WSAA 13

Ursula Schirmeier
Measure representations: Existence, Continuity and Axiom (D)

In: Zdenék Frolik and Vladimir Soucek and Jifi Vinarek (eds.): Proceedings of the 13th Winter
School on Abstract Analysis, Section of Analysis. Circolo Matematico di Palermo, Palermo, 1985.
Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 10. pp. [165]-183.

Persistent URL: http://dml.cz/dmlcz/701872

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/701872
http://dml.cz

Measure representations: Existence,

Continuity and Axiom (D)

Ursula Schirmeier

’

In classical potential theory the sheaf of hammonic functions is

associated to the Laplace operator:
h harmonic « A h = o.

Similarly the sheaf of caloric functions is associated to the

heat equation 4 := A - g% = 0

h caloric «Q h = 0.

Conversely Bony [4] showed how harmonic structures on open sub-
sets of R" - satisfying some additional regularity assumptions -
can be defined by a differential operator (at least on a dense
subset).

In the general theory of harmonic spaces however the start-
ing-point is an abstract sheaf of functions - called harmonic
or hyperharmonic - without any intervention of a defining
partial differential operator. Yet, in some situations it is
useful or even necessary to associate.operators - substitutes
for the differential operators in R" - to given harmonic
structures. Obviously the following two conditions on the

construction of such an operator o are stringent

- the kernel of o should consist exactly of the harmonic
functions;

- o should associate to potentials lying in its domain of
definition their "mass”; the notion of "mass" is ¢lear for

Thig paper is in final form ard no version of it will be submitted

for publication elsewhere.
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Newtonian potentials on R", but must be defined precisely

for potentials on arbitrary harmonic spaces.

In a series of papers (see [8] and the bibliography cited
there) F.-Y. Maeda has developed a theory of Dirichlet integrals
on those harmonic spaces X, to which such a defining operator
can be associated, for which he coined the notion of measure
representation . By definition a measure representation is a

homomorphism
o = oplpeqr ¢ R = (R~ H =l ey

of the sheaf 3{ of local differences of continuous superharmonic

functions into the sheaf JL of signed Radon measures such that
o(f) > o e f is superharmonic (f eRwy,u e,

(M denotes the family of all open subsets U of X). .
Of course, the Laplace operator defines a measure represéntation
of the classical harmonic sheaf. More generally, if %(L is the
kernel of a differential operator L defined on an open subset
X of R" such that (X'%CL] is a harmonic space, then

0 : fl»- Lf (in the distribution sense)

defines a measure representation of this harmonic space.

Conversely Maeda has proved the following "Bony type” result

- under the assumption of the existence of a measure representation -
if X is a harmonic space, X € R" open,‘such that the constant

1 and the coordinate functionals Myseee,m belong to]{(X), then

there exists a differential operator L whose coefficients are

measures such that

L(h) = 0 » h harmonic on U
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for every C2-Function h defined on an open subset U of X.

In this survey paper I want to present the existence theorem
of measure representations on arbitrary harmonic spaces (in the
sense of [2] or [5] having a countable base of their topology)
and sketch its proof (see also [15]), then study some continuity
properties of o and finally give a characterization of Axiom
(D) via a "fine-local property” and the "bounded energy principle”.
The notation used is that of the book [5], but all harmonic spaces
X will be assumed to have a countable base of their topology.
In contrast with [5],?0(U), :PC(U) and :Pb(U] will stand for the
cones of continuous potentials with compact support, continuous
potentials and bounded potentials on an open subset U of X
respectively. &(U) denotes the space of all continuous functions

with compact support on U.

I would like to take this opportunity to thank the organizers
of the 13N
and their hospitality.

Winter School on Analysis for their kind invitation

1. The existence theorem for measure representations

In [15] the following result was proved:

THEOREM. Every harmonic space admits a measure representation.

In the sequel I shall recall the construction of a measure re-
presentation o¢ in the special case of a strong or 1?-harmonic
space (X4 *). A measure representation o of an arbitrary
harmonic space can subsequently be obtained by "gluaing~?-harmonic
pieces together” using a continuous partition of the constant
function 1.

According to the extension theorem ([2], p. 158 or [5], p. 46)
for every open subset U of a 1?-harmonic space X a continuous
function f on U belongs to R(U) iff the following condition



168 Ursula Schirmmeier

holds:
For every open subset V such that V is compact = U
there exist u,v € GL(X) such that

f=u-vonyV

This remark indicates the steps to be carried out in the existence

proof of measure representations:

1) a) Associate measures o(p) in a "reasonable way" to
potentials p € P_(x).
b) Verify the "measure representation property"

olp) - o(p') > 0« p - p’' is superharmonic (i.e. p' L p)

2) a) To f € R() such that £ = u - v on V (where U,V open,
VcuUand u,v E:PD(X]] associate a measure o(f) which
equals o(u) - o(v) on V. )

b) Verify that o 1is well-defined and has the required

properties.

In the following I Qant to concentrate on the first problem.
Consider For a moment the special case that (X L *) admits a

Green function Gy i.e.
G : X xX=> R,

is continuous off the diagonal and every potential p can be
represented as

p(+) = G¥*(+) := [ G(+,yluldy)

with a unique positive Radon measure u = up. Then - according

to the uniqueness of the represent1ng measures -
pl—-—'up

is well-defined and satisfies the measure representation property
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for all potentials (not just for the continuous ones).

Let us return to the general situation.and consider the
following way of assigning measures: let W be a reference
measure on X, i.e. a positive Radon measure such that .

(*) 0 < [ pdi < = for every p E:PO(X), which is not identically
0,

or - more generally - a strictly positive H-integral (see [3]);

i.e. an additive, positive — homogeneous, increasing functional

¥ ¥, - R,

which is continuous in order from below and satisfies the
positivity condition (*). (It will soon become clear, why this
‘generalization to H-integrals is reasonable). For f = p - p’,
where p,p’€ 3+jx), the symbols i

f $d¥  or W(£) = W(p) - Wip')

are used interchangeébly, provided that W(p') < e,

REMARK. Such measures W always exist; také for example
o .
W= I A €&, where {xn : n € N} is a dense subset of X and

n=1 n
(*n]nem is a sequence of strictly positive real numbers such
-]
that T A p(xn) converges for one strictly positive potential p.
n=1

To p E:Pb(x) a Radon measure o(p) is assigned by
o(p)(e) := Wlw s p), 0 €X, (X,

(medsure representations in "standard form") or - more generally -
o1 (0) = TClgo) @ p), o ek, (x),

where:® denotes the specific multiplication (see [5], §§ 8.1,8.2)
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and g 1is a fixed strictly positive locally bounded Borel

function.

REMARK. The definition of o obviously depends on the choice
of ¥ and g. This arbitrariness stems from the fact that
measure representations - like differential operators - are not
uniquely determined by the harmonic structure.

The definition of o(f) makes sense more generally for
fe=p-p€ed (x)- F (X), provided that

o(f) := o(p) - o(p’)

belongs to the space JL(X) of signed Radon measures on X.

Simple examples (see Example 4 at the end of this section) show
that in general o does not satisfy the measure representation
property for arbitrary p,p' € J>b(XJ' i.e. it can happen that

o(p) - o(p’) is a positive measure, but p - p' is not superharmonic.
Using tools of the theory of standard H-cones, due to N. Boboc,

G. Bucur and A. Cornea [3], it can be shown that these problems

do not occur for representation measures of continuous (or even

regular) potentials:

LEMMA. Let p,p’'E€ ?C(X]. The restriction [a(p)-a(p'))lu of the
measure o(p)-o(p') to an open set U is positive, iff
(p-p‘)IU e Y.

The following proof was communicated to me by G. Mokobodzki.

It uses

MOTOO'S THEOREM. (see [5], Exercises 10.1.4, 10.2.9). Let p,p"
be regular potentials such that p £4-p”". Then there exists a Borel
function f, 0 < f < 1, such that p = f @ p".
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Proof of the Lemma (G. Mokobodzki). Set p” := p + p’'. Then
according to Motoo's theorem there exist two Borel functions
f,f' such that

= f e p" , hence o(p) = f « o(p”)

IA A

1. p
1, p'= f'a p" , hence o(p’')= f'« o(p”) .

But then .
(o(p)-0(p’)) |, 2 0 @ F-f' > 0 olp") , - a.e. » (p-p') € Jwy .

EXAMPLES OF MEASURE REPRESENTATIONS.

1) Let X = ]-1,+1[ be the harmonic space of the solutions of

the one-dimensional Laplace equation on the real imterval
~1-1,+1[. The measure representation in standard form corresponding
“to

¥ = Lebesgue measure on X

is given by

a(f) = - 1?;2 f" (in the distribution sense),

the measure representation corresponding to the H-integral
Tl 5(F2(-1) = £1(1))

(left and right derivatives at the endpoints) is
alf) =-% f£" (in the distribution sense).

This measure representation is associated to the symmetric

Green function
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G : (x,y) b— min((1+x)(1-y), (1-x) (1+y))
Xx X — R+

in the following way

n
-

W(G(-,y))
o (GY)

for all y € X,
u for every u €M+(X].

2) Let X be a harmonic space with a symmetric Green function
G and such that the constant 1 is hyperharmonic. Then -
similarly as in the first example - there exists a strictly
positive H-integral 3 (which is in general not a Radon

measure on X) such that
T(Glr,y)) = W(Gly,*)) =1 for all y € X.

The measure representation in standard form corresponding to

this H-integral § reassigns to Greenian potentials
p=20C" = [ G(:,yluldy)
their charge .
'3) Let X be a harmonic space with a Green function G. It

can be shown ([17], § 3) that there exist reference measures
¥ such that

1
g : yl ’ith.,yjj

is continuous. Again the measure representation corresponding

to ¥ and g is associated to the given Green function G:

o(Gu) = U
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since for ¢ € &W(X) .

H - T uy o o=orely) . -
a(G") () = W((gw)eG") "(ffT%TTtyTT Gl+,yluldy)) = [ © du;
but in general o is not representable in standard form
(see [17], Example in § 2).

4) Let X = 1-1,+1[. For every open interval U c X let'¥(U)
denote the space of all continuous functions f : U » R such
that '

1) f 1is locally affine on U ~ {0}
2) f 1is constant on UN ]-1,0), provided that 0 € U,

([5], Exercise 3.1.7).

The corresponding harmonic structure possesses two non-propor-
tional potentials with the same superharmonic support {0},
namely

p:xk—1-Ixl, p’" : x F—41]U’1[(x](1-x)1

especially there exists no Green function for X.
The measure representation corresponding to the Lebesgue measure

W on ]1-1,+1[ is given by
o(f) = - @f" + f:(o)co, reR.

Here f'(o) denotes the left derivative of f at o, &g is the
Dirac measure at o, f" denotes the second derivative in the
distribution sense of f on X ~ {0} and o : X » R 1is defined by

(1-$)(1+y), y < o
©oly) =
%(1-y) , y>0
(see also [15), Example (2.2.2); for this harmonic space
F.-Y. Maeda found a similar measure representation, [8], Example 3.3.)
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An easy calculation shows that for the two potentials p,p’

defined above

o(p) = € o(p’') = % €

hence o(p)-o(p') > o, but p - p' € F(X).

2. Continuous measure representations

Before studying continuity properties of measure representations
consider the following example of a measure representation which
is discontinuous with respect to the topology of uniform con-

vergence.

EXAMPLE. Let X = ]1-1,+1[ be the harmonic space introduced in
the last section, Example 4. Another measure representation v

for this harmonic structure is given by

G(F)

-G - fm 4 fllo)e,, FER,

where @®(x) = Ix| for x € X and f" denotes the second derivative

in the distribution sense. The sequence of continuous potentials

1 - Ixl -For%<|x|<
{ rnel\ll

1

pn(x)
1 -5 for 0 < Ixl <

1

1

n

converges uniformly and increasingly to
p(x) =1 - Ixly

.but the corresponding sequence of measures

~ _ 1
U(Dn)-ﬁ(il "’51);n€]N.
n

n

converges vaguely to the zero measure, whereas ?(p) =& 4 0,
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In [15], Theorem 3.5, it was shown that measure representations

o of the form
a(p)(@) = W(goe p) , p €P (X), v €g,(X),

where g 1is continuous and strictly positive, always define
continuous maps o = OU from the cones iC(U) of all continuous
superharmonic functions on open sets U with respect to the '
topology of local uniform convergence to the spaces-ﬂ+(U) of

positive Radon measures on U with the vague>t0pology.

If the harmonic space satisfies Doob's convergence axiom and
the condition (A) below - especially if there exists a Green
function G on X (see [7] and [14]) - then -. for a suitably
chosen measure ¥ - ¢ 1is continuous on 5+(U) even with respect

to the topology of pointwise convergence.

A still coarser topology than the topology of pointwise con-
. vergence on 3.+(U) is the topology of graph convergence studied
by G. Mokobodzki (see [10] and [1]), which coincides with the

natural topology 1 introduced by N. Boboc, G. Bucur and

nat’
A. Cornea on standard H-cones (see [3]). A sequence (pn) in

3+(U) is ‘convergent to p € 3+(U] with respect to this topology

iff for every subsequence (pnk)kem
p = lim inf p (lower semi-continuous regularization).
k—s o "k ’

The assertions mentioned above are contained in the following

THEOREM. Assume that Doob's convergence axiom and the following
condition (A) hold

(A) Every point x € X has an open neighbourhood VX such that

the smallest absorbing set ACV containing CVx is the whole

space X. X
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Then there exists a reference measure § such that the measure
representation O associated to ® and to an arbitrary strictly

positive and continuous function g is naturally continuous on f+:

For every open subset U
o =0y ¢ [3+[U).Tnat) - (JQ(U], vague tapology)
is a continuous map. -

The proof is carried out in [17]. It relies on the following

three lemmas valid under Doob's convergence axiom.

LEMMA 1. Let U be an open and relatively compact subset of

X and let L € U be compact. Then the restriction map

0:P 00 = (peP) s} P W) {p €PwW) :s(p) L,

Q(P) := potential part of EIU = EIU - R%U‘U R

is a homeomorphism.

LEMMA 2. condition (A) is eguivalent to

(R) There exists a reference measure W on X which is That "

continuous on the cones 11}X). L € X compact.
Especially Lemma 2 shows that in the presence of Doob's convergence

axiom Condition (A) is even necessaryifor the continuity property

of o stated in the Theorem.

LEMMA 3. (see [16]). The specific multiplication maps

ER(D R (1))
Sl— f @ s

(for f €&+(U)) are t__. - continuous.
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3. Two characterizations of Axiom (D)

At the Oberwolfach meeting on axiomatic potential theory in 1984
I. Netuka suggested to characterize special properties of harmonic
‘spaces by special properties of measure representations; As a
first answer to this question two characterizations of Axiom (D)
are presented in this section.

Axiom (D) was introduced in axiométic potential theory by
M. Brelot. It states that the domination principle is valid for
all locally bounded potentials p, i.e.

RS(p)

(D) P

=p for every locally bounded potential p.
In the following only measure.representations o in standard.
‘form are considered, determined by-a strictly positive H-integral

u
o(p)(e) = Tlo e p), peP (X), 0 €k, (X).

The harmonic spaces are assumed to be strong or 3’-harmonic and

the positive constants are hyperharmonic.

The characterizing conditions of Axiom (D) are the bounded

energy principle
(E) E(f) := [ fdo(f)> o for every f € P, (x) - P (x)

and the fine local principle (FL).

DEFINITION. A measure representation o 1is said to satisfy

the fine local principle (FL) or o is said to be a fine local
opezj’atot, iff, whenever f Gyb(X] '?b(X) vanishes on a finely
open set V, then the restriction c(f)lv of og(f) to V is the

Zero measure.
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REMARK. If o 1is the canonical measure representation

associated to the Newtonian kernel for the classical harmonic

sheaf, then E(f) is the usual Newtonian energy for f E:Pb(XJ -?b[X).
The bounded energy principle and the fine local principle are

both satisfied by o but neither of them is valid -for the heat

equation.

Another example where all these principles are violated is the

following:

EXAMPLE. Axiom (D) is not valid in the harmonic space

X = 1-1,10 introduced in § 1, Example 4. The measure represen-
tation o associated to the Lebesgue measure § on 1-1,1[
satisfies neither the bounded energy principle (E) nor the fine
local property (FL). Indeed:

let p : xF— 1 - Ixl and p' : x I— (1-x)1]0’1[(x).

Then .

E(4p’'-p) = [(4p’-p)do(4p’-p) = (4p’-p)(0) = - 1 < O,

hence (E) is violated.

The potential p’ vanishes on the finely open set 1-1,0], but

the restriction of the measure

-

olp') = 5 &g
to 1-1,0] is not the zero measure; hence (FL) is violated.

The following theorem is proved in [17], § .1, 2:

THEOREM. ret (X,#*) be a ?’-barmonic space such that 1 EQt:(X)
'and let o0 be a measure representation in standard form on X.

Then the following conditions are equivalent:

1) (X #H*) satisfies aAxiom (D).
2) o satisfies the bounded energy principle (E).

3) o is a fine local operator.
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SOME COMMENTS ON THE PROOF.

1) =» 2). The implication 1) = 2) has been proved by P. A. Meyer
in the framework of Hunt processes with absolutely continuous
resolvents ([8], p. 441; see also [11]) using additive functionals
and martingale theory. A proof within the frame of axiomatic
potential theory relies on a result of F.-Y. Maeda ([s8l, p. 39)
according to which for every bounded f € JL(X] - }Q(X)

2f o £ - 2 € (X) ' (even €P_(x)),
i.e. 2f o(f)- o(£%) > O :

hence

% T(£2) > 0.

E(F) = [ 1.do(f) > 5 | 1do(£?) =
This proves (E) for bounded differences of continuous potentials
(without assuming Axiom (D)). The general case follows then by
an approximation of bounded potentials by finite.sums of con-

tinuous ones using Axiom (D).

2) » 1). The implication 2) = 1) has been proved by M. Rao [13]
for a class of Lévy processes. His proof carries over to our

situation provided that E(:) is definite on positive functions,
i.e. E(f) =0, f> 0=+ =0.

This is for instance true if ¥ charges every finely open set.

M. Rao's idea - translated to our situation - is the following:
Let p € P (X) and let u € P (X) such that u = p on s(p),
u< p.‘Tth (E) for p - u implies

’

0 < f(p-u)(do(p)-do(u)) = - f(p-uldo(u) < O

(since u = p on S(p) = Supp o(p) and p - u > o),

hence
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J(p-u)do (p-u) = o.

According to the extra assumption of definiteness we have p = u.

These considerations show

‘RS(p)

5 =p for every p € ?b[X).

a condition which is equivalent to Axiom (D) for qP-harmonic

spaces X with hyperharmonic positive constants.

Without the extra assumption of definiteness the proof is

more involved; details can be found in [17].

3) = 1). Again the proof is much simpler using the extra
assumption of definiteness and is presented here; the general
case is carried out in [17]. '
Let p e?b(x) and let u E?b[X) such that u = p on S(p). For
every € > o the potential

Pe := influ+e,p)

coincides with p on a fine neighbourhood Vc of S(p). According
to the fine local property of o

“Pelisp) = °Pisep)

hence
Il 1S(p] do(p,) < F(1S(p) ep.) + F(1X\S(p) ep;)‘= Hipg) < ¥(p)
= [ 1 do(p) = I(1S(p]dc(p) = f 1S(p)d°(pc)'

But then f 1X\S(p)d°(pe) = F(1X\S(p}g pcl =0, i.e.

= 0 =

a(pe)|X\S(p) oP) | x<s(p)*
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The assumption of defiqiteness allows now to conclude
J(p-p,)do(p)-do(p,)) = 0 =p = p,,

hencev
p <u+e for every ¢ » o

and finally
p < u.

For the proof of the _implicafion 1) = 3) see [17].

REMARK. (Existence of fine measure representafions'). For
harmonic spaces satisfying Axiom (D) B. Fuglede developed a
"fine potential theory”. In this case ¢ can be extended to
a defining operator of the sheaf & of fine-local differences
of finite finely superharmonic functions:
For e\}ery finely open set V and f : V- R »
f € ﬁ(V) « for every point x € V there exist a fine neigh-
. def bourhood W and two finite finely superharmonic

functions u,v on W such that f = u - v on W.

- for svery point-x € V there exist a fine neigh-
bourhood- W and u,v € :pb(X) such that
f =u-vonW L
(due to the "local extension property”, [6], 9.9).
To f € &(V] a representing measure is assigned in the usual way:

If f = u - v on a finely open set W, u,v E:Pb(x). then define
5) := o(u) = alv)
! W ° W A "

Accof‘ding to the fine local property o is well-defined and has
the measure representation property

e(f)lv > o » f is finely superharmonic on V.

181
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