (0" - n)(y) + e (2B +J),

whenever n & n, and y € C. Since 0 £h” - h" < € on K we get
T, -0 = -ma ey =f - na ey +
T Ink

(" -mmaw, £ &My (K) +28 w (Y\K) <ex+23€E.

We conclude that _
T 2(y) =T 2(3)| € e (o + 43 +0),

whenever n Z n, end y € C. It follows that Tnf —> Tof uniformly on
C, thus £ e KT'
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;’5_._7- Let ye Y and My be the system of all H(Y) - representing me-
asures. S0 VY € means that y» 1is a positive Radon measg-

ure on Y and v (h) = h(:‘k for every function h € H(Y). Clearly,the

Dirac measure ¢ _ concentrated at the point y belongs to .

Let us apply Theorem 2.2 to the case B = C(Y), D =R, H = H(Y)
end the mepping T:H(Y) — IR defined by Th = h(y). Then T¢ = ¥(y),
’T\f = ?(y) and we conclude that the following statements are equive-
lent: ‘

(1) My = {8}3;

(i1) z(y) = ?(y) for every function £ e C(Y).

Recall that {y e Y3 = $¢_3%% is called the Choquet bounde-
ry of Y with respect to H(Y) (cf. e.g. [331,[4]) and is denoted by
E-hH(Y)Y. It follows from 3.3 that the Choquet boundary is & Gy set.

Let us agree to denote by d(f) the set of all points at which
a function £ € B(Y) is discontinuous.

3.8 Proposition. TFor every £ e B(Y),

anc {ye ¥ ¥ + 2y c aln) U (X omyeyyD.

Proof. Recell that f £ £ & f and the functions ¥ ena (-f) are low-
er semicontinuous. Consequently, if ye Y is such that f(y) = f(y),
this common value equals f£(y) and £ is continuous at y. The first
inclusion follows. "

In order to complete the proof, it is sufficient to verify the
followiné e.sserj;\ion: Ifye Ch‘H(Y)Y end £ € B(Y) is continuous at
¥, then £(y) = £(y). '

Given ¢ > O, there is & neighbourhood W of y such that f(y)-
- ¢ £ £(2z) £ £(y) + € whenever z€ W, Let |f| £ « on Y. By Ti-
etze s extension theorem, there are functions f1,f2 € C(Y) such
that £, = < + & , £, = =X =€ on Y\W, f1(y) = £2(y) + ¢ ,
£,(y) =£(y) - ¢ end £(y) + € £ £, € L+ € , ~C-€ £ I, £
«é f(y) - € on Y, Then £, Z £ Z f,. Since y € ChH(Y Y, we have
£5(y) = fz(y)v f (y) = £4,(y). Consequently, there are hy,h, e H(Y)
such that hy Z r1, hy £ £, and by(y) € £,(y) + & , KL(NZ £,(y) -
=€ . Ve conclude that hy 2 £ Z h, end hy(y) - hz(y)é4 € o Hen-
ce £(y) = 2(y).

3.9 A space H(Y) is said to be a Korovkin space with respect to

.
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increasing mappings (resp. with respect to positive linear map-
pings), if Ky = C(Y) (resp. Kq = C(¥)).

With applications to potential theory in mind, H(Y) is said
to be a K-space (or a KeldyS space), provided Up 2 c(Y) (resp.
Up 2 ¢(m).

3.10 Theorem, The following statements are equivalent:

(i) H(Y) is a Korovkin space with respect to increasing map-
pingss

(i1) H(Y) is e Korovkin space with respect to positive line-
ar mappings;‘

(iii) H(Y) is a K-spacey

(iv) H(Y) is a Keldy3 space;

(v) iy e Y3 ¥(y) + $(y)} is T-negligible for every £ € C(Y);

(vi) Y*\ChH(Y)Y is T-negligible;

(vii) Up = if € B(Y)3 d(f) is T-negligibleis

(viii) Up = 4f & B(Y); a(£) is T-negligiblel.

Proof. The equivalence of conditions (i) - (v) follows immediate-
ly from Theorem 3.6, The conditions (v) end (vi) are equivalent by
3.7, If £ ¢ B(Y) and £ ¢ Up, then a(f) is T-negligible by Theorem
3.6 and Proposition 3.8.

Suppose that (vi) holds, £ ¢ B(Y) and d(f) is T-negligible.
The second inclusion of Proposition 3.8 and implication (iii) =>
=> (i) of Theorem 3.6 show that f € Upe Thus (vii) holds and (vii)
and (viii) are equivalent by Theorem 3.6,

Assume finally (viii). Clearly, d(f) = @ for every £ € C(Y),
thus C(Y) c US end Kp = C(Y) by Theorem 3.6. Consequently, (i) is

T
establighed and the proof is complete.

3.11 Notes and comments. Theorems 3.6 and 3.10 show, in an ebs-

tract context, a relation between theorems of Keldys and
Korovkin type. The question of such a relation was raised by Prof.
H. Bauer on the occasion of the conference "Funktionenraume und
Funktionenalgebren", Oberwolfach, 1978.

Korovkin type theorems have been intensively studied during
the last decades; see e.g. [51,0[11],04],03],[1].

Proposition 3.8 turns out to be useful in investigations of
Keldys type theorems for discontinuous functions. In a less gener-
al form it appears in [ 27].

The main results of Sec. 3 were announced in [291,[31].,
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4, Theorems of Keldys and Korovkin type in harmonic spaces

4.1 Suppose that X is a ﬁp -harmonic space with countable bage
in the sense of the axiomatic potential theory developed in
[9]. The symbol I stands for the corresponding sheaf of harmonic
functions.
Let U be & nonempty relatively compact open subset of X. The
set of irregular points of U is denoted by Ui’ Define, as in the in-
troduction,

Recall that £ € H(QU), if end only if there is a solution of
the classical Dirichlet problem for the boundary condition f£.

The complement of U is denoted by CU and for x&X, the symbol

eiu means the balayage of e, on CU,

A Borel set Q ¢ U is said %o be negligible, 1z e =0
for every x € U,

A set Uc X is said to be admissible, if U is nonempty, rela-
tively compact and open and the space H(U) contains a strictly po-
sitive function and linearly separates the points of .

The following important assertion is a consequence of results
of [ 6], p. 97.

4.2 Proposition. Let U be an admissible set. Then the following
conditions are equivalent:

(1) Uy is negligible;

(i1) 38U\ Chﬂ(au)ﬁ is negligible.

4.3 Let U be a nonempty relatively compact open set in X. A map-
ping A:C(QU) —> ¥ (U) is said to be a K-operator (on U),if

A is an increasing mapping and A(hlau) = hjy, whenever h e H(U).

If, moreover, A is linear, then A is called a Keldys operator.
Given a resolutive function £ on 9J U, H’t stands for the

PWB-solution of the generalized Dirichlet problem; see [ 9], p. 18,

By [9], pp. 18, 50. the mapping

At > HYE, fe C(aU),

is a KeldyS operator.
A nonempty relatively compact open set Uc X is said to be g
K-set (resp. a Keldys set), provided there is exactly one K-oPer-
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ator (resp. KeldyS operator) on U.
Obviously every K-set is a Keldys set.

4,4 Theorem., If U is a Keldys set, then Ui is negligible.

Proof. See {241y cf, also [22].

4.5 Suppose that U is an admissible set., Then H(QU) is a major-
izing subspace of B( QU), the space of all bounded functions
on 9U.

We shall apply the results of Sec. 3 to the following situa-
tion: Y = U, H(Y) = H(QU), V = U and D(U) = ¥ (U) - ¥ (W),
the space of differences of positive harmonic functions on U, By
[91, p. 38, D(U) is a Dedekind complete Riesz space. The correspon-
ding lattice operations are denoted again by \V and /\ . Recall
that L(3U) is the space of differences of bounded lower semiconti-
nuous functions.

For h € H(U) define

JIhy5y) = byge

Then h € D(U) and T:H(3U) —> D(U) is a positive linear mapping
by the minimum principle [9], p. 26. Recall that by [9], p. 51, e-
very function £ € L(3U) is resolutive and e e D(U).

It follows from'[9], p. 50, that the mapping

T2 > HUe, te L(aU),

satisfies conditions (a),(b) end (c¢c’) of Lemma 3.2. The correspon-
ding system MT is, of course, {egu; x € Ut. Consequently, T-neg-
ligible simply means negligible in the sense of 4.1,

Since U is supposed to be admissible, there is a strictly po-
sitive function h e H(®U) such that inf (Th,)(U)>0, We see that
all essumptions of 3.1 are satisfied.

Comparing definitions 3.9 end 4.3, we notice that H(3U) 1is a
K-space (resp. Keldys space), if and only if U is a K-set (resp.
Keldys set). R

Recall the definition of £(y), £(y) for £ € B(3U) and y €

€ 9U:

#(y) = sup §h(y)s h £¢, h e H(D WY, £(y) = inf {h(y), hZ £, he
’ & H(3 U)%.

Define

S(U) ={s e C(U)s s,y superharmonic on ut.
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4,6 Proposition. Let U be an admissible set and f € C(3U).Then

the following conditions are equivalent:
(i) 1If A4, A, are K-operators on U, then At = AL,

(ii) 1If A4, A, are KeldyS operators on U, then At = A1,

(iii) The complement of the set

iy e 99U E(y) = ?(y)% is negligible.

Proof. This follows as a special case of Theorem 3.6,

4.7 Theorem, Let U be an admissible set. The following conditi-
ons are equivalent:

(1) U is a K-set; .

(ii) U is a Keldy3 set;

(iii) Ui is negligibley

(iv) H( 3U) is a Korovkin space with respect to increasing
mappingss -

(v) H(QU) is a Korovkin space with respect to positive lin-
ear mappings;

(vi) Up =4ife B(9U)y da(f) is negligiblely

(vii) U3 = if € B(OU); a(f) is negligiblet;

(viii) the complement of the set {y e O U f(y) = ?(y)* is
negligible, whenever £ € C(3U);

(ix) B'f = Adhyy; h e H(U), h 5y & 21, whenever ¢ C(U)

(x) B2 =\V{hy heHU, h|yy % £f, whenever £€C(3U)3

(x1) HYf = inf isyys s ¢ s(u), S\auZ £}, whenever f €

€ C(3U);
(xi1) B2 = sup {ty3 -t € S(V), t,5y £ £}, whenever £ ¢
€ c(ou).

Proof. The equivalence of conditions (i) - (viii) follows from
Theorem 3.10 and Proposition 4.2, A
Conditions (ix) and (x) end also conditions (xi) and (xii) er®
obviously equivalent.
For £ ¢ C(B8U) define
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ME = Adhy heHU), b oy 2 £e,
AE = inf{slU', s € S(U), slaUZ ft.

Clearly, A1 is a K-operator and A2 is en increasing mapping satis-
fying AZ(hlaU) = hjy for every h ¢ H(U) (this follows from the
minimum prineciple, see [ 91, p. 26). It is not, however, evident that
At e % (U) whenever £ & C(31U).
Fix £ € C(BU)., To show that A e %€ (U), it is sufficient to
prove that
-ism; 8 € 5(U); sIaU?‘ £}

is a Perron sety; cf. [ 9], pp. 37, 38. In view of [91, pp. 33, 37,
38, this is true provided for every x € U there is a reguia.r get V
such that x € Vc V¢ U, But U is admigsible, which implies by [9],
p. 65, that every point of U even possesses a fundamental system of
regular neighbourhoods.

We conclude that A4, A2 are K—operators and A2f A1f whenever
£ e C(au), It follows easily that (ix) = (xi). Thus if (1) ‘holds,
then A¢f = Bt = Ayt for any £ e C(3U),

It remeins to prove the implication (xi)=> (i).
Suppose (xi). Then (x1i) holds and by [91, pp. 164, 165, we

have
( £3%(e) 2 2.5 2 s(x)

whenever s € S(U) and x € U (cf. L27)). If £ C(3U), s,-teS(U),

‘auéfé S\ U and x & U, then

tx) 2 (eSOt 2 (e29)%(2) £ (£29)U(8) £ s(x).
By (xi) end (xii), (ECU)CU(f) < gu(f). We conclude that
(e = ¢SV for every x e U, which implies (111) (cf. [24] or
£221)., But (iii) implies (i) and the proof is complete.
4.8 VNotes and comments. The use of the method of envelopes (1li-
N
ke £ and f) in connection with the Keldy$ theorem goes back to LTIl3
cf. also [34] and [271.

The question of uniqueness of & reasonable generalization of
the classical Dirichlet problem was raised by A.F. Monna fifty
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years ago. For the development of this problem in the context of
classical potential theory, see the references and discussion in
[27] and [28]1., In [28], an elementary proof of the Keldys theorem
is given. The following remarks are related to Theorem 4.7 from
the point of view of abstract potential theory.

For a Brelot harmonic space satisfying the domination axiom,
condition (iii) is automatically satisfied. The validity of (i) in
this case was proved in [81, As pointed out in [12], the condition
(1ii) is no longer true in potential theory associated with the
heat equation; cf. also-L201,

As observed in [22], in this situation (i1i) fails in general.
For Beuer s axiomatics, under additional hypotheses, implications
(viii) => (ii) => (i1ii) are also proved and, as mentioned there,
the converse implications follow from [6]. For operators A satis-
fying A(s \aU)é 8y for every s e S(U), equivalence of conditions
(111),(11),(xi) and (xii) is proved in [23]; see also [16],[17].
The conditions (i),(ii),(viii),(x) are shown to be equivalent in
[34].

In the above mentioned papers, only extensions from H(JU) to
C(3U) are considered. Discontinuous boundary conditions have been
investigated in [27] where related results and further information
can be found.

Results of Sec. 4 show how an abstract approach from Sec., 2
end 3 enables the establishment of 0ld as well as new results a-
bout theorems of Keldys and Korovkin type.

We remark that Theorem 4.7 fails provided U is supposed to be
relatively compact open, but not necessarily admissible. This is
shown in [321, .

Note also that &V(U) - 3% (U) cen be shown to be a weakly
6 -distributive super Dedekind complete Riesz space; cf. [ 30].For
terminology see [25],L131. Significance of the condition of weak
6 -distributivity for the theory of measures and integrals with
values in ordered spaces is explained in [36]1,[37].
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